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Abstract

Aims

Therapy-related consequences of treatment for type 1 diabetes mellitus (T1DM), such as
weight gain and hypoglycaemia, act as a barrier to attaining optimal glycaemic control, indi-
rectly influencing the incidence of vascular complications and associated morbidity and
mortality. This study quantifies the individual and combined contribution of changes in hypo-
glycaemia frequency, weight and HbA1c to predicted quality-adjusted life-years (QALY's)
within a T1DM population.

Materials and methods

We describe the Cardiff Type 1 Diabetes (CT1DM) Model, originally informed by the Diabe-
tes Control and Complications Trial (DCCT) and updated with the Epidemiology of Diabetes
Interventions and Complications (EDIC) study and Swedish National Diabetes Registry for
microvascular and cardiovascular complications respectively. We report model validation
results and the QALY impact of HbA1c, weight and hypoglycaemia changes.

Results

Validation results demonstrated coefficients of determination for clinical endpoints of

R? = 0.863 (internal R? = 0.999; external R? = 0.823), costs R? = 0.980 and QALYs R? =
0.951. Achieving and maintaining a 1% HbA1c reduction was estimated to provide 0.61
additional discounted QALYs. Weight changes of +1kg, +2kg or +3kg led to discounted
QALY changes of £0.03, £0.07 and +0.10 respectively, while modifying hypoglycaemia fre-
quency by -10%, -20% or -30% resulted in changes of -0.05, -0.11 and -0.17. The differ-
ences in discounted costs, life-years and QALYs associated with HbA1c 6% versus 10%
were -£19,037, 2.49 and 2.35 respectively.
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Conclusions

Using a model updated with contemporary epidemiological data, this study presents an out-
come-focused perspective to assessing the health economic consequences of differing lev-
els of glycaemic control in T1DM with and without weight and hypoglycaemia effects.

Introduction

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder associated with significant
excess morbidity and mortality [1, 2]. It is estimated that 8.5% of those diagnosed with diabetes
in the UK have T1DM; equating to 284,405 people and representing a 0.4% prevalence rate [3].

Treatment of TIDM typically requires multiple daily injections of insulin with therapeutic
guidelines advocating the use of patient optimised management strategies and individualised
targets [4]. However, despite such guidelines, fewer than 30% of UK T1DM adults reach treat-
ment targets for glucose control, with the disease reducing adult life expectancy in the UK by
approximately 13 years [5].

Therapy-related consequences of treatment, such as weight gain and hypoglycaemia are
known to act as a potential barrier to attaining optimal glycaemic control [6] and may therefore
indirectly influence the incidence of vascular complications. Furthermore, the independent
impact of hypoglycaemia and weight gain upon quality of life has been well documented [7-9].
Consequently, changes in HbAlc, weight and the frequency of hypoglycaemia are important,
inter-related determinants of the cost effectiveness of therapeutic interventions. This is of par-
ticular relevance to the management of T1DM as the risk of recurrent hypoglycaemia in insulin
treated patients is high [10] and the prevalence of obesity amongst TIDM patients has
increased significantly over recent years [11].

Previous health economic analysis has characterised the relative impact of weight change,
hypoglycaemia frequency and unit changes in HbAlc upon predicted quality-adjusted life
years (QALYs) in type 2 diabetes mellitus [12]; however, such analyses have not been under-
taken in TIDM. Consequently, the principle objective of this study was to quantify the individ-
ual and combined contribution of changes in hypoglycaemia frequency, weight and HbAlc to
predicted quality-adjusted life years (QALYs) in a TIDM population. A secondary objective
was to quantify the health economic value associated with improvements in glycaemic control
in T1IDM.

Materials and Methods

The Cardiff Type 1 Diabetes (CT1DM) Model is a fixed-time-increment stochastic simulation
model designed to evaluate the lifetime impact of therapeutic changes on individual simulated
patients. The model was originally designed in 2009 and based on the original CORE T1DM
model [13] with disease progression data being predominantly drawn from the Diabetes Con-
trol and Complications Trial (DCCT) [1] for microvascular complications and Framingham
[14] for cardiovascular complications. Consistent with both established and recently published
T1DM models [15]] the model has been updated to include long-term epidemiological evi-
dence from the DCCT follow-up study—the Epidemiology of Diabetes Interventions and
Complications (EDIC) [2] study and also the T1DM specific Swedish National Diabetes Regis-
try [16] cardiovascular risk equations. Fig 1 shows the model’s flow diagram.

PLOS ONE | DOI:10.1371/journal.pone.0162441

September 15,2016 2/14



®PLOS | one

Economic Value of Changes to Clinical Parameters in TIDM

Initialise new patient

Set baseline
demographics and risk
No factor profile

\ 4
End of Stop simulation Begin simulation

simulation? and qol_late for individual
statistics

v

Simulation time
horizon reached? Check for event

Retinopathy and
macular edema
Nephropathy
_ . Neuropathy
Increment simulation Ketoacidosis
cycle (half-year) Cardiovascular
disease
Hypoglycaemia
Adverse events
Apply costs Mortality
Treatment costs
Complication costs
Maintenance costs

Update utilities

Death event?

Apply appropriate utility
tariffs

!

Update patient variables Update costs,

Co-morbidities, risk OAL:zaa:':d life
factors and treatment
status

Fig 1. Flow diagram of the Cardiff Type 1 Diabetes Model simulation process.
doi:10.1371/journal.pone.0162441.9001

Microvascular event rates

The estimation of transition probabilities for microvascular health states was undertaken using
a similar approach to that reported by Lung et al. [17] in which time-dependent parametric
Weibull regression equations were fitted to cumulative incidence data from DCCT and EDIC.

Specifically, regression models were fitted to cumulative incidence of retinopathy and macu-
lar edema using EDIC [18] with simulated patients capable of progressing from no retinopathy
to background diabetic retinopathy (BDR), to proliferative diabetic retinopathy (PDR) and to
severe vision loss (SVL) with macular edema a separate health state associated with increased
risk of SVL.
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Patients can progress from no nephropathy to micro-albuminuria [19], from which they
may either return to no nephropathy or progress to macro-albuminuria with or without
impaired glomerular filtration rate (GFR) and finally to end stage renal disease (ESRD) [20].
Upon progression to ESRD patients can receive transplant [21], experience graft failure and
return to dialysis [22], or die either whilst receiving dialysis [23] or from the functioning graft
health state [22].

Patients may progress from no neuropathy to diabetic peripheral neuropathy [24] with
rates controlling progression to foot ulcers, deep foot infections, amputations and event specific
mortality taken from a previously published Markov model [25]. Specific details of the rates
and Weibull regression models used to control simulated patients thought the various micro-
vascular health states together with the risk factor variables that influence the likelihood of pro-
gression are detailed in Appendix 1.

Cardiovascular disease

Modelling cardiovascular disease (CVD) was implemented using an equation derived from the
Swedish National Diabetes Registry in which 3,661 subjects with T1IDM were followed up for
five years [16]. Risk of CVD (defined as fatal or non-fatal myocardial infarction or stroke
events) from this study was significantly associated with age, duration of T1DM, total choles-
terol to high-density lipoprotein (HDL) cholesterol ratio, systolic blood pressure (SBP) and the
following binary variables: current smoker, presence of macroalbuminuria and a history of
prior CVD. The Swedish Equation for CVD does not partition events into fatal or non-fatal;
consequently we assume a fixed proportion (39.19%) are fatal [26].

Hypoglycaemia
Hypoglycaemia is modelled utilising therapy-related event rates, categorised as a daytime or noc-

turnal non-severe hypoglycaemic event (NSHE) or as a severe hypoglycaemic event (SHE). The
occurrence of an event can be associated with a cost [27] and a decrease in quality of life [7].

Ketoacidosis

Ketoacidosis is modelled as an acute event health state. Patients may have a ketoacidosis event
during any cycle of the modelled time horizon and may have multiple events over a lifetime.
The rate of ketoacidosis incidence applied in the model is 1.585 per 100,000 persons and is
taken from the Swedish study by Wang et al. [28].

Baseline characteristics and time-dependentrisk factors

The default baseline characteristics used by the model are detailed in Table 1 and are consistent
with profiles reported in the recent guideline for TIDM issued by the National Institute for
Health and Care Excellence (NICE) [4]. The likelihood of clinical events is influenced by a
number of risk factors that are time-dependent and, consistent with other models [13], we
assume in the absence of any specific intervention that HbAlc will increase annually by
0.045% [29]. Furthermore, while the model has the capability of allowing other modifiable risk
factors to change over time we hold weight, blood pressure and lipid parameters constant with
respect to time for this study.

Costs and utilities

The model considers the direct costs associated with the treatment and management of TIDM
in addition to the costs associated with complications and adverse events. Complication related
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Table 1. Baseline cohort characteristics and model inputs.

Variable Mean Standard Deviation Source
Age (years) 42.98 19.14 [4]
Duration (years) 16.92 13.31

Proportionmale 0.57 -

HbA1c (%) 8.60 4.00

SBP(mmHg) 128.27 16.07

DBP(mmHg) 73.55 15.25 [30]
Total-C (mg/dL) 176.50 33 [4]
HDL-C (mg/dL) 50.25 13

BMI (kg/m?) 27.09 5.77

Proportion smoker 0.22 .

NSHE 29 6.48 [31]
SHE 0.46 0.064

Event Utility Decrement Source Event Cost (£) SE Maintenance Cost (£) SE Source
Baseline 0.810 [32] - - - - -
CVD (non-fatal) -0.076" [32,33] 4688.69 468.87 585.75 58.57 [4]
CVD (fatal) - 3824.34 382.43

BDR -* [34] - - - -

PDR -0.086** - - - -

Severe vision loss -0.185*** 5585 558.5 5396 540

Macular edema - Assumed - - - -

Micro-albuminuria - Assumed - - - -

Macro-albuminuria -0.017% [35] - - - -

Impaired GFR -0.017 Assumed

Dialysis -0.330 [32] 30480 3048 30480 3048 [4]
Transplant -0.076 [36] 20373 2037.3 7609 760.9

Neuropathy -0.055 [35] 361.6 36.16 361.6 36.16

Ketoacidosis - Assumed 952 95.2 - -

PVD - Assumed

Uncomplicated FU -0.083* [37] 4070 407 5483 54.83 [4]
Deep foot infection -0.083 Assumed 7328 732.8 7328 732.8

FU/critical ischaemia -0.083 Assumed 10336 1.033.60 10336 1036.6

Minor amputation -0.116* [35] 11290 1129 11290 1129

Major amputation -0.116 11290 1129 11290 1129

NSHET -0.014 171 - - - -

SHET -0.047 333 - - - [27]
BMI -0.006 [38] - - - - [4]
Hyperlipidaemia 38.22 - 3.82 38.22 3.82

ACE inhibitor therapy 18.54 1.85 18.54 1.85

ACE: angiotensin-converting-enzyme; BDR: background diabetic retinopathy; BMI: body mass index; C: cholesterol; CVD: cardiovascular disease; DBP:
diastolic blood pressure; FU: foot ulcer; GFR: glomerular filtration rate; HbA1c: haemoglobin A1c; HDL: high-density lipoprotein; NSHE: nocturnal non-
severe hypoglycaemic event; PDR: proliferative diabetic retinopathy; PVD: peripheral vascular disease; SBP: systolic blood pressure; SHE: severe
hypoglycaemic event.

T CVD was calculated as 60% MI, 32% angina and 8% stroke, where a utility decrement of 0.06 for Ml and 0.22 for stroke were taken from Lung et al. A utility
decrement of 0.07 for angina was taken from Lee et al.

* BDR taken as a 6/6—6/9 vision on the visual acuity scale.

** PDR taken as a 6/12—6/18 vision on the visual acuity scale.

*¥** Severe vision loss taken as 6/60—6/120 vision on the visual acuity scale.

* value was taken as diabetic kidney disease.

* value was taken as a generic ulcer, assumed equal for uncomplicated and complicated foot ulcer as well as foot ulcer with critical ischaemia.

“ value taken was for generic amputation, assumed equal for minor and major.

T Disutility presented as mean per event although the model implements the regression equations reportedin [7] linking frequency and severity of
hypoglycaemia to utility via the fear of hypoglycaemia score.

doi:10.1371/journal.pone.0162441.t001
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costs are partitioned into three components: fatal, non-fatal and maintenance costs. Fatal or
non-fatal costs are applied within the cycle in which that event occurred. Maintenance costs
for those surviving are applied in all subsequent years until either the subject dies or the simu-
lated time horizon is reached. Table 1 reports UK specific costs (inflated to 2013/14 values
using the PSSRU Hospital and Community Health Services (HCHS) index [39].

The occurrence of diabetes-related events is also associated with reduction in quality of life;
the utility decrements used by the model are also reported in Table 1. The decrements applied
are consistent with the default values used in the CORE Diabetes Model [40] and applied in
recent guidelines [4]. Different disutility values may be specified for the year in which the event
occurs and the years that follow. The model handles utility decrements for multiple events by
applying the individual decrements additively. Disutility values should be entered in to the
model as positive values.

Parameter uncertainty

The output from individual patient level simulation models exhibit variability due to first-
order uncertainty (random walk) and parameter (second-order) uncertainty. The model conse-
quently simulates cohorts of up to 10,000 individuals to eliminate first-order uncertainty and
the assessment of parameter uncertainty is undertaken by repeatedly simulating cohorts (up to
1,000) with input parameters for each cohort sampled from either normal (patient specific),
gamma (costs) or beta (utilities) distributions. Due to the lack of published covariance informa-
tion, sampled input data are independently generated. Uncertainty is quantified via cost-effec-
tiveness acceptability curves and incremental cost-effectiveness ratio (ICER) scatterplots.

Model validation

The availability of candidate external validation studies suitable for assessing the model’s pre-
dictive performance are relatively limited in T1DM; principally due to the key sources of epide-
miological data (DCCT/EDIC) forming the basis of the model’s disease progression rates. The
Supplementary Material (S1 Appendix) contains verification of the internal validation of the
model’s equations to source data; we also present internal validation results for the model’s
endpoint predictions when these equations are utilised within the model. To assess the external
consistency of the model’s predictions we assessed the clinical events, costs and QALY's pre-
dicted by the model with a number of other new and established T1DM models; in particular:
the Sheffield patient level simulation model [41]; the CRC discrete event simulation [42, 43];
the Treeage based model from McQueen et al. [44]; the patient level CORE Diabetes simulation
model [45-48] and the patient-level simulation described by Wolowacz et al. [49]

In each case the CT1DM Model was initiated with baseline cohort, cost and health utility
profiles consistent with those reported or cited in each publication and model output compared
over the relevant time horizons. When comparing output, a number of candidate statistical
tests for comparing model output with observed outcomes exist; however, there is little consen-
sus upon the best approach [31]. Formal hypothesis testing is complicated by the fact that the
disease model we are seeking to evaluate is only an approximation to the actual disease; conse-
quently testing the null hypothesis of no difference between the validation study observation
and model predictions makes little sense. However, to understand where model fit was poor,
we also assessed goodness of fit between predicted (C1TDM Model) and observed (internal
validation study endpoints and endpoints, costs and QALYs from other T1IDM models) using
the mean absolute percentage error (MAPE). These were calculated by comparing X (the pre-
dicted output) with Y (observed output): X1, X2, ..., Xnand Y1, Y2, ..., Yn where n is the
sample size (the number of validation endpoints). We define the residuals Z as the paired
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difference between the two sets of results (predicted and observed):Z=Y - X,i=1,2,...,n.
Calculation of the MAPE was computed using:

1IN, /Y — X,
MAPE = — E (=== x 100
n Y,

i=1

Finally, and consistent with other validation studies published in the health economic litera-
ture, we present scatterplots of observed versus predicted endpoints along with the coefficient
of determination (R?).

Analysis

The analysis undertaken for this study utilised a simulated cohort of 10,000 individuals modelled
over a 80 year time horizon. To ensure convergence of results each simulated cohort was repli-
cated 1,000 times with all summary statistics and measures of precision relating to the mean and
standard error of these 1,000 replicates. The model was initialised with a population profile con-
sistent with recently published UK based clinical guidelines [4] as presented in Table 1; rates of
hypoglycaemia were taken from the UK Hypoglycaemia Study Group [31]. Costs and health
utility decrements associated with macro- and microvascular complications, hypoglycaemia and
weight change were sourced from the published literature, as indicated in Table 1.

The model was used firstly to evaluate the benefit (measured by a change in predicted
QALYs) associated with a 1% improvement in HbAlc. Subsequently, the following treatment
related changes were applied to the baseline cohort profile: NSHE rates were modified by
+10%, £20% or +£30%); weight was then modified by +1kg, +2kg or £3kg). These changes were
evaluated singularly and in combination. All changes were applied over the first 6 months and
maintained for the patient’s lifetime; total and incremental QALY's evaluated over a 80-year
horizon and discounted at 3.5% annually.

Secondly, the model was used to evaluate the impact of unit (%) changes in HbAlc on per-
patient cost savings, QALY gains and therefore the health economic value (defined as the amount
of additional spend (£) justified to obtain the additional QALY gain incorporating costs savings
predicted for each unit reduction in HbA1c using a willingness-to-pay threshold of £20,000).

Results
Validation

Observed versus predicted validation endpoints, costs and QALY are presented graphically in
Fig 2. Overall, the validation coefficient of determination for clinical endpoints was R* = 0.863
(internal R* = 0.999; external R? = 0.823) and total costs R* = 0.979; total QALYs R* = 0.951.
Regression analysis indicated that endpoint predictions and costs had non-significant intercept
terms (p = 0.009 and p = 0.652 respectively) indicating no systematic over or under-prediction.
MAPE to predicted endpoints was 135.6% overall (11.3% internal and 213.6% external);
MAPE for total costs was 26.0% and total QALYs was 21.0%.

QALY gains associated with weight and hypoglycaemia

Running the simulation model with the baseline cohort profiles specified in Table 1 resulted in a
mean predicted life expectancy of 69.25 (conditional upon a start age of 42.98) representing 26.3
and 16.0 additional undiscounted life years and QALYs (16.8 and 10.4 discounted life years and

QALYs respectively). Achieving and maintaining a 1% reduction in HbAlc was associated with

an estimated gain of 0.64 and 0.61 discounted life years and QALY respectively (the similarity
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total costs R? = 0.979; total QALYs R® = 0.951.

doi:10.1371/journal.pone 0162441.9002

in life years and QALY gains is driven principally by discounting). Changes in weight by +1kg,
+2kg or +3kg were associated with changes in discounted QALY of £0.03, £0.07 and +0.10
respectively. Modifying hypoglycaemia frequency by -10%, -20% or -30% resulted in changes to
discounted QALYs of +0.05, +0.11 and +0.17 respectively. Modifying hypoglycaemia frequency
by +10%, +20% or +30% resulted in changes to discounted QALY of -0.05, -0.09 and -0.13
respectively. The combined effect of increasing weight by 3kg and a 30% increase in the fre-
quency of hypoglycaemia reduced quality-adjusted life expectancy by 0.23, see Fig 3.

The health economic value of improving glycaemic control

When initiated with cohort profiles specified in Table 1 the model estimates undiscounted life-
time per-patient costs of £72,586, 23.9 life-years and 14.0 QALYs (discounted values: £37,377;
life expectancy of 15.8 years and QALYs of 9.5) at an HbAlc of 10%. When contrasted with
the maintenance of HbA1lc at 6% total undiscounted per-patient cost reduces to £39,508

(A =£33,078), 30.2 life years (A = 6.3) and 19.3 QALYs (A = 5.3). Discounted per-patient val-
ues were £18,340 (A = £19,037), 18.3 life years (A = 2.5) and 11.8 QALYs (A = 2.3). Fig 4 illus-
trates the impact of unit (%) changes in HbAlc on discounted per-patient cost savings, QALY
gains and value; this plots highlights the greatest expected impact on costs, QALYs and conse-
quently value is achieved with HbA1lc reductions from 10% to 9% and 9%-8%.

Discussion

The availability of long-term follow-up data from the original DCCT cohort in addition to the
publication of T1DM specific cardiovascular risk equations has resulted in a renewed interest in

PLOS ONE | DOI:10.1371/journal.pone.0162441

September 15,2016 8/14



o ®
@ : PLOS | SINE Economic Value of Changes to Clinical Parameters in T1DM

Relationship change between changes in weight and hypoglycaemia and predicted QALYs (discounted)
0.30 -
0.20
>
g‘ 0.10
®
S
[}
g2
g g 000
£ 5
-
g K]
=]
s 30% ¢ 5
g 010 ‘@ 8
a o >
=)
£g
g’D o
0.20 &3
5 &
52
=g
I
-0.30
-3kg -2kg -1kg Base +1kg +2kg +3kg
Weight change (kg)

Fig 3. Weight and hypoglycaemia QALY plot. Assessing the impact of changes in weight and rates of hypoglycaemia events on per-patient lifetime
quality-adjusted life year (QALY) difference. The reference point relates to a 1% reduction in HbA1c (%) with no associated changes in weight or
hypoglycaemia, which was associated with a predicted QALY gains of 0.99. This figure illustrates the relative impact of weight change +3 kg and
hypoglycaemia changes +30% on the QALY gained, beyond those already seen with the reference point.
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the development and updating of TIDM health economic simulation models. The CT1DM
Model was initially based on the original CORE Diabetes Model and the update described in this
study is methodologically consistent with the approach taken by other modelling groups [17, 49,
50]. Consequently, the model is structurally consistent with other TIDM health economic mod-
els [15]. The model includes data drawn principally from the DCCT/EDIC and the Swedish
National Diabetes Registryand the validation analysis presented indicates the model provides
consistent predictions to both validation endpoints and cost-effectiveness output reported by
other Type 1 diabetes models. The analysis presented in this study is also consistent with the
research undertaken using the Cardiff Type 2 Diabetes Model in which key health economic
issues related to diabetes have been assessed; for example, assessing the impact of risk factor
changes on costs and outcomes [51]; the cost-effectiveness of treatment strategies at a population
level [52]; the relative impact of weight, hypoglycaemia and HbAlc changes upon predicted
QALYs [12] and the impact of variance reduction techniques on computation time [53].
Consistent with results reported in type 2 diabetes [12] this study highlights that the benefi-
cial effects of improved glycaemic control on QALYs, achieved through the avoidance of diabe-
tes-related complications, may be offset by characteristic treatment-specific adverse effects,
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such as weight gain and hypoglycaemia. The comparative weight and hypoglycaemic profiles
of available therapies are therefore key to both their cost-effectiveness and effectiveness in clini-
cal practice. Importantly, our evaluation is independent of any specific treatment and sought to
quantify the value associated with attributes pertinent to the management of glucose control in
T1DM, in particular, hypoglycaemia and weight change. We believe this to be an important
consideration as it defines health economic value that is tailored to the patient profile rather
than a specific therapeutic profile. As such, the health economic approach adopted here sup-
ports the ethos of personalized care and circumvents a key methodological challenge when
evaluating competing technologies in T1DM; namely the synthesis of data across structurally
heterogeneous clinical trials. For example, differing dose-titration algorithms, definitions of
hypoglycaemia, variation in target levels and the number/timing of targets (for example, fasting
blood glucose and/or post-prandial glucose) result in treatment effects that are specific to each
individual trial. Our focus in this study seeks to provide an assessment of the health economic
value of glucose lowering within the context of changes in hypoglycaemia frequency and
weight change regardless of any specific particular intervention. We believe this approach
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offers an important complementary benefit over conventional analyses in that it seeks to quan-
tify health economic value from the perspective of clinical outcomes achieved rather than an
assessment of clinical and economic inputs.

Consistent with most modelling studies there are inevitably a number of important limita-
tions with our model. We do not currently model recurrent CVD, which is reflective of a lack
of relevant epidemiological data. However, it is unlikely that this omission will significantly
influence the models results as the incidence of recurrent CVD in a type 2 diabetes population
aged 40-97 years has been documented at a relatively low rate of 6% per year [54]. This has
also been evaluated within the context of cost effectiveness in which the omission of subsequent
events had no material impact upon predicted incremental cost effectiveness [55].

A further limitation relates to the analysis undertaken rather than the structural design of
the model. While the model is capable of predicting time-dependent risk factor trajectories the
analysis presented in this study has not sought to incorporate this feature. Our motivation for
this was to ensure that we were able to present the marginal contributions to changes in costs
and QALYs associated with changes in glycaemic control, weight and hypoglycaemia with all
other factors held constant. Our analysis has sought to characterise the inter-relationship
between changes in weight, hypoglycaemia and HbAlc and their individual impact upon life
years and QALYs. In this application hypoglycaemia and weight are principally impacting
health utility, while changes in HbA1c modifies the risk of complications and therefore influ-
ences both QALYS and life expectancy. A limitation of this analysis is that we do not quantify
the inter-relationship between weight and blood pressure or cholesterol and therefore it is
likely that the benefits of weight loss (or avoiding weight gain) are underestimated. Conse-
quently, the interpretation of the analysis presented here should take this limitation into con-
sideration, particularly as multifactorial risk factor management is a matter of routine clinical
practice.

To conclude, we have presented an outcome-focused perspective to assessing the health eco-
nomic consequences of differing levels of glycaemic control in TIDM with and without the
effects of weight change and hypoglycaemia. The model reported uses contemporary data that
enables the impact of a variety of risk factor management strategies on cost and outcomes to be
assessed. Given the particular challenge that exists with respect to achieving optimal glucose
control within the context of weight gain and hypoglycaemia acting as potential barriers this
model provides an addition decision support tool for those seeking to ensure that current ther-
apeutic approaches to the management of TIDM represent value for money.
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