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Abstract
Independent component analysis (ICA) as a promising spatial filtering method can separate

motor-related independent components (MRICs) from the multichannel electroencephalo-

gram (EEG) signals. However, the unpredictable burst interferences may significantly

degrade the performance of ICA-based brain-computer interface (BCI) system. In this

study, we proposed a new algorithm frame to address this issue by combining the single-

trial-based ICA filter with zero-training classifier. We developed a two-round data selection

method to identify automatically the badly corrupted EEG trials in the training set. The “high

quality” training trials were utilized to optimize the ICA filter. In addition, we proposed an

accuracy-matrix method to locate the artifact data segments within a single trial and investi-

gated which types of artifacts can influence the performance of the ICA-based MIBCIs.

Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed

methods, and the classification accuracies were compared with that obtained by frequently

used common spatial pattern (CSP) spatial filtering algorithm. The experimental results

demonstrated that the proposed optimizing strategy could effectively improve the stability,

practicality and classification performance of ICA-based MIBCI. The study revealed that

rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

Introduction
Noninvasive brain-computer interfaces (BCIs) measure brain activities, and translate them
directly into controlling commands to operate external devices without resorting to the periph-
eral muscular nerve system [1–3]. A common input for BCI systems is the scalp-recorded
electroencephalogram (EEG) signal reflecting the electric field generated by the spontaneous
electrophysiological activities of neurons. However, recorded EEGs are inevitably contami-
nated with non-brain activity artifacts [4, 5] such as electromyograms (EMGs), electrooculo-
grams (EOGs), electrocardiograms (ECGs) and various environmental electromagnetic
interferences. Furthermore, EEGs are also characterized by low spatial resolution due to the
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volume conduction effect of the human brain. Such restriction greatly deteriorates the BCI per-
formance, which is usually addressed by the use of spatial filter techniques.

As is known that, two spatial filters namely, common spatial patterns (CSP) [6–11] and
independent component analysis (ICA) [12–17] are widely used in motor imagery BCI
(MIBCI) systems. CSP adopts a supervised algorithm that needs plenty of labeled data to find a
projection matrix for maximizing the differences between the variances of two-class EEG data.
Besides, the selected data are suggested to have strong desynchronization/synchronization
(ERD/ERS) phenomena [18–19]. As such, the CSP method requires the “high quality” training
data with accurate labels. These requirements can be greedy, since the distraction and fatigue
of subjects in the long data collection process often produce mislabeled trials. ICA is a relatively
new blind source separation (BSS) technique [12,16]. Based on the independence assumption
of the signal sources, ICA can extract the hidden sources and the corresponding mixing model
from a set of measured signals. Compared with the CSP algorithm, ICA is an unsupervised and
model-based algorithm. Theoretically, arbitrary continuous EEG segments can be used to cal-
culate the ICA spatial filters [15, 20], which facilitates BCI operation and relieves the pressure
of BCI users in the training data collection.

However, ICA algorithm also exhibits its own problems when applied to MIBCI. The per-
mutation problem is a frequently discussed issue [14], which remains an obstacle to the auto-
matic selection of motor related independent components (MRICs). Usually, manual visual
inspections based on topographic maps of spatial patterns or frequency spectrum features of
independent components (ICs) are performed during the training phase [21–22], but these
methods are time-consuming. Some automatic identification methods were developed by
using the frequency-spatial features or predefined matching templates [20, 23–26]. These
methods are sometimes unsatisfied to deal with the strong nonstationary and noisy EEGs. We
have reported the degraded performance of ICA caused by random interferences and artifacts
(such as the burst artifacts induced by involuntary body movement or electrode loosening)
[27–28]. This is because the wide-band burst artifacts are hardly eliminated by temporal filters,
and moreover, they usually are of short duration and irregular appearance, which are difficult
for ICA to separate them into a single output channel.

In this study, we proposed a novel strategy to solve the aforementioned problems. The ratio-
nale is to recognize the badly-corrupted EEG trials, i.e., the bad trials through two rounds of
EEG trials selection by combining the single-trial-based ICA filter and the zero-training classi-
fier. We can thus obtain more accurate ICA mixing models and corresponding MRICs detec-
tion filters by rejecting the bad trials. That also guaranteed the reliability of the ICs automatic
identification algorithm implemented only using the spatial pattern of ICA sources. Mean-
while, a simple and effective classification rule, based on variance comparison of MRICs within
mu/beta rhythm frequency bands, was designed to construct the zero-training classifier. Fur-
thermore, we employed an accuracy-matrix based visualization technique by using consecu-
tively overlapping EEG segments from each trial to calculate ICA filters. The purpose was to
further locate the artifact data segments within a single trial, so that we can assess the influences
of different types of artifacts on the performance of ICA-MIBCI system.

This paper is organized as follows: Section 1, introduces the detailed experimental paradigm
of the EEG data collection, and explains the ICA and CSP algorithms. Section 2, explains the
algorithm frame of ICA-based MIBCI, showing how “bad trials” can be recognized by two-
round data selection, and how to optimize ICA filter calculation. Section 3 compares the exper-
imental results of the three methods (ICA, optimized ICA and CSP). Section 4, investigates the
effects of different artifacts on ICA-based MIBCI performance with a proposed technique of
accuracy-matrix based visualization. The last section concludes the paper and proposes sugges-
tions for future work.
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Methods

2.1 Experiment paradigm and EEG recording
Four healthy subjects (one male and three females, aged between 22 and 28) participated in the
motor imagery experiment. All subjects are graduate students in our laboratory, with prior
experience in the experimental paradigm. The study was approved by the Institutional Review
Board at Anhui University. Written informed consent has been obtained from each subject.

Throughout the experiment, the subject sat in a comfortable armchair facing a computer
screen. The duration of each trial was 10 s as shown in Fig 1. A trial started by a short beep indi-
cating 1 s preparation time, and followed by a red arrow pointing randomly to three directions
(left, right, or bottom) lasting for 5 s and then presented a black screen for 4 s. The subject was
instructed to immediately perform the imagination tasks of the left hand, right hand or foot
movement respectively according to the cue direction, and try to relax during the black screen.

EEG data were recorded from 14 scalp electrodes placed at locations according to the stan-
dard international 10–20 system (Fig 2), with the left mastoid served as the reference and the

Fig 1. Timing scheme of paradigm.

doi:10.1371/journal.pone.0162657.g001

Fig 2. Layout of EEG electrodes with standard international 10–20 system.

doi:10.1371/journal.pone.0162657.g002
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right mastoid as the ground. The raw EEGs were band-pass filtered between 0.1 and 100 Hz,
and digitally sampled at 250 Hz. An additional 50 Hz notch filter was applied to suppress the
power line interference. Every subject went through three sessions, each of which contained
two consecutive runs with several minutes inter-run breaks, and each run comprised 75 trials
(25 trials per class). The intervals between two sessions varied from several days to several
months.

Prior to the calculation of ICA spatial filters, the recorded EEG data were filtered with a
zero-phase FIR band-pass filter between 8–30 Hz, which covers the motor-relatedmu and beta
rhythm. We analyzed the time frequency maps of three electrode (C3, Cz, C4) signals [29]. The
testing frequency bands with obvious band power fluctuation during three-class motor imagery
tasks were selected. The most active frequency bands were 10–14 Hz for three subjects (S1, S2
and S4), 12–16 Hz for subject S3. The time segment of 0.5–5 s of a trial was chosen for accuracy
testing and also for CSP filter calculation. Two different electrode-distributions were defined,
one is an eight-channel scheme (FP1, FP2, C3, Cz, C4, O1, Oz, O2) and the other is a nine-
channel scheme (FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4). We chose the one with higher
classification accuracy for a subject based on the previous analysis.

2.2CSP algorithm
CSP is a proven method for effective spatial filtering in MIBCI [6–9]. Assuming X1 and X2 are
N-channel EEG data of two-class motor imagery. All channel data are centered and scaled. Let
S(+) and S(-) represent the variances of two-class motor imagery EEG data within specific time
segment, which are estimated as follows.

SðþÞ ¼ EðX1X
T
1 Þ ; Sð�Þ ¼ EðX2X

T
2 Þ ð1Þ

Since the covariance matrices S(+) and S(-) are real symmetric matrix, there is an orthogonal
matrixW, which can project the variance matrix into a diagonal matrix.

WTSðþÞW ¼ L ¼ diagðl1; � � � ; lNÞ
WTSð�ÞW ¼ I� L

ð2Þ

where I is an N×N identity matrix, λi (i = 1,. . .,N) is the eigenvalue of S(+). In this study, one
pair of eigenvectors corresponding to the maximum and minimum eigenvalues were used to
construct the CSP spatial filters.

For three-class motor imagery problem, we employed the one-versus-the-rest (OVR) [10–
11] method by dividing the multi-class problem into several binary decisions. In this study, six
groups of two-class CSP filters were calculated to obtain three predicted results, and the final
class label was chosen by the voting algorithm.

2.3 ICA algorithm
The basic ICA model assumes that the measured N-channel EEG data x(t) = [x1(t),. . .,xN(t)]

T

are noiseless linear and instantaneous mixtures of several latent independent sources
s(t) = [s1(t),. . .,sN(t)]

T.

xðtÞ ¼ AsðtÞ ð3Þ
where A = [a1,. . .,aN] is a mixing matrix; The column vector ai(i = 1,2,..,N) is called a spatial
pattern, which reflects the weights of the independent source si(t) (i = 1,2,..,N) projecting to the
measured EEG signals x(t). The goal of different ICA algorithm is to estimate the hidden
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independent sources with a separating matrixW= [w1,. . .,wN], i.e.,

uðtÞ ¼WxðtÞ ð4Þ
where u(t) = [u1(t),. . .,uN(t)]

T is the estimated independent sources. Under the premise that
the sources s(t) and mixing matrix A are both unknown, the key assumption used to recover
the source signals is the statistical independence of the sources. The ICA algorithm based on
the principle of information maximization [30] was used in this work, and the object function
was optimized by the natural gradient algorithm [31]. The separating matrixW was initialized
as a diagonal matrix with same positive main diagonal entries and the final iterative formula is
as follows:

DW / ½I� E½KtanhðuÞuT þ uuT ��W ð5Þ
where E[�] is the statistical average. K is a N×N switch matrix with diagonal elements kii equals
1 or -1 corresponding to super-Gaussian or sub-Gaussian sources respectively, which can be
estimated by the signs of Kurtosis of u(t). The variance of sources u(t) was normalized to elimi-
nate the influence of the amplitude uncertainty of the recovered sources, and the elements of
mixing matrix A and separating matrixW are adjusted accordingly as follows:

uðtÞ  uðtÞ=diag½stdðuðtÞÞ�
A Adiag½stdðuðtÞÞ�;W ¼ A�1

ð6Þ

where std(�) is the standard deviation vector; diag(�) transforms the vector to the diagonal
matrix. In this work, we wrote the ICA codes by ourselves instead of using the standard Info-
max algorithm in EEGLAB [32].

The Algorithm Frame of ICA-Based MIBCI
The structure of our algorithm frame is illustrated in Fig 3. For the purpose of ICA filter opti-
mization and reliable MRICs extraction, we designed a two-round trial selection strategy to
identify the “good trials” and “bad trials” in training sets. The following sections will describe
the details of our proposed methods.

3.1 MRICs and its detection filters
In the training phase, after applying ICA to the EEG segments, we need to identify the MRICs
based on spatial or frequency features, and then select corresponding rows of separating matrix
W to be the spatial filters for detecting MRICs in the testing phase. Based on the physiological
knowledge, the limb movement imagination can induce the ERD phenomenon [18–19], i.e.,
left/right hand motor imagery will cause mu/beta-band power depression at contralateral pri-
mary motor cortex (C4/C3), and foot movement imagination ERD occurs near the middle area
of primary motor cortex (Cz). Therefore, corresponding to the three electrodes, we selected
three MRICs, whose features were used for classifying the three-class motor imageries.

Previous studies [33–34] revealed that each task-related brain sources has unique and con-
sistent scalp maps in similar EEG experimental paradigms. Each column of ICA mixing matrix
A represents the projections of ICs on the scalp electrodes. We only employed the spatial pat-
terns of ICs for the selection of MRICs and its detection filters. However, ICA models can be
accurately estimated in any case. The reason is that scalp EEG signals used to calculate ICA
models are inevitably contaminated with different types of artifacts, and that may cause inaccu-
rate ICA calculation as well as the wrong choice of MRICs and their detection filters. In section
5.1, we will show that if the badly-corrupted EEG trials are used for ICA learning, the
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performance of MRICs detection filters may be seriously degraded. For these reasons, this
study focuses on trial-selection-based ICA filter optimization instead of using complicated
MRICs auto selection algorithm.

3.2 Trial analysis and selection
The two-round trial selection method is designed for optimizing ICA filters and illustrated in
Fig 4.

3.2.1 The first-round trial selection based on spatial patterns of ICs. In the first round
trial selection, a single-trial based ICA analysis was performed on labeled training dataset,

Fig 3. Illustration of proposed algorithm frame for ICA-based BCI system.

doi:10.1371/journal.pone.0162657.g003

Fig 4. The block diagram of two-round trial selection method.

doi:10.1371/journal.pone.0162657.g004
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which contained I EEG trials {xi, i = 1,. . .,I} of three-class motor imagery. It will then yield mix-
ing/separating matrix pairs {Ai, Wi, i = 1,. . .,I} and I groups of ICs {ui, i = 1,. . .,I}.

The criterion for the first-round trial selection is that Ai of a candidate EEG trial must
simultaneously contain three columns, i.e., the projection maps of three ICs, being similar to
the templates of MRICs topography maps in Fig 5. If Ai of a single-trial ICA satisfies this crite-
rion, the ith trial will be labeled as a “good trial”, otherwise, it will be labeled as a “bad trial”.
The details of first-round trial selection are described in Fig 6.

Since motor-related brain sources should have the maximum projection weights on the
nearest detection electrodes, the "Matching" step in Fig 6 is realized by inspecting and compar-
ing the entries along each column of mixing matrix Ai trying to find three ICs with maximum
projections on C3, Cz and C4 positions respectively. Failed to find these ICs, this trial was
labeled as “bad trial”. If there were multiple ICs with a maximum projection on one of the
three specified channels, the one with the highest projection weights was selected.

In Fig 7, we illustrate two groups of scalp maps of ICs related to a good trial (Fig 7A) and a
bad trial (Fig 7B). In this case, the channels of vector xi are FC3, FCz, FC4, C3, Cz, C4, CP3,
CPz, CP4. We can find 3 maps (IC2, IC4 and IC8 in Fig 7A) well-matched with Fig 5, while
that is not the case for Fig 7B. Thus the EEG trial corresponding to Fig 7A should be labeled as
"good trial" in the training dataset. And, the corresponding MRICs detection filters wl, wr, wf

for left hand, right hand and foot movement imagination were also saved in the filter-datasets
for the second-round trial analysis and selection. After the first-round trial selection step, we
may assume to have P good trials: {xj, j = 1,. . .,P�I} with the corresponding spatial filter sets:
{wj = [wl, wf, wr], j = 1,. . .,P} in the training dataset.

3.2.2 The second-round trial selection based on classification accuracies. In the second-
round trial selection, the detection filters: {wj = [wl, wf, wr], j = 1,. . .,P} apply to BCI for sin-
gle-trial EEG classification in training dataset. As shown in Fig 8, each of MRICs detection
filters is individually applied to the algorithm frame to construct a BCI testing system. This
“single-trial-based BCI” is referred to as st-BCI, because the spatial filters [wl, wf, wr] in st-
BCI are calculated on a single trial EEG. Thus, we can get P st-BCIs based on filter datasets
{wj = [wl, wf, wr], j = 1,. . .,P}.

In Fig 8, each spatial filter wj is employed by st-BCI to derive the MRICs from EEG trials
xi (i = 1,. . .,I) in the training dataset. For one single trial, three MRICs ul(t), ur(t) and uf(t) cor-
responding to left hand, right hand and foot movement imagination are obtained by spatial fil-
ters wj = [wl, wf, wr], namely:

ulðtÞ ¼ wT
l xi; urðtÞ ¼ wT

r xi; uf ðtÞ ¼ wT
f xi ð7Þ

Their variances in a range of 0.5–5 s (see Fig 1) are used to construct the feature vectors for
a zero-training classifier. The classification rule is just based on the well-known ERD phenom-
ena [18–19] induced by limb movement imagination. The classification rule can be described
as follows:

V ¼ min½varðulÞ; varðurÞ; varðuf Þ� ð8Þ

trial xi 2

class 1 left hand imagination if V ¼ varðurÞ

class 2 right hand imagination if V ¼ varðulÞ

class 3 foot imagination if V ¼ varðuf Þ

8>>><
>>>:

ð9Þ

A Fully Automated Trial Rejection Method for Motor Imagery Based BCI

PLOS ONE | DOI:10.1371/journal.pone.0162657 September 15, 2016 7 / 20



The classifier output predicts the label of movement imagination for each trial in training
dataset, and gives the classification accuracy Rj associated with a spatial filter wj = [wl, wf, wr].
Since each spatial filter wj = [wl, wf, wr] was calculated on one corresponding good trial, it is
reasonable to adopt classification accuracies Rj, j = 1,. . .,P as the reference for further trial

Fig 5. Templates of MRICs topography maps and spatial patterns of a “good trial”.

doi:10.1371/journal.pone.0162657.g005

Fig 6. The schematic drawing of the first-round trial selection algorithm.

doi:10.1371/journal.pone.0162657.g006
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selection. So, the rule for the second-round trial selection is that if the classification accuracy Rj
is below a specific threshold, it will also be treated as a bad trial.

The selection procedure can be illustrated in Fig 8, in which a training set of 75 trials
(I = 75) is evaluated by the two-round trial selection algorithms depicted in Figs 6 and 8. The
accuracy rate Rj shown in Fig 9 indicates that there are 9 trials of zero accuracy rates (marked
by red circles), which are considered to be "bad trials" at the first-round selection. The remain-
ing 66 trials (P = 66) and corresponding spatial filters are then selected for the second-round
analysis yielding 66 st-BCI and non-zero accuracies (see Fig 9). The average indicated by the
horizontal dashed line is 80.6%, and there are 35 accuracy rates of st-BCI smaller than the aver-
age. The trials corresponding to lower-accuracies in Fig 9 may be corrupted by artifacts and do
not provide enough accurate information for ICA learning.

Fig 7. The topography maps of nine ICs calculated on two trials by ICA algorithm. (A) “good trial” (B) “bad trial”.

doi:10.1371/journal.pone.0162657.g007

Fig 8. The schematic drawing of the second-round data selection algorithm.

doi:10.1371/journal.pone.0162657.g008
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3.2.3 Final MRICs detection filters design. In this part, the reserved trials in training data
from the two-round selection are sorted descendingly according to st-BCI recognition accura-
cies. The “topm trials” with the highest accuracies are selected and concatenated to recalculate
the ICA filters. For easy description, we named the proposed algorithm “ICA-T” in this paper.
In this study,m was set to be 10 for 8 or 9-channel EEG analysis. We employed another ICA
filter calculation method to evaluate the performance of this optimization algorithm. This ICA
method named “ICA-S” in this study is characterized by calculating the ICA over a sliding win-
dow of 10 trial length at a step of one trial length. Furthermore, the accuracies obtained by the
two types of ICA-based MIBCIs were compared with that obtained by CSP-based MIBCI [35].

Results

4.1 Self-testing
24 runs of motor imagery EEG data were used in this study, with 6 runs data for each subject.
According to the “ICA-T” algorithm, the optimized MRICs filters are based on “top 10 trials”
for each run, and one self-testing accuracy could be obtained after applying the optimized fil-
ters to the same run. The “ICA-S” algorithm sequentially selects 10 trials to calculate MRICs
spatial filters. It thus amount to 65 groups of MRICs filters for each run data. The final self-test-
ing accuracy is calculated by averaging the 65 testing results. For the CSP algorithm, 60 trials
(80% of 75 trials in one run) were selected randomly to train CSP spatial filters, which were
then applied to test all 75 trials. This process was repeated 30 times and the self-testing accu-
racy was calculated by averaging 30 testing results.

The comparisons of self-testing accuracies of three algorithms are illustrated in Fig 10. It
can be seen that the “ICA-T” algorithm outperforms “ICA-S” algorithm for all 24 runs data,
the self-testing accuracies are significantly improved, and the maximum increase reaches
18.86% (S1_2B). Compared with the “ICA-S” algorithm, the CSP algorithm produces higher

Fig 9. The accuracies of the st-BCIs calculated on one run training dataset. The average accuracy was
80.6% (indicated by the horizontal dashed line), and the accuracies marked by red circles correspond to bad
trials after first-round selection.

doi:10.1371/journal.pone.0162657.g009

A Fully Automated Trial Rejection Method for Motor Imagery Based BCI

PLOS ONE | DOI:10.1371/journal.pone.0162657 September 15, 2016 10 / 20



accuracies in most cases (16 runs out of all 24 runs), possibly because of the utility of more
information for CSP (more training data and pre-known labels). However, “ICA-T” algorithm
outperforms CSP algorithm in 20 runs with the maximum increase of 13.58% (S2_1B), and in
the leftover 4 runs, CSP algorithm is a little better than the “ICA-T” algorithm, with the maxi-
mum increase of 2.15% (S4_1B). These results demonstrate the effectiveness of trial-selection-
based ICA optimization algorithm.

In order to evaluate the robustness of above mentioned spatial filtering algorithm, the opti-
mized spatial filters calculated in one run using “ICA-T”/CSP algorithm were applied to test
the other runs measured on the same day. Note that all 75 trials in one run were used to train
CSP spatial filters. Moreover, the accuracies of inter-run testing were compared with the self-
testing accuracies of “ICA-S” algorithm. As shown in Fig 11, the “ICA-T” algorithm presents
good performance in the inter-run validation for all 24 runs data, the 20 accuracies of inter-run
validation are still higher than the self-testing accuracies for the “ICA-S” algorithm with the
maximum increase of 10.75% (S1_2A: training set, S1_2B: testing set), and the accuracies of
remaining 4 runs are slightly lower with the maximum decrease of 1.5% (S3_3B: training set,
S3_3A: testing set). While for CSP algorithm, the accuracy of inter-run validation drops
sharply in most cases (see the rectangle markers in Fig 11), and the highest decline amounted
to 14.66% (S2_2A: training set, S2_2B: testing set).

Fig 10. The intra-run self-testing classification accuracies of three-class motor imagery, using the “ICA-T”, “ICA-S” and CSP
algorithm respectively. Bar graphs are shown with standard deviation.

doi:10.1371/journal.pone.0162657.g010
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4.2 Session-to-session transfer
The session-to-session transfer [36–39] is often performed by utilizing spatial filters from pre-
vious sessions and sharing the parameters with the new session. In this section, for each subject,
each run dataset from one session was selected to calculate spatial filters using “ICA-T” and
CSP algorithm respectively to test 4 runs datasets from another two sessions. So, 24 groups of
accuracies of session-to-session transfer were obtained, and they were compared with the self-
testing accuracies of testing datasets using the “ICA-S” algorithm.

As indicated in Fig 12, the accuracy of inter-session test by the “ICA-T” algorithm is higher
than that of the self-test accuracy by the “ICA-S” algorithm for most of the cases (67 out of 96
cases). This is especially true for the data with high artifact interference (for instance, S1_2B,
S1_3A, S1_3B, S4_1A), where the maximum increase is 13.46% (S1_3B to S1_2B transfer). For
the data with less satisfactory self-test accuracy, the “ICA-T” spatial filter also exhibits good
performance in the session-to-session transfer. For example, the self-test accuracy of S1_2B is
only 67.62%, while a higher accuracy is obtained for all the cases of the session-to-session
transfer (S1_2B to S1_1A, S1_1B, S1_3A and S1_3B) using “ICA-T” algorithm, the highest one
improves 8.9% (S1_2B to S1_1A transfer). The CSP results present much fluctuating perfor-
mances and exhibit apparently lower accuracy than the self-test accuracy for most cases (70
out of 96).

Discussions

5.1 The influence of burst artifacts on ICA calculation
In this section, we will illustrate the degradation caused by burst of artifacts. We chose three
out of the six runs EEG datasets from subject S1 (named by S1_a, S1_b and S1_c) to

Fig 11. The accuracies of run-to-run transfer using “ICA-T” and CSP algorithm respectively (represented by “RR-ICA-T” and
“RR-CSP” respectively), compared with the intra-run self-testing accuracies calculated with “ICA-S” algorithm (represented by
“ST-ICA-S”).

doi:10.1371/journal.pone.0162657.g011
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demonstrate this phenomenon. S1_a were used to train the ICA_BCI, and the S1_b and S1_c
were used for testing. After two-round trial selection algorithm to S1_a, the recognition accu-
racy of st-BCIs is shown in Fig 13A. It shows that no trials are labeled bad in the first-round
selection, while two accuracies (R43 and R46, marked by red circles) are apparently smaller than
the others. We can see that the corresponding trials were seriously contaminated by burst inter-
ferences (see Fig 13B and 13C). A very low accuracy is also appeared in the same index (see Fig
13D and 13E) when the st-BCI is applied to test S1_b and S1_c.

More results are given in Fig 14 to illustrate the influence of artifact trials. In this example,
we selected 10 sequential trials from continuous EEG samples in S1_a to get 10-trial-based ICA
filters instead of single-trial-based ones in the second-round trial selection. The adjacent EEG
sequences for the ICA filter calculation were overlapped with 9 trials. We can have 65 10-trial-
based ICA-BCIs based on S1_a. When applying them to test S1_b and S1_c, the accuracies
from the 34th to 46th BCIs are apparently lower than the others (Fig 14). This is because the
corresponding ICA filters (34th to 46th) were derived from trials that contain at least one of
the two artifact trials (x43, x46).

Fig 12. The classification accuracies of session-to-session transfer using “ICA-T” and CSP algorithm (represented by “SS-ICA-T”
and “SS-CSP” respectively), compared with the results of intra-run self-testing accuracies calculated with “ICA-S” algorithm
(represented by “ST-ICA-S”).

doi:10.1371/journal.pone.0162657.g012
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5.2 Accuracy-matrix: a visualization tool for detailed artifact analysis
We now introduce a method called accuracy-matrix (AM) to visualize the location of the arti-
fact segments within a trial. The AM consists of the classification accuracies of BCIs designed
by consecutively overlapping EEG segments from each trial in one EEG dataset. Assuming that

Fig 13. (A) The self-testing accuracies of S1_a dataset in st-BCI. The red-circle marked accuracies (R43, R46) were apparently lower. (B)
The nine-channel EEG signals of the 43rd trial. (C) The nine-channel EEG signals of the 46th trial. (D)(E) The accuracies of session-
to-session transfer with S1_a as training dataset and S1_b and S1_c as testing datasets respectively.

doi:10.1371/journal.pone.0162657.g013
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Tt denotes the length of a trial and Ts the length of a EEG segment, To the length of overlap of
neighbor segments, then the number of EEG segments obtained from one trial is:

M ¼ round
Tt � To

Ts � To

� �
ð10Þ

where round(�) is a function that round a number to the nearest integer. For a dataset contain-
ing L EEG trials, we can getM×L EEG segments. Each segment is used to construct a BCI with
the proposed method (see Fig 6), and the final classification accuracies were put into an AM of
sizeM×L for subsequent analysis.

We can get four AMs (two self-test, and two session-to-session transfers) for datasets S1_4
and S1_5. The EEG acquisition protocol for S1_4 and S1_5 is similar to that shown in Fig 1
except that: (1) the total time duration Tt of single trial is 11 s; (2) at the end of motor imagina-
tion process (at 6 s), the subject was asked to keep the eyes closed till the warning tone of next
trial. Each dataset contains 75 single trials, 25 trials for each class of motor imagery. Fig 15

Fig 14. The accuracies of session-to-session transfer using 10 trials sequentially selected from S1_a to train ICA filters which were
applied to test the S1_b (A) and S1_c (B) respectively.

doi:10.1371/journal.pone.0162657.g014

Fig 15. Two examples of raw EEG data with different types of artifacts. (A) Raw 9-channel EEG signals of one trial in S1_4 dataset during
motor-imagery and eyes-closed time segments respectively. (B) Raw 9-channel EEG signals of one trial in S1_5 dataset with obvious non-
physiological artifacts.

doi:10.1371/journal.pone.0162657.g015
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shows the waveforms of two trials selected from S1_4 and S1_5 respectively, which presents
evident physiological artifacts (such as EOG, alpha wave) and burst non-physiological interfer-
ences appearing at the 9-channel EEG signals during motor imagery and eye closing periods.
Thus, the EEG segments used for ICA filter calculation are likely contaminated by different
types of artifacts to some extent.

In the following testing experiment, the duration of the segment Ts was 5 s, and the overlap
with the neighbor segments was 4.5 s. It thus produced 13 segments per trial for ICA filters cal-
culation according to eq (10). We can obtain 975 (75×13) ICA filters for a dataset of 75 trials,
which produces the classification accuracies {R(i, j), i = 1,. . .,13; j = 1,. . .,75} to construct an
AM of size 13×75.

Fig 16 shows the AMs of self-testing and session-to-session transfer for S1_4 and S1_5. One
small square at the ith row and jth column represents the accuracy of a BCI based on a different

Fig 16. The accuracy matrixes of self-testing and session-to-session transfer using different time
segments in each single trial to calculate ICA filters. (A) The self-testing of S1_4; (B) S1_4 to S1_5
transfer; (C) The self-testing of S1_5; (D) S1_5 to S1_4 transfer.

doi:10.1371/journal.pone.0162657.g016
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ICA filter derived from the ith EEG segment (5 s length) of the jth trial. So, each row of AM is
corresponding to the same time location in different trials and each column related to the same
single trial with different time segments. Fig 17 shows the corresponding boxplot of each row
of AM in Fig 16.

By observing the four AMs and the corresponding statistical values in Fig 17, we cannot
observe any apparent relations between accuracies and the time location of EEG segments. For
instance, the average accuracy of {R(i,j), i = 3,. . .,6 j = 33,. . .,42} is 91.0% as indicated by the
white box in Fig 16C, while the EEG segments corresponding to the region are located at the
beginning of eyes-closed period, which contains high-amplitude EOGs and alpha waves
induced by eyes closing (see Fig 15A). These EEG segments are usually excluded from the cal-
culation of the spatial filter [36,40]. However, according to the accuracy in the AMs, the perfor-
mance of ICA based MIBCI is unlikely affected by these physiological artifacts. Fig 16C and
16D show the results of self-testing of S1_5 and the session-to-session transfer of S1_5 (train-
ing) and S1_4 (testing). It appears that, most entries of the 12th columns of the two matrices
(corresponding to the 12th EEG trials in S1_5) are extremely lower compared with others. The
reason can be found in Fig 15B which shows the signal of the 12th trial of S1_5 containing
apparent burst noise between 5 and 7 s.

By inspecting all EEG trials with the AMmethod, we found that the performance of ICA fil-
ters might be degraded by burst interferences induced by occasional moving of body, cable and
electrodes connection loosing, etc., rather than by the normal physiological artifacts.

Conclusion
In this study, we investigated the influences of different artifacts on ICA-based MIBCI. Since
the unpredictable non-physiological artifacts would induce performance degradation and

Fig 17. The boxplots of accuracies of self-testing and session-to-session transfer in Fig 16 with
different sliding windows centres. (A) The self-testing of S1_4; (B) S1_4 to S1_5 transfer; (C) The self-
testing of S1_5; (D) S1_5 to S1_4 transfer.

doi:10.1371/journal.pone.0162657.g017
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instability of ICA algorithm, we proposed a fully automated method to detect the artifact trials
without using any predefined templates of the typical artifacts. The results demonstrate that
ICA spatial filters optimized with high-quality trials can significantly improve the performance
of ICA-based MIBCIs, and is superior to the well-known CSP-based MIBCI, especially in the
session-to-session transfer.

Compared with the commonly used high-density channels [14,22,40–44] in ICA-based BCI
researches, this study employed much fewer channels (only 8 or 9 channels) and shorter-time
EEG samples (less than 100 s) to get the ICA spatial filter, which can greatly shorten the prepa-
ration time for data acquisition and calibration. By combining the optimized ICA filter and
zero-training classifier, we present a potential to build a testing platform of MIBCI techniques
with low computation complexity. The proposed method enables us to carry out further analy-
sis related to BCI testing and optimizing, such as AMs-based training sample selection, which
endows the ICA with broader applicability in MIBCI. The electrode distribution is a major fac-
tor affecting the performance of the proposed ICA-based MIBCIs, so future work will focus on
investigating the ICA-based automatic channel selection algorithm to replace the manual
selection.
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