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Abstract

Background: We have an incomplete understanding of the differences between cancer stem cells (CSCs) in human
papillomavirus-positive (HPV-positive) and -negative (HPV-negative) head and neck squamous cell cancer (HNSCC). The PI3K
pathway has the most frequent activating genetic events in HNSCC (especially HPV-positive driven), but the differential sig-
naling between CSCs and non-CSCs is also unknown.

Methods: We addressed these unresolved questions using CSCs identified from 10 HNSCC patient-derived xenografts (PDXs).
Sored populations were serially passaged in nude mice to evaluate tumorigenicity and tumor recapitulation. The transcrip-
tion profile of HNSCC CSCs was characterized by mRNA sequencing, and the susceptibility of CSCs to therapy was investi-
gated using an in vivo model. SOX2 transcriptional activity was used to follow the asymmetric division of PDX-derived CSCs.
All statistical tests were two-sided.

Results: CSCs were enriched by high aldehyde dehydrogenase (ALDH) activity and CD44 expression and were similar between
HPV-positive and HPV-negative cases (percent tumor formation injecting < 1x10° cells: ALDH*CD44"" — 65.8%,

ALDH CD44"8" — 33.1%, ALDH*CD44"8" — 20.0%; and injecting 1x10° cells: ALDH CD44'°" = 4.4%). CSCs were resistant to con-
ventional therapy and had PI3K/mTOR pathway overexpression (GSEA pathway enrichment, P < .001), and PI3K inhibition

in vivo decreased their tumorigenicity (40.0%-100.0% across cases). PI3K/mTOR directly regulated SOX2 protein levels, and
SOX2 in turn activated ALDH1A1 (P < .001 013C and 067C) expression and ALDH activity (ALDH" [%] empty-control vs SOX2,
0.4% * 0.4% vs 14.5% *+ 9.8%, P = .03 for 013C and 1.7% * 1.3% vs 3.6% = 3.4%, P = .04 for 067C) in 013C and 067 cells. SOX2 en-
hanced sphere and tumor growth (spheres/well, 013C P < .001 and 067C P = .04) and therapy resistance. SOX2 expression
prompted mesenchymal-to-epithelial transition (MET) by inducing CDH1 (013C P =.002, 067C P = .01), followed by asymmetric
division and proliferation, which contributed to tumor formation.

Conclusions: The molecular link between PI3K activation and CSC properties found in this study provides insights into therapeutic
strategies for HNSCC. Constitutive expression of SOX2 in HNSCC cells generates a CSC-like population that enables CSC studies.
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Head and neck squamous cell carcinoma (HNSCC) incidence is
increasing in the United States, mostly because of a rise in hu-
man papillomavirus (HPV)-positive oropharyngeal HNSCCs
(45 780 vs 29 370 new cases in 2015 vs 2005) (1-4). Cancer stem
cells (CSCs) maintain an undifferentiated phenotype, are resis-
tant to therapy (5), and repopulate tumor heterogeneity upon
recurrence or metastasis (6). These characteristics make CSCs
an attractive yet challenging therapeutic target (7). CSCs of HPV-
negative HNSCC are most consistently defined by aldehyde de-
hydrogenase (ALDH) activity (8) or CD44 expression (9), but prior
investigations have relied heavily on in vitro studies or single
markers to define CSC populations (10).

Phosphoinositide 3 kinase (PI3K) signaling is commonly acti-
vated in HNSCC by PIK3CA amplification or mutation (11-13);
however, antitumor responses to PI3K inhibition can occur with
or without these activating genetic events (14-16). PI3K signal-
ing promotes tumor cell proliferation and survival (17) and is
overexpressed in CSCs across different cancers (18,19). PIK3CA
oncogenic alterations occur more frequently in HPV-positive
compared with HPV-negative HNSCC (56% vs 34%, respectively)
(20). The following unanswered questions may explain the dif-
ferential clinical behavior of these HNSCC subtypes: 1) What
markers define CSCs in HPV-positive HNSCC? 2) What are the
differences or similarities in signaling pathways between HPV-
positive and HPV-negative HNSCC CSCs?

Using HPV-negative and HPV-positive patient-derived xe-
nografts (PDXs), we defined a consistent population of
ALDH*CD44"8" CSCs across HNSGCC subtypes. We characterized
the core transcriptional profile of CSCs and their susceptibility
to anticancer agents, showing that CSCs (HPV-positive and
HPV-negative) are resistant to standard therapy but are particu-
larly susceptible to PI3K inhibition. We report how PI3K and
mechanistic target of rapamycin (mTOR) signaling through the
eukaryotic translation initiation factor 4E (EIF4E) specifically
upregulated the sex determining region Y box 2 (SOX2), a tran-
scription factor linked to stemness in squamous cancers (21,22).
SOX2 in turn increased the ALDH"' cell population by direct
upregulation of ALDH1A1 and enhanced spheroid and tumor
formation. This is the first report using a large panel of HNSCC
PDX samples to elucidate how CSCs harness deregulated PI3K
signaling to orchestrate sustained tumor growth.

Methods

PDX Generation

The protocol for studies involving human subjects was ap-
proved by the Colorado Multiple Institutional Review Board
(COMIRB #08-0552), and informed written consent was obtained
from all patients whose tissues were used for this study. The
University of Colorado Institutional Animal Care and Use
Committee approved all experiments involving mice. PDX gen-
eration and characterization was previously reported (14).
Briefly, tumor pieces were implanted on both flanks of five six-
to 10-week-old female Athymic Nude-Foxnl1™ mice (Envigo,
Denver, CO). Patient cases (F4-F8 generation) were expanded
into cohorts of 10 to 20 mice for CSC isolation.

CSC Implantation In Vivo

CSCs were sorted into PBS +2% fetal bovine serum (FBS), suspended
in 1:1, DMEM +10% FBS:Matrigel (Corning, Corning, NY) to 100 pL
per injection, and injected (25 g needle) into the flanks of nude
mice. Mice were monitored for tumor growth for up to one year.

SOX2/0CT4 Response Elements (SORE6) Reporter

The SORE6 assay was previously described (23) and consists of
six SOX2/0CT4 response elements in front a minimal mCMVp
promoter driving the expression of destabilized forms of GFP or
mCherry. Lentiviral media containing the mCMVp-GFP (control),
mCMVp-mCherry (control), SORE6-mCMVp-GFP, or SORE6-
mCMV-mCherry reporters were generated using HEK293T cells
and the pCMV-SSV-G and pHR-8.2AR packaging plasmids. Cell
lines or PDX-derived CSCs were cultured in media containing vi-
rus for 24 hours. Cells containing the SORE6 reporter were se-
lected using puromycin (1 pg/mL) for 7 days. Expression of GFP
or mCherry was observed by fluorescence microscopy and flow
cytometry (gating set at > 99.9% of control cells).

Time-Lapse Microscopy of Tumor-Derived CSCs

SORE6" CSCs were seeded in chamber slides on a Matrigel layer
overlaid with media +2% Matrigel, and imaged every 20 minutes
using a Zeiss Axio Observer Z1 inverted microscope (Zeiss,
Oberkochen, Germany) (Zeiss software Rel. 4.8) in a climate
chamber.

Statistical Analysis

In vitro and in vivo (using >5 mice/group) experiments were
compared with a two-group t test. Calculations were done using
GraphPad Prism version 7.0 and SPSS version 11. Data are repre-
sented graphically as mean = SD. GSEA estimates the statistical
significance of the enrichment scores by a two-sided modified
Kolmogorov-Smirnov permutation test. P values of less than .05
were statistically significant. All statistical tests were two-sided.

Results

Tumorigenicity of Tumor Populations Defined by ALDH
Activity and CD44 Expression

To identify common or distinct CSC populations across subtypes,
we studied tumorigenicity in 10 (6 HPV-negative, 4 HPV-positive)
HNSCC PDX cases (Supplementary Table 1, available online). Cells
were sorted by CD44 expression and Aldefluor activity and im-
planted on nude mice. The CD44™&" population was typically
larger than the ALDH™ fraction, while the ALDH*CD44"¢" popula-
tion ranged from 0.1% to 4.1% of tumor cells (Figure 1, A and B).
Despite substantial population heterogeneity across cases,
ALDH"CD44"#" defined the most tumorigenic population in nine
of the 10 cases; CUHNO022 did not express detectable CD44, thus
ALDH activity alone defined the tumorigenic (CSC-enriched)
population in this particular tumor. Average tumor formation
rate (across 10 cases) was 65.8% when 1000 or fewer CSCs
(ALDH*CD44"8") were implanted, vs 33.1% and 20.0% with 1000 or
fewer ALDH CD44"€" and ALDH*CD44"°¥ cells, and 4.4% when im-
planting 100 000 negative cells (Table 1). ALDH"CD44"" cells met
the tumor-initiating criteria of CSCs in both HPV-positive and
HPV-negative HNSCCs.

Morphological and Molecular Marker Comparison of
Originating and CSC-Initiated Tumors

We examined morphology, epidermal growth factor (EGFR) ex-
pression, and transcriptome profiles over sequential CSC
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Figure 1. Evaluation of tumor recapitulation following serial implantation of cancer stem cells (CSCs) in mice. A) Heterogeneous staining of CD44 cell surface protein
and aldehyde dehydrogenase activity (Aldefluor assay) across 10 head and neck squamous cell carcinoma (HNSCC) patient-derived xenograft (PDX) cases. Gated re-
gions are representative of the sorted CSC population for each PDX model defined in Table 1. Diagram depicting the CSC population falling within the overlapping re-

gion of the larger aldehyde dehydrogenase (ALDH)* and CD44"" populations. B)
cytometry) for each of the four possible (ALDH CD44'°%, ALDH CD44"€", ALDH*CD44'°

Tumor cell composition across PDX models measured as percentages (flow
W, ALDH'CD44"€") tumor populations (average of 2+ sorted tumors). C) Tumors

resulting from two consecutive CSC implantations for four HNSCC PDX show tumors retain characteristics of the originating tumor, including morphology (hematoxy-

lin and eosin staining) and epidermal growth factor receptor (EGFR) expression with s

erial implantation. Scale bars = 100 ym. D) Tumors arising from the first or sec-

ond/serial CSC implantation consistently cluster with the originating PDX tumor (clustering generated with FPKM values > 1). Tumors arising from CUHN004 and
CUHNO13 non-CSCs (ALDH CD44"€") were more distantly associated with the original PDX tumor. ALDH = aldehyde dehydrogenase; CSC = cancer stem cell; FPKM =
fragments per kilobase of exon per million fragments mapped; HNSCC = head and neck squamous cell carcinoma; HPV-neg. = human papilloma virus-negative; HPV-

pos. = human papilloma virus-positive; PDX = patient-derived xenograft.

implantations. Hematoxylin and eosin staining showed that
morphology of CSC-derived tumors was comparable with the
originating tumor; EGFR membrane staining was consistent be-
tween patient tissue, PDX tumors, and CSC-initiated tumors
(Figure 1C). Single positive cell (defined as ALDH*CD44'°% or
ALDH CD44M€") implantations generated tumors with less dif-
ferentiated squamous morphology than CSC-originated tumors
(Supplementary Figure 1A, available online).

Tumors from CSCs, compared with single positive cells, had
the most similar mRNA-seq profiles when compared with the
original patient tumor (Figure 1D). To assess tumorigenic stabil-
ity, we sorted and implanted CSCs from the first passage of
CSC-derived tumors and found that tumor take and growth
rates were consistent with the first implantation (Table 1,
Supplementary Figure 1B, available online). Second passage
CSC-derived tumors were also most similar to the original pa-
tient tumor (Figure 1, C and D).

Gene Expression Analysis of HNSCC CSCs

We compared the transcriptome profiles of CSCs and non-
CSCs from HPV-negative (CUHNO004, CUHNO13) and HPV-
positive (CUHNO014, CUHNO022) tumors. (Supplementary Figure
1C, available online). CUHN004 and CUHNO022 were PIK3CA wild-
type, and CUHNO13 and CUHNO14 had high-level PIK3CA copy
gain. We observed statistically significant enrichment of signal-
ing networks crucial in stem cell and CSC biology across HPV-
positive and HPV-negative CSCs, including packaging of telo-
mere ends (P <.001), PI3K/mTOR pathway (P <.001), E-cadherin
signaling (P <.001), genes regulated by MYC (P <.001), signaling
by wingless-related integration site (WNT; P <.001), and signal-
ing by transforming growth factor beta (TGF-B; P <.001) (Figure
2A; Supplementary Table 2, available online). HPV-negative
CSCs had lower p53 signaling compared with HPV-positive CSCs
(P<.001), consistent with their respective TP53 mutant and
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Table 1. CSC implantation results for 10 HNSCC PDX cases*

%
=3
0
a
£

ALDH" ALDH" ALDH" ALDH"
CD44'°% CD44bigh CD44'°% CD44high Serial passage of CSC populations
10° cells <103 cells <103 cells <103 cells 10* cells 102 cells 103 cells 10* cells
HPV status Case No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)
HPV-negative CUHNO13 1/30 8/20 10/20 13/20 - 1/5 2/5 3/5
(3:3) (40.0) (50.0) (65.0) (20.0) (40.0) (60.0)
CUHNO004 1/25 9/30 1/20 11/20 - 2/5 2/5 -
(4.0) (30.0) (5.0) (55.0) (40.0) (40.0)
CUHNO002 0/15 11/25 3/10 9/15
(0.0) (44.0) (30.0) (60.0)t
CUHNO26 0/10 3/10 4/10 6/10
(0.0) (30.0) (40.0) (60.0)t
CUHNO049 0/10 2/10 0/10 6/10
(0.0) (10.0) (0.0) (60.0)t
CUHNO070 0/10 0/10 0/10 7/10
(0.0) (0.0) (0.0) (70.0)t
HPV-neg. 2/100 33/105 18/80 58/95
(2.0) (31.4) (22.5) (61.0)
HPV-positive CUHNO014 3/10 7/10 0/10 10/10 2/5 5/5 5/5 -
(30.0) (70.0) (0.0) (100.0) (40.0) (100.0) (100)
CUHNO022 0/10 - 6/20 - - 1/5 2/5 4/5
(0.0) (30.0)t (20.0) (40.0) (80.0)
CUHNO047 0/10 1/10 0/5 6/10
(0.0) (10.0) (0.0) (60.0)t
CUHNO098 1/5 2/5 0/5 5/5
(20.0) (40.0) (0.0) (100.0)t
HPV-pos. 4/35 10/25 6/40 21/25
(11.4) (40.0) (15.0) (84.0)
Combined 6/135 43/130 24/120 79/120
(4.4) (33.2) (20.0) (65.9)

*Single-positive populations (ALDH™ or CD44"€") were capable of forming tumors at lower frequency. Tumor take rate and growth of the initial and second (serial) pas-
sage of CUHNO004, CUHNO013, CUHNO0014, and CUHNO022 tumor-generating populations were similar to that of the first passage. ALDH = aldehyde dehydrogenase;
CSC = cancer stem cell; HPV-neg. = human papillomavirus-negative; HPV-pos. = human papillomavirus-positive; HNSCC = head and neck squamous cell carcinoma;

PDX = patient-derived xenograft.
tIdentifies the CSC population for each case.

wild-type status (Supplementary Table 3, available online).
Upregulation of stemness-related genes in CSCs including
SOX21 (P=.005), a mediator of SOX2 gene regulation (24), and
ALDHI1A1 (P=.003), a marker of CSCs (8,25), were statistically
significant across HPV subtypes. SOX2 and ALDH1A1l protein
levels were dramatically higher in CSCs (Figure 2B), and
ALDH1A1 was associated with cells expressing SOX2 in patient
tumors (Figure 2C).

SOX2-high cells have increased levels of both p4EBP1 and
pS6K (effectors of PI3K/mTOR) when compared with SOX2-low
cells (Figure 2C), especially in areas near vessels and stroma.
E-cadherin showed consistent mRNA and protein enrichment
in CSCs, as well as in vivo costaining distribution with SOX2
(Figure 2, A-C), suggesting a more epithelial phenotype.

Response of CSCs to a Panel of Therapies Using an In
Vivo Re-implantation Assay

To assess CSC response to therapy in vivo, we treated CUHNO013
(HPV-negative), CUHNO014 (HPV-positive), and CUHNO022
(HPV-positive) tumor-bearing mice with vehicle, radiation ther-
apy (XRT), docetaxel, cetuximab, and the PI3K inhibitors
ZSTK474 and PX-866. Tumors were then resected, sorted, and the
resulting cell populations (see Table 1) were implanted in mice
(Figure 3A). CSCs generated more tumors in control

and treatment groups compared with non-CSC populations
(Supplementary Table 4, available online), confirming that CSCs
are more tumorigenic, with or without treatment, which impacts
mouse survival (Supplementary Figure 1D, available online).

XRT decreased tumorigenicity in CUHN014 (100.0% control vs
20.0% XRT) and CUHNO022 (60.0% control vs 0.0% XRT), but not
CUHNO13 (100.0% control vs 80.0% XRT) (Figure 3A). Both PI3K in-
hibitors delayed and/or blocked tumor formation by CSCs in all
cases (control vs PX-866, ZSTK, 100.0% vs 0.0%, 40.0% for
CUHNO14; 60.0% vs 0.0%, 0.0% for CUHNO022; 100.0% vs 60.0%,
20.0% for CUNO013), whereas cetuximab and docetaxel had mini-
mal impact in tumorigenicity (Figure 3A; Supplementary Figure
1E, available online). In summary, CSC tumorigenicity was
associated with resistance to conventional therapy, whereas CSCs
showed susceptibility to PI3K inhibition across etiologic subtypes.

Effects of PI3K Inhibition on SOX2 and the ALDH"
Population

We generated early-passage cell lines (referred to as 013C, 036C,
and 067C) that form tumors similar to the original tumor histo-
logically (Supplementary Figure 2A, available online) and molec-
ularly (Figure 1D), suggesting conservation of CSC-like
populations and properties. Compared with monolayer culture,
cells grown in CSC-enriching sphere culture had higher
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Figure 2. Transcriptome and protein expression profile of head and neck squamous cell carcinoma (HNSCC) cancer stem cells (CSCs). A) Gene set enrichment analysis
(GSEA) pathway enrichment in HNSCC CSC populations compared with cells negative for CSC markers and relevant genes statistically significantly upregulated in
CSCs across cases (bold = stem cell-related processes; red = phosphoinositide 3-kinase (PI3K)/ mechanistic target of rapamycin (mTOR)-related pathways; blue =
transforming growth factor beta-related pathways). Statistical significance was calculated by a two-sided modified Kolmogorov-Smirnov permutation test. B)
Immunoblot and reverse transcription polymerase chain reaction analysis of tumor-derived (CUHNO013, CUHN022) CSCs and cells negative for CSC markers. C) Co-ex-
pression of SOX2 with aldehyde dehydrogenase (ALDH)1A1, markers of PI3K/mTOR pathway activation and E-cadherin in vivo. Scale bars = 100 um. CSC = cancer stem
cell; HNSCC = head and neck squamous cell carcinoma; HPV-neg. = human papilloma virus-negative; HPV-pos. = human papilloma virus-positive; mTOR = mechanis-
tic target of rapamycin; PI3K = phosphoinositide 3-kinase; TGF-f = transforming growth factor beta.

expression of ALDH1A1 (fold change * SD, 51.7 = 5.4, P=.004 for
013C, and 39.8 = 1.9, P <.001 for 067C), SOX2 mRNA (fold change
+ 8D, 3.5 = 0.3, P=.002 for 013C, and 3.6 = 0.5, P=.009 for 067C)
(Figure 3, B and C), increased ALDH1A1 and SOX2 protein levels
(Figure 3D), and increased ALDH" cell populations (monolayer
vs sphere, 1.4% =+ 0.7 vs 23.9% =+ 4.6, P=.009 for 013C, and 3.0%
+ 1.3 vs 21.0% *+ 4.5, P=.02 for 067C) (Figure 3E). PI3K inhibition
(ZSTK474) decreased the ALDH' population in both sphere
(DMSO vs 1 uM and 10 uM, 24.6% * 5.7 vs 4.7% + 3.7, P=.01, and
2.7% + 2.2, P=.01 for 013C; 22.5% + 3.6 vs 6.8% * 1.2,P=.01, and
1.6% * 1.7, P=.008 for 067C) and monolayer cultures (Figure 4, A
and B). ZSTK474 decreased ALDH1A1 expression in both cell line
sphere (1 uM and 10 uM relative to DMSO=1, 0.39 + 0.04, P=.02,
and 0.13 * 0.04, P=.009 for 013C; 0.66 = 0.05, P=.001, and 0.13 +
0.02, P<.001 for 067C) (Figure 4C) and cell line monolayer
(Supplementary Figure 2B, available online), as well as tumor-
derived CSC sphere cultures of tumor-derived CSCs (1 pM and
10 uM relative to DMSO = 1, 0.76 = 0.11, P=.04, and 0.43 = 0.09,
P=.002) (Figure 4D). SOX2 and ALDHIA1l protein levels de-
creased with ZSTK474 in a dose-dependent manner (Figure 4E;

Supplementary Figure 2C, available online). Targeting EGFR di-
rectly or its downstream signaling with a MEK/ERK inhibitor did
not suppress ALDH1A1 expression (Supplementary Figure 2D,
available online). These results suggested that PI3K signaling
regulates both SOX2 and ALDH1A1 and the ALDH"' population
in HNSCC cells independently of EGFR.

Role of PI3K/mTOR Signaling in the Regulation of SOX2

We next measured SOX2 transcriptional activity using a SOX2/
OCT4 response elements reporter (SORE6) (Supplementary
Figure 2E, available online) (23). SORE6 was highly activated
both in retroviral-mediated SOX2 expressing cell lines (Figure 4,
F and G) and in unmodified CSCs indicating high baseline SOX2
(Supplementary Figure 2F, available online). PI3K inhibition of
013C spheres statistically significantly decreased the SORE6"
population (1 uM P=.009, 10 pM P=.006) (Supplementary
Figure 2G, available online) and simultaneously decreased
both the ALDH' population (1 uM P=.02, 10 uM P=.02) and
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Figure 3. Effects of phosphoinositide 3-kinase inhibition on cancer stem cells (CSCs) and SOX2 expression in cell lines. A) Schema for pretreatment of tumors prior to
sorting of CSCs and tumor populations. Average tumor growth of pretreated (control, PX-866 and XRT) CSC populations (CUHNO014 = 10 aldehyde dehydrogenase
[ALDH]*CD44"" cells, CUHN022 = 10 000 ALDH" cells, CUHNO13 = 10 000 ALDH*CD44"¢" cells) was substantially decreased with PX-866 or XRT. Numbers represent
tumor take rate for implantations in five mice (tumor volume > 500 mm?). B) Expression of ALDH1A1 and (C) SOX2 are upregulated in sphere culture (013C, 067C cells)
when compared with cells grown in a monolayer. D) ALDH1A1 and SOX2 protein levels are also increased in sphere culture compared with monolayer cells grown in ei-
ther RMg media (10% fetal bovine serum) or serum-free CSC media. E) The ALDH" population is increased in sphere culture. Graphed results are presented as mean *
SD of three independent experiments. Statistical significance was calculated by the two-tailed Student’s t test (*P <.05; tP < .01). ALDH = aldehyde dehydrogenase; CSC

= cancer stem cell; PI3K = phosphoinositide 3-kinase.

the ALDH"/SORE6" population (DMSO vs 1 uM and 10 uM, 3.6%
+ 0.5 vs 0.9% *= 0.6%, P<.001, and 0.6% =+ 0.74%, P=.002)
(Figure 4H). These findings establish that PI3K inhibition sup-
presses both SOX2 and ALDH activity within the same
population.

SOX2 protein levels decrease following PI3K/mTOR inhibi-
tion in cancer cells (19,26), but the mechanism was not defined.
We knocked down AKT1 (downstream of PI3K), and S6K and
EIF4E (both downstream of TORC1) (Supplementary Figure 2H,
available online). SOX2 levels decreased after silencing AKT1
(siAKT#1 P <.001, siAKT#2 P =.08 for 0.13C and siAKT#1 P=.008,
siAKT#2 P=.10 for 067C) or EIF4E (SiEIF4E#1 P=.06, siEIF4E#2
P =.005 for 013C and siEIF4E#1 P = .36, siEIF4E#2 P =.02 for 067C)
(Figure 5A; Supplementary Figure 2I, available online). EIF4E
regulates protein levels through both mRNA capping and ini-
tiation of translation downstream of mTOR signaling, which
is negatively regulated by hypo-phosphorylated 4EBP1 (27).
4EGI-1 inhibited the interaction of EIF4E and EIF4G and de-
creased SOX2 levels and the ALDH" fraction in HNSCC cells

(Figure 5B; Supplementary Figure 3A, available online); ZSTK474
decreased levels of phosphorylated (Ser65) 4EBP1 in 013C cells
(Supplementary Figure 3B, available online), allowing inactiva-
tion of EIF4E. We then performed RNA immunoprecipitation
(RIP) and found that EIF4E physically bound SOX2 mRNA (Figure
5C), suggesting mRNA capping of SOX2 mRNA regulates transla-
tion. More SOX2 mRNA was bound by EIF4E when cells exoge-
nously expressed more SOX2 mRNA (Supplementary Figure 3C,
available online), though the same amount of EIF4E was immu-
noprecipitated (Figure 5C). Taken together, PI3K/mTOR signal-
ing regulates EIF4E capping of SOX2 mRNA and translation of
SOX2.

Role of SOX2 in the Maintenance of the ALDH"
Population

Retroviral-mediated expression of SOX2 increased ALDH1A1
mMRNA (Supplementary Figure 3D, available online) and protein
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Figure 4. Effects of phosphoinositide 3-kinase (PI3K) inhibition on SOX2 transcriptional activity and the aldehyde dehydrogenase (ALDH)+ population. A) The ALDH"
population is statistically significantly reduced in sphere cultures and (B) monolayer cultures (013C, 067C cells) treated with the PI3K inhibitor ZSTK474. Gated regions
are set at 0.1 positive of N,N-diethylaminobenzaldehyde-negative controls. C) PI3K inhibition (ZSTK474) suppresses ALDH1A1 gene expression in 013C cells grown as
spheres and (D) patient-derived xenograft tumor-derived cancer stem cells (ALDH"CD44"#") grown in sphere culture. E) Immunoblot showing that PI3K pathway inhi-
bition by ZSTK474 decreases ALDH1A1 and SOX2 protein levels within 48 hours in 013C, 067C cells. F) Exogenous expression of SOX2 increases the SORE6-GFP* popula-
tion in 013C cells. Gated regions set as 0.5% of control GFP™ cells. G) Sphere culture of 013C-SOX2 cells has increased SORE6-GFP™" cells compared with control cells and
monolayer culture. Scale bars = 100 um. H) PI3K treatment decreased activation of the SORE6 reporter and the ALDH" population in 013C spheres. Graphed results are
presented as mean + SD of three independent experiments. Statistical significance was calculated by the two-tailed Student’s t test (‘P < .05; 1P < .01). ALDH = aldehyde
dehydrogenase; PI3K = phosphoinositide 3-kinase; SORE6 = SOX2/0OCT4 response elements reporter.

levels (Figure 5D; Supplementary Figure 3E, available online).
ALDHI1A1 upregulation occurred rapidly (<6 days) and led to a
larger ALDH" population (empty vs SOX2, 0.4% = 0.4 vs 14.5% + 9.
8, P=.03 for 013C, and 1.7% *+ 1.3 vs 3.6% * 3.4, P=.04 for 067C)
(Figure 5, E and F). PI3K inhibition or SOX2 expression had no ef-
fect on CD44 surface protein levels (Supplementary Figure 3F,
available online). SOX2 knockdown suppressed ALDHI1A1l tran-
scripts (P <.001), protein levels, and the ALDH" population (P<.
001) (Figure 5, G-1) in 013C cells. Finally, retroviral-mediated SOX2
expression activated the ALDH1A1 promoter as measured by lucif-
erase activity (P=.002) and chromatin immunoprecipitation (ChIP)
using SOX2 antibodies, showing that SOX2 bound to the ALDH1A1
promoter (Figure 5]). These data confirm that SOX2 controls
ALDH1A1 levels by direct regulation of the ALDH1A1 promoter,
and ALDH1A1 is responsible for the ALDH" population in HNSCCs.

Role of SOX2 in the Regulation of the CSC Phenotype

An unsupervised whole transcriptome comparison between
control-vector and SOX2-overexpressing cells found that SOX2

expression increased stem cell, cell-to-cell, and growth factor-
signaling pathways (013C), and genes key to CSCs like ALDH1A1,
SOX2, and CXCR4 (013C, 067C) (Figure 6, A and B). These data are
consistent with the signaling pattern associated with HNSCC
CSCs (Figure 2A) and reveal that SOX2 expression induced CSC-
like signaling.

SOX2 expression suppressed the pro-EMT factor SNAI1 (013C
P=.002, 036C P=.01, 067C P=.09) and increased expression of
CDH1 (E-cadherin; 013C P =.002, 036C P =.002, 067C P =.01), gen-
erating an epithelial phenotype (Figure 6, C-G). E-cadherin was
associated with high SOX2 expression at the outer growing edge
of tumor spheres (Figure 6H), and retroviral-mediated SOX2
expression decreased invasiveness of HNSCC cells (invading
cells/view empty vector vs SOX2, 90.0 = 33.5vs 1.4 = 0.7, P=.01
for 013C, 73.7 = 11.0 vs 33.0 + 11.5, P=.002 for 036C, 102.6 + 14.4
vs 28.1 + 9.6, P<.001 for 067C) (Figure 6I). TGF-B signaling was
enriched in CSCs (Figure 2A), but cell lines or tumor-derived
CSCs treated with TGF-p inhibition (LY2109761 for 48 hours) did
not have altered expression of SNAI1 or CDH1, even when phos-
phorylation of Smad3 was inhibited (Supplementary Figure 4,
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Figure 5. Role of phosphoinositide 3-kinase/mechanistic target of rapamycin in the regulation of translation of SOX2 protein and aldehyde dehydrogenase (ALDH)1A1
expression. A) Silencing AKT1 or EIF4E statistically significantly reduces SOX2 protein levels in 013C and 067C cells. B) Treatment of 013C and 067C cells with the EIF4E
inhibitor 4EGI-1 decreased SOX2 protein. C) The EIF4E protein physically binds SOX2 mRNA as measured by RNA immunoprecipitation using EIF4E specific antibodies.
Western blot analysis showing successful precipitation of EIF4E protein. D) Exogenous expression of SOX2 (013C, 067C cells) increases ALDH1A1 protein. E) ALDH1A1
levels statistically significantly increase within six days following exogenous expression of SOX2. F) SOX2 expression increased the ALDH" population in both 013C and
067C cells. G and H) Silencing of SOX2 in overexpression cells decreases ALDH1A1 expression and protein levels and (I) the ALDH" population. J) Exogenous expression
of SOX2 activates an ALDH1A1-promoter as measured by a luciferase assay. Chromatin immunoprecipitation using SOX2 antibodies suggests SOX2 associates with the
ALDH1A1 promoter in 013C cells. Graphed results are presented as mean =+ SD of three or more independent experiments. Statistical significance was calculated by the
two-tailed Student’s t test (P < .05; 1P < .01). ALDH = aldehyde dehydrogenase; mTOR = mechanistic target of rapamycin; PI3K = phosphoinositide 3-kinase.

A-C, available online). However, treating these cells with extra growth in mice and continued to express higher levels of SOX2
TGF-B1 (10 ng/mL for 24 h) increased SNAI1 expression that was and ALDH1A1 in vivo (Figure 7, D and E; Supplementary Figure
blocked by LY2109761 (Supplementary Figure 4C, available on- 4F, available online). These findings confirm that SOX2 induces
line). Neither TGF-B1 nor LY2109761 affected HNSCC cell inva- an epithelial phenotype, enables characteristics of CSCs, and in-
sion (Supplementary Figure 4D, available online). Together, creases the ALDH" (CSC-like) population in HNSCC, adding to
these results suggest that SOX2 overcomes endogenous TGF-§ the armamentarium to study CSC biology (30).
effects on EMT, growth inhibition, and invasion and thus has
a dominant effect on maintaining an epithelial phenotype
(Figure 2, A-C) (28).

Transitions in cellular morphology are associated with
changes in sensitivity to therapy (29), and we found that SOX2

SOX2 Transcriptional Activity in Daughter Cells of
Single Tumor-Derived CSCs

expression decreased sensitivity to docetaxel (Figure 7A). We demonstrated that CSCs can recapitulate the originating tu-
Sphere formation (spheres/well, 013C P <.001 and 067C P =.04) mor in vivo, giving rise to a heterogeneous cell population.
and sphere size (average sphere diameter, 013C P=.02 and 067C We then examined asymmetric division assessing changes
P=.02) were also enhanced by SOX2 expression (Figure 7B). in SOX2 activity in vitro using an anchorage-independent,
CUHNO13 PDX CSCs readily form spheres compared with non- three-dimensional matrigel assay where CSCs formed spheres
CSC cells (Supplementary Figure 4E, available online), and SOX2 (Figure 7F). SORE6" tumor-derived CSCs were individually
knockdown decreases sphere formation (P=.002) (Figure 7C). seeded on a matrigel layer, and single cells were followed using

SOX2-expressing 013C cells increased tumor initiation and time-lapse microscopy (120 hours). Single SORE6" CSCs gave
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Figure 6. Effects of SOX2 expression on cellular morphology and gene expression. A) mRNA-sequencing analysis of 013C cells expressing SOX2 highlights increased ex-
pression of stemness pathways, cell-to-cell signaling and growth factor signaling. B) Selected cancer genes upregulated by SOX2 expressing 013C and 067C cells. Red =
genes upregulated in both cell lines. C) Exogenous expression of SOX2 in 013C cells suppresses expression of SNAI1 mRNA while (D) increasing CDH1 expression. E)
SOX2 expression decreases SNAIL protein levels while increasing E-cadherin in 013C cells. F) E-cadherin expression detected by immunocytochemistry. 067C cells dem-
onstrate “typical” epithelial e-cadherin staining, while increased levels of e-cadherin in SOX2 expression 013C cells appears to be localized in the cytoplasm. This was
confirmed by two different antibodies. Scale bars = 10 um. G) Exogenous expression of SOX2 leads to a more epithelial phenotype in 013C cells. Scale bars = 100 um. H)
SOX2 (red) and E-cadherin (brown) expression are colocalized (red arrow) on the proliferating sphere surface, while SOX2 levels decrease towards the sphere interior
(013C-SOX2 cells). Scale bar = 100 um. I) SOX2 expression statistically significantly decreases invasiveness of 013C, 036C, 067C cells as measured in a matrigel-coated, 8
um pore chamber assay. Scale bars = 100 pm. Graphed results are presented as mean *+ SD of three or more independent experiments. Statistical significance was cal-

culated by the two-tailed Student’s t test (P <.05; 1P < .01).

rise to multiple SORE6™ daughter cells while maintaining fluo-
rescence in others (Figure 7G), suggesting that daughter cells
have different levels of SOX2 activity and likely diversified prop-
erties. Therefore, SOX2 activity may be used to detect and quan-
tify asymmetric division, which is an early event in sphere/
tumor initiation leading to tumor repopulation.

Discussion

CSCs are small tumor cell populations that perpetuate growth
and recapitulate tumor heterogeneity by asymmetric division,
are resistant to therapy, and enable phenotypic flexibility lead-
ing to invasion and metastasis (6). PDX models enable studying
relevant cancer subtypes that have been underrepresented in
conventional cell line panels like HPV-positive HNSCC. ALDH
activity and CD44 expression defined CSCs regardless of HPV
status. CSCs serially passaged over several generations faith-
fully recapitulated the histology and expression profiles

observed in the originating tumor. Together, ALDH activity and
CD44 expression are the primary markers for CSCs in HNSCC re-
gardless of etiology.

Despite clinical and etiologic heterogeneity in our cohort,
the transcriptome analysis of CSCs vs non-CSCs identified com-
mon signaling themes across subtypes (most importantly, HPV-
negative and HPV-positive), including enrichment of stem cell
maintenance pathways (telomere maintenance, Wnt, HIFlo,
and MYC), PI3K/mTOR signaling, and TGF-B/SMAD. Lower p53
signaling in HPV-negative (vs HPV-positive) CSCs was expected
as HPV-negative HNSCC tumors harbor inactivating TP53 mu-
tations, making them more resistant to XRT (31). The use of
core signaling pathways to drive oncogenesis has profound
translational implications as it indicates common therapeutic
avenues across HNSCC clinical subtypes and other cancer types
(18,32,33).

CSCs were less susceptible to conventional therapies com-
pared with non-CSCs. Because tumor-stroma interactions can
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Figure 7. SOX2 expression promotes tumor formation. A) Exogenous expression of SOX2 increased resistance to docetaxel by the MTS assay (013C cells). B) SOX2
expression increases sphere number and sphere size in serum-free low attachment conditions (013C, 067C cells). Scale bar = 400 pm. C) Silencing of SOX2 in tumor-
derived CUHNO13 cancer stem cells (CSCs) decreases sphere number (sphere initiation) but not sphere size (proliferation) in culture. Graphed results are presented as
mean * SD of three or more independent experiments. Statistical significance was calculated by the two-tailed Student’s t test (*P < .05; 1P < .01). D) SOX2 expression in-
creased tumor initiation and growth of relative few (10°) 013C cells implanted into five mice compared with parental and empty-vector controls, which had difficulty
generating tumors within four months. E) Tumors resulting from SOX2 cells have higher levels of SOX2 and aldehyde dehydrogenase (ALDH)1A1 than control tumors.
Scale bars = 100 pm. F) Sorted CUHNO013 CSCs readily form spheroids in an anchorage-independent matrigel assay when cultured in serum-free CSC media. Scale bars
= 200 pm. G) Single SORE6" CSCs generate both SORE™ and SORE" daughter cells in anchorage-independent conditions. Three representative time-lapse cases where
SORE6-mCherry" or SORE6-GFP" CSCs give rise to SORE6" cells. Scale bars = 100 um. H) Proposed mechanism of the phosphoinositide 3-kinase/mechanistic target of
rapamyecin role in “stemness” maintenance by regulating SOX2 and ALDH1A1 expression. CSC = cancer stem cell; mTOR = mechanistic target of rapamycin; PI3K =

phosphoinositide 3-kinase; SORE6 = SOX2/0CT4 response element.

dictate the efficacy of XRT and cytotoxic agents (34), we used
in vivo treatment to model CSC behavior after therapy. PI3K
inhibition and XRT targeted CSCs preferentially, compared
with docetaxel or cetuximab, blocking tumor regrowth regard-
less of PIK3CA (or HPV) status. These findings support inhibit-
ing PI3K signaling in combination with XRT to target HNSCC
CSCs.

We identified a link between PI3K/mTOR signaling (the most
commonly activating genetic event in HNSCC) and the regula-
tion of key CSC genes. One of the primary properties of CSCs,
ALDH activity, was regulated by PI3K signaling and SOX2.
Retroviral-mediated SOX2 expression dramatically increased
ALDH1A1 and the ALDH" cell population by interacting directly
with the ALDH1A1 promoter. SOX2 expression regulated other
key CSC features in HNSCC, including sphere and tumor forma-
tion and drug resistance (Figure 7H). Constitutive expression of
SOX2 in HNSCC cells generates a CSC-like population that en-
ables CSC studies.

HNSCC CSCs have an epithelial phenotype by immunohisto-
chemistry and have high E-cadherin mRNA and protein expres-
sion, which are distinct from descriptions of CSCs in other
tumor types (33,35). Modeling of CSC by constitutive SOX2 ex-
pression unequivocally promoted an epithelial morphology in
HNSCC cells by increasing E-cadherin and decreasing SNAIL.
E-cadherin can be used as an alternative to OCT4 for the genera-
tion of iPSCs (36) and induces pluripotent stem cells (37), sup-
porting the relevance of E-cadherin in CSCs. SCC CSCs
transition between epithelial and mesenchymal states because
of environmental stressors (38) and when metastasizing are
able to gain a more mesenchymal phenotype without loss of
E-cadherin (39). Recent reports have shown that metastasis can
occur without EMT (40,41), and the data presented here estab-
lish that HNSCC CSCs derived from patient tissue have an epi-
thelial phenotype.

SORE6" CSCs are capable of asymmetric division, fulfilling
another hallmark of CSCs (6). Using a 3D matrix model, we were
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able to track the asymmetric division of a single HNSCC CSC
by the real-time binding of response elements by SOX2 (23).
Individual SORE6" HNSCC CSCs generated both positive and
diminished/negative daughter cells while initiating tumor
sphere formation, suggesting the SORE6" daughter cells are
the remaining CSC population, while the SORE6™ (with low
SOX2 activity) cells are likely a more differentiated lineage
population. This supports that CSCs can recapitulate the het-
erogeneity of the original tumor via their ability to asymmetrically
divide. To our knowledge, this is the first report tracking the
asymmetric division of CSCs derived directly from patient tumors.

Our studies linking PI3K signaling with CSCs properties are
not without limitations. A recent report demonstrates the dy-
namic ability of squamous tumor cells to reactivate PI3K/mTOR
through EGFR/AXL/PKC following pharmacological inhibition of
PI3Ka (42). Similarly, resistance to PI3K inhibition in human epi-
dermal growth factor receptor (HER) 2-positive breast cancer oc-
curs following rapid activation of HER3 (43), suggesting that
multitargeted therapy may be required (44). Finally, we need to
validate our results prospectively by correlating CSC profiles
and outcomes in HNSCC.

We have characterized the molecular features and func-
tional properties of HNSCC CSCs derived from PDXs represent-
ing tumors of both HPV and tobacco etiologies. PI3K signaling
enhanced SOX2 translation, which in turn induced the expres-
sion of genes regulating the stemness characteristics of CSCs.
These data support targeting PI3K therapeutically in HNSCC.
Our findings have elucidated a mechanistic relationship linking
the most common core genetic alterations in HNSCC with fun-
damental CSC features, thus identifying promising therapeutic
avenues.
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