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Abstract

Background/Aims—Pragmatic clinical trials embedded within health care systems provide an 

important opportunity to evaluate new interventions and treatments. Networks have recently been 

developed to support practical and efficient studies. Pragmatic trials will lead to improvements in 

how we deliver health care and promise to more rapidly translate research findings into practice.

Methods—The NIH Health Care Systems Collaboratory was formed to conduct pragmatic 

clinical trials and to cultivate collaboration across research areas and disciplines to develop best 

practices for future studies. Through a two-stage grant process including a pilot phase (UH2) and a 

main trial phase (UH3), investigators across the Collaboratory had the opportunity to work 

together to improve all aspects of these trials before they were launched, and to address new issues 

that arose during implementation. Seven Cores were created to address the various considerations, 

including Electronic Health Records; Phenotypes, Data Standards, and Data Quality; Biostatistics 

and Design Core; Patient Reported Outcomes; Health Care Systems Interactions; Regulatory/

Ethics; and Stakeholder Engagement. The goal of this paper is to summarize the Biostatistics and 

Design Core’s lessons learned during the initial pilot phase with 7 pragmatic clinical trials 

conducted between 2012 and 2014.

Results—Methodological issues arose from the five cluster randomized trials, also called group-

randomized trials, including consideration of cross-over and stepped wedge designs. We outlined 

general themes, challenges, and proposed solutions from the pilot phase including topics such as 

study design, unit of randomization, sample size, and statistical analysis. Our findings are 

applicable to other pragmatic clinical trials conducted within health care systems.

Conclusions—Pragmatic clinical trials using the UH2/UH3 funding mechanism provide an 

opportunity to ensure that all relevant design issues have been fully considered in order to reliably 
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and efficiently evaluate new interventions and treatments. The integrity and generalizability of trial 

results can only be ensured if rigorous designs and appropriate analysis choices are an essential 

part of their research protocols.

Keywords

Pragmatic clinical trials; cluster randomized; group randomized; electronic health record; NIH 
Collaboratory

Introduction

Traditional randomized clinical trials tend to be very expensive and slow to deliver results 

that can be implemented directly into practice.1 On average it takes 17 years before research 

findings lead to widespread changes in care.2 Randomized clinical trials tend to be 

conducted in a controlled environment among a carefully selected study population under 

ideal conditions to assess the efficacy of an intervention or treatment.3 When actually 

implemented into everyday clinical practice there is often a dramatic decrease in the 

effectiveness. As a result, there is a need to conduct research in real world settings to provide 

evidence for real world practice.4–6

Standard practice in traditional randomized clinical trials has also led to a serious evidence 

paradox. There are more than 18,000 randomized clinical trials published each year along 

with tens of thousands of other clinical studies.7 However, in systematic reviews we 

consistently report not having enough evidence to effectively inform clinical decisions for 

providers and patients.4 In addition, health care delivery interventions are generally either 

implemented without testing, or testing is performed locally under the rubric of quality 

improvement. An alternative is to develop a learning health care system8,9 that is able to 

provide sufficient evidence to inform clinical decisions for providers and patients.

Changing traditional practice requires the researcher to take a more practical approach to all 

aspects of the research design. This has led to the development of a pragmatic clinical trial 

(PCT) paradigm in which we more flexibly and feasibly design studies by incorporating 

pragmatic features into the trial.10 There are numerous definitions for what is a pragmatic 

clinical trial,4,6,10,11 but one common theme is that a pragmatic clinical trial is “designed to 

test intervention in the full spectrum of everyday clinical settings in order to maximize 

applicability and generalizability. The research under investigation is whether an 
intervention actually works in real life”.4 A key feature in health care pragmatic clinical 

trials is leveraging the availability of existing data such as the electronic health record and 

repurposing the data for research. Another common feature has been the use of cluster, or 

group, randomization12,13 for which clinics or physicians are the unit of randomization to 

avoid “contamination” and to allow the intervention to be applied as it would be in practice. 

These features present statistical challenges in the design, conduct, and analysis of 

pragmatic clinical trials.

This paper will present challenges encountered along with solutions developed through our 

experience as part of the Biostatistics and Design Core in the National Institute of Health 

(NIH) Health Care Systems Collaboratory (NIH Collaboratory) (https://
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www.nihcollaboratory.org). One of the NIH Collaboratory’s goals was to improve the way 

pragmatic clinical trials are conducted and to build infrastructure for collaborative research. 

Our goal in this manuscript is to disseminate lessons learned during the pilot phase of five 

cluster-randomized pragmatic clinical trials. Key topics include study design, randomization, 

and statistical analysis. We conclude with a discussion of unresolved issues and suggested 

next steps.

General study design issues

The first round of the pilot UH2 studies from the NIH Collaboratory funded seven pragmatic 

clinical trials in which five can be described as a variant of a cluster randomized design.12,13 

Although individually randomized trials are statistically more straightforward, cluster 

randomized trials are preferred when randomizing at the cluster-level facilitates the 

implementation of the trial, or where there is risk of contamination. For example, 

contamination occurs when the same provider is treating both an intervention and a control 

subject and (usually unconsciously) allows the treatment of one to influence the treatment of 

the other. Because of this “leakage” between interventions, the observed intervention effect 

will be diluted and biased toward the null. The studies discussed here varied in the unit of 

randomization and the type of cluster randomized design. We will describe some common 

themes across studies as well as key features that caused statistical complications which we 

attempted to address through design or analysis.

NIH Collaboratory motivating trial examples

We will motivate this paper through two real examples from the first round of the NIH 

Collaboratory. The first trial is a multi-site cluster randomized pragmatic clinical trial 

assessing the effectiveness of automated strategies to raise colorectal cancer (CRC) 

screening rates called, Strategies and Opportunities to STOP Colon Cancer in Priority 

Populations (STOP CRC).14 STOP CRC randomized 26 safety net clinics within 8 health 

care systems to either: 1) usual care or 2) an automated, data-driven, electronic health record 

embedded program for mailing fecal immunochemical test (FIT) kits to patients due for 

colorectal cancer screening. Due to the intervention being embedded within the electronic 

health care record it required the intervention to be implemented at the clinic level for 

feasibility. The primary outcome is a clinic-level outcome defined as the proportion of 

patients eligible for colorectal cancer screening who complete a guaiac fecal occult blood 

test or fecal immunochemical test within 12 months.

The second trial is a multi-site stepped wedge cluster randomized pragmatic trial assessing 

the effectiveness of incorporating age- and modality-appropriate epidemiological 

benchmarks for common imaging findings on standard lumbar spine imaging reports to 

reduce spine-related intervention intensity called, Lumbar Imaging with Reporting of 

Epidemiology (LIRE).15 LIRE randomized 100 primary care clinics within 4 health care 

systems using a stepped wedge design.16 At period 0, or baseline, all clinics were receiving 

the standard imaging report (control intervention). Then clinics were randomized to the 

timing of when they would start receiving the new reports with epidemiologic benchmarks at 

5 potential turn-on times. By the end of the trial after completion of the 5 turn-on times all 
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clinics will be receiving the reports with the additional epidemiological benchmark 

information. The primary outcome of interest is a patient level spine-related intervention 

intensity measured by relative value units after one year of receiving the imaging report.

Choice and number of randomization units

Cluster randomized trials embedded within health care systems have varying types of 

randomization units available. Specifically, one can think of a hierarchy in which a patient 

sees a provider, who is part of a panel, within a clinic, which is part of region, and that 

region is within a health care delivery system or site (Figure 1). In an ideal study design 

setting (no dashed lines), we have complete nesting within each organization level and there 

is very little potential for contamination among units at the same level. Therefore, if the 

study randomized one provider to one intervention and another provider to another 

intervention, the provider and their patients would not be exposed (i.e. contaminated) to the 

other intervention. We use provider as a general term which might be a primary care 

physician if only primary care physicians deliver the intervention, but could also mean 

nurse, physician assistant, specialist (e.g. radiologist) or a combination of different medical 

professionals depending on the type of intervention being evaluated.

However, often there is potential for contamination (dashed lines). For example, if a patient 

sees more than one provider in a panel of providers then there may be potential for 

contamination if the intervention is randomized at the provider-level (Figure 1: patient B 

sees both providers 2 and 3 within panel 2). To prevent contamination, panel-level 

randomization may be feasible. However, sometimes providers go to different clinics, or 

provide care across panels within the same clinic (Figure 1: provider 1 provides care at two 

panels). One might decide to exclude those providers from randomization or randomize at a 

higher level like the clinic.

Understanding the health care system is crucial to providing statistical advice on the study 

design. For the statistician, the goal is to work with the study team to determine the 

randomization unit that yields the most clusters, while still being feasible to deliver the 

intervention with minimal risk of contamination. With a fixed total number of patients, 

maximizing the number of units of randomization increases power and reduces potential bias 

due to imbalance of baseline cluster characteristics. Hence it is important to select the lowest 

level cluster that will have minimal risk of contamination. The trade-off between decreasing 

the risk of contamination by decreasing the number of randomization units or increasing the 

number of randomization units to increase power and balance is always a consideration. 

Further, having more clusters provides better statistical properties when analyzing cluster-

level data. If the number of clusters is small (under 40 or 50), one may want to apply a small 

sample correction when using popular statistical approaches that handle correlated data such 

as generalized estimating equations.17–20 Later we will detail ways to control for potential 

imbalance in randomization for situations that involve a relatively small number of clusters.

Our experience in the NIH Collaboratory was that often investigators started with a small 

number of large clusters, typically at the clinic-level, but through discussions with the 

Biostatistics and Design Core discovered that the panel or provider-level was actually 

feasible. This allowed the projects to increase the sample size of clusters thereby increasing 
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the power for assessing the same effect size or providing the same power for a smaller effect 

size.

Unequal cluster sizes

Another important consideration in cluster randomized designs in health care systems is that 

often the cluster size is variable across clusters. Substantial historical cluster design work 

came from the education literature in which cluster size was relatively homogenous. 

Classrooms have about the same number of students and therefore the effect of unequal 

cluster sizes was not as much of an issue. However, this is definitely not the case for cluster 

randomized studies within health care systems. One study in the NIH Collaboratory 

randomized clinics within four health care systems; one system had 11 clinics with an 

average of about 1400 patients per clinic, while another system had 89 clinics with an 

average of 72 patients per clinic. Having unequal cluster size decreases the power of the 

study relative to a balanced cluster design.21 It also has issues in terms of analyses and 

determining which effect estimate (person-level versus cluster-level) is of most interest to 

the study. We will detail implications of unequal cluster size to both the sample size and the 

analysis approach.

Unequal cluster size and sample size—A common approach to determining sample 

size in cluster randomized designs is the use of a design effect which takes into account the 

correlation amongst observations within the same cluster. First one calculates the sample 

size needed if one was doing a randomized clinical trial without clustering and then this is 

inflated by the design effect. For a simple clustered randomized design with balanced cluster 

sizes the design effect (DEFF) is,

where ρ is the intraclass correlation coefficient (ICC) and 3 is the size of a cluster. However, 

in situations with a small number of clusters it is recommended to further account for the 

degrees of freedom that will be available for the test of the intervention effect.22 The degrees 

of freedom for two group cluster randomized trials is the number of clusters minus one 

(degrees of freedom=n-1) and then the reference distribution of the test statistic is a t-

distribution with the specified degrees of freedom. Failure to account for either of these 

issues will result in an inflated type I error rate.23

This traditional approach to determining sample size assumes that the clusters are 

homogenous with respect to size. However, if cluster size is variable the approach to sample 

size needs to be modified.24 Eldridge et al (2009)21 provides a summary of approaches to 

calculate the design effect and interclass correlation coefficient dependent on outcome type 

and analysis method. Note that the resulting sample of individuals needed to achieve the 

same power will be larger when taking into account variable cluster sizes compared to 

assuming a simple balanced cluster design.21 Therefore assuming a balanced cluster design 

for sample size calculations will yield underpowered pragmatic clinical trials if in actuality 

there will be a large variability in cluster sizes.
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One advantage of conducting pragmatic clinical trials within health care systems is that it is 

possible to actually estimate the interclass correlation coefficient and cluster sizes based on 

available electronic health record data. This was an important part of the UH2 pilot phase 

process in the NIH Collaboratory to obtain accurate estimates of both of these quantities to 

assure the UH3 main trials would have adequate power.

Unequal cluster size and statistical analysis—When conducting a cluster 

randomized trial one has choices in the target population of interest to drive the statistical 

estimation of the effectiveness of an intervention. For example, if the randomization unit is 

at the clinic-level, one could decide to a) compare the intervention effect across clinics 

(marginal clinic-level effect), b) compare within clinic intervention effect (within clinic 

effect), c) compare intervention effect across patients (marginal patient-level effect) or d) 

something in-between.

We will first focus on the concept of marginal clinic-level versus patient-level effects, and 

these relate to the assumed population over which estimation will average. With multilevel 

structure and multiple clinics we can define averages over the population of clinics where 

each would have equal weight, or we can define averages over the population of subjects 

where clinic summaries would need to be weighted by their cluster size. To illustrate the 

difference between these effects first assume a simple approach to estimate a clinic-level 

intervention effect by taking the mean outcome at each clinic c,

where Yci is the outcome for patient i in clinic c and nc is the number of patients in clinic c. 

Then to estimate the mean clinic-level difference in intervention effect one can simply 

estimate,

where Xc is 1 if clinic c was randomized to the intervention and 0 otherwise. Therefore this 

estimated mean difference weights each clinic equally yielding an average clinic-level effect. 

Such an estimate targets an average treatment effect (ATE) defined for the population of 

clinics, and parallels the simple definition of average treatment effect for individual 

randomized trials. This approach, which is used in the STOP CRC study, avoids entirely the 

problems otherwise associated with unequal cluster sizes as the data are reduced to provide a 

single estimate for each cluster.

However, if the investigators were interested in a patient-level effect one might calculate the 

following,
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In this setting the clustering is essentially a nuisance and does not directly relate to the 

definition of the population (patients) that is of interest for defining an average treatment 

effect. For estimation the definition of a patient-level effect leads to weighting information 

to validly represent the population of patients and therefore each patient contributes equal 

weight. Equivalently, this approach weights cluster-level summaries by the size of the 

cluster. If the cluster size is balanced, nc = n, then the patient-level estimate is the same as 

the clinic-level estimate. However, this is not the case in the unequal sample size setting.

The most common approach to estimate marginal effects is through generalized estimating 

equations (GEE).25 There are numerous ways to apply GEE, but one approach is to assume 

an independent working correlation structure and then choose the weights to estimate 

whichever level of inference is of interest and through robust standard errors to correct the 

variance for correlation due to the cluster randomized design. By using GEE one can also 

adjust for patient and higher-level baseline characteristics which may be advantageous to 

handle by chance covariate imbalance between intervention groups or increase power 

especially for continuous outcomes.26,27 As noted above, if the number of clusters is small 

(under 40 or 50), one may want to apply a small sample correction.17–20 Further discussion 

on the issues and potential solutions in estimating different population averages (e.g. patient 

versus clinic-level) when applying GEE have been previously published and describe this 

estimation issue in terms of informative cluster sizes.28,29

Another approach to estimate a marginal effect for continuous outcomes is to apply a linear 

mixed model30 using patient-level outcomes. Typically when using a linear mixed model 

with continuous outcome data a cluster-level random effect or a random intercept model is 

used:

where, bc is the random effect for cluster c. Mixed model estimation using maximum 

likelihood is equivalent to use of weighted least squares with weights inversely proportional 

to the variance (Gauss-Markov). With no individual covariates it can be shown that this 

approach weights cluster-level means using the inverse of the degrees of freedom, or nc/ [1+ 

(nc – 1)ρ] this shows that weighting is intermediate to equal weights at the cluster-level 

which would result with ρ = 1, and weighting proportional to cluster size which corresponds 

to ρ = 0 Therefore, using a mixed model implicitly estimates a target parameter that can be 

viewed as intermediate to cluster and patient-level effects. The implicit level of effect 

estimated depends on amount of correlation within cluster (more correlation moves estimate 

closer to a cluster-level effect) and how the model is fit. Comparable estimates can be made 

using GEE and assuming an exchangeable working correlation structure instead of 

independence. However, the interpretation of the estimate as an in-between cluster and 

patient-level effect is not likely clinically meaningful to the scientific question of interest. 
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Therefore there should be caution when using such an approach when the interest is in either 

a patient or cluster level effect. There is potential to weight the estimate back to a 

scientifically meaningful quantity, but this is not readily viable with current software 

capabilities.

Another parameter of interest may be a within cluster effect instead of a marginal effect, 

which is directly estimable when using generalized linear mixed effect models.30 Note for 

continuous outcomes, due to collapsibility, the generalized linear mixed effect model 

estimates can be interpreted as both within cluster and between (marginal) cluster effects. 

However, for binary outcomes when estimating an odds ratio this is not the case. The within 

cluster effect addresses questions like “What is the expected benefit if a clinic implements 

the new intervention relative to Usual Care?” instead of the marginal clinic-level effect 

“What is the benefit if all clinics in the health system changed to the new intervention 

relative to Usual Care?” Typically, one is most comfortable estimating this within clinic 

quantity if within each cluster they observe both interventions being compared. For example 

in a stepped wedge design every cluster observes a period of time on Usual Care and then 

crosses to the Intervention and therefore estimating a within cluster effect may be desirable.

Choice of the which quantity to estimate should be made based on the scientific question of 

interest, but statistical tradeoffs, including power, must also be considered. Further, given a 

particular unit of analysis, there are different analytical approaches that will present different 

power tradeoffs. Some of these have been explored recently for continuous outcomes,21 but 

the literature addressing tradeoffs for binary or survival outcomes remains limited to specific 

designs.31

Which cluster randomized design?

So far we have focused on simple cluster randomized designs to illustrate general statistical 

concepts. We now delve into some newer cluster study designs that may have advantages 

especially in health care pragmatic clinical trials.

Simple cluster randomized design

We define a simple cluster randomized design as one in which randomization is at the 

cluster-level and in which the cluster remains on the same intervention throughout the course 

of the trial (Figure 2: Simple Cluster). Advantages are being relatively simple and may be 

easy to implement. A major disadvantage is that not all clusters get the intervention and that 

may not be viewed positively in a health care system. To get buy-in from a health care 

system to conduct a study, stating that only 50% of clusters will be randomized to the 

intervention may not gain approval. These are often integrated systems and if the 

intervention requires infrastructure, the health care system is reluctant to make an investment 

if they cannot at least eventually provide the new intervention to the entire system in a 

timely manner. This will be true especially if the intervention is likely to have a benefit (case 

tested in other systems) and there is minimal potential for harm.
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A statistical and scientific disadvantage of clusters only receiving one intervention is that 

within cluster contrasts across treatment groups are not observed. Therefore, for both 

feasibility and statistical purposes other cluster randomized designs may be preferred.

Cluster with crossover randomized design

This design approach randomizes all clusters to an initial intervention and then, after a 

certain period of time, every cluster will switch, e.g. crossover, to the other intervention 

(Figure 2: Cluster with Crossover).31 This study design is only feasible if the intervention 

can be turned off and on without “learning,” such that residual practices are not carried over 

from one period to the next. This carryover effect would cause contamination across 

intervention arms. Solutions using wash out periods after the crossover, during which the 

data from the clusters are discarded, may help contamination, but are not always feasible.

A simple alternative is to have data collected from all clusters before the intervention period 

(baseline period) and then half of the clusters receive the intervention and data continue to 

be collected (intervention period) (Figure 2: Cluster with Partial Crossover from Baseline). 

This is the most common cluster randomized design. This design with an untreated baseline 

assessment period followed by a parallel cluster randomization has advantages statistically 

because data are now available from some units to efficiently estimate a within cluster effect 

without the potential for “learning” contamination, but this design still has the feasibility 

issue that not all clusters receive the intervention.

Another major statistical advantage is the power gain that is available when implementing a 

cross-over cluster design versus a simple cluster design. The magnitude of the improvement 

will depend on the cluster intraclass correlation coefficient.

Stepped wedge design

The stepped wedge design16 was developed specifically to address the issue that feasibly, 

and often ethically, all clusters should eventually receive the intervention over the course of 

the study. This design randomizes the timing of when the intervention is turned on for a 

given cluster or set of clusters and was used for the NIH Collaboratory LIRE study. Once the 

intervention is turned on for a cluster the intervention remains on for the remainder of the 

study (Figure 2: Stepped Wedge). This can be thought of as a staggered cluster with cross-

over design. Temporally spacing the intervention allows one to control for changes over time 

within the health care system. Health care systems are not static and other changes may be 

occurring outside of the scope of the study. Of course, one would like to limit these changes, 

but this may not always be possible. Randomizing the start time of the intervention allows 

time to be controlled for in the design.

The key advantages of the stepped wedge design are that all clusters receive the intervention, 

it is possible to control for external temporal trends, and one can make a within cluster 

interpretation if desired. One still needs to be careful about contamination across clusters. 

However, by gaining valuable within cluster cross-over data, power may be improved 

relative to simple cluster randomization16,32 and therefore fewer clusters may be required.
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There are unanswered methods questions when conducting stepped wedge designs such as 

the best way to conduct the mixed-effect analyses in terms of appropriately specifying the 

random effects and how to calculate power, as current software is relatively limited. Trials 

recently published special issues on stepped wedge designs touching on the design, analysis, 

reporting, and sample size calculation for stepped wedge designs.33 Given the added 

complexities for this design, there is need for more statistical expertise when proposing such 

a design and one should be cautioned to think of the implications of the analysis choice and 

the longitudinal data structure the stepped wedge design implies.

Randomization

The last area of major discussion in the first pilot phase of the NIH Collaboratory focused on 

the best approach to implementing randomization for cluster randomized designs. Some 

studies had less than 50 clusters to be randomized and one (STOP CRC) was closer to 20. 

Under these conditions, crude randomization in which 50% of clusters are randomized to be 

in the intervention group and 50% to be in the control may not be optimal. Imbalanced 

baseline characteristics between arms are likely due to chance with a small number of 

clusters randomized to each arm; subgroup analyses may also be more challenging if simple 

randomization is used, because the arms may not be balanced with respect to the factors that 

would define the subgroups.

For typical health care studies we usually have a large amount of baseline data from the 

electronic health record about the clusters such as cluster size, demographic make-up, 

baseline outcome (e.g. baseline mean blood pressure by cluster), region, etc. Using this 

information can help inform the optimal randomization scheme to achieve balance across 

potential confounders.

There are several approaches to balance between cluster differences, including pair matching 

and stratification. Pair matching pairs clusters together that have similar baseline 

characteristics and then randomizes within pairs. However, it can be difficult to choose pairs 

and if one cluster in the pair drops out, the entire pair is lost in the analysis. Also, pair 

matching may cause complications in the analyses.34–36 Another approach is stratification in 

which one creates strata based on a small set of predictors and balances randomization 

within strata. Stratification avoids the analytic issues created by pair matching and therefore 

may be preferred.36,37

An alternate approach is constrained randomization.38 Here, one simulates a very large 

number of potential randomization schemes to attempt to represent the entire randomization 

space (with few enough clusters, the entire randomization space can be enumerated); remove 

duplicates; assesses each potential randomization scheme for baseline characteristic balance 

and restricts to those with sufficient balance according to a pre-specified metric; randomly 

selects from the set of “constrained” balanced randomization schemes a single 

randomization assignment; and randomly assigns the intervention groups to that selected 

scheme.
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This approach seemed like a viable option to the Biostatistics and Design Core, but it was 

unclear whether constrained randomization was better than other randomization approaches 

in terms of Type 1 error and power and what would be the best way to implement the 

approach including implications for the analysis. We conducted a simulation study 

comparing constrained to crude randomization,39 and briefly summarize that work here. For 

continuous and normally distributed outcomes, results indicated that the analysis should still 

adjust for the balanced potential confounders. In addition the adjusted F-test and the 

permutation test performed similarly and slightly better for constrained randomization in 

terms of power. However, when performing the permutation test, the constrained 

randomization space should be used.

Overall, there are advantages to using available information to attempt to balance 

randomization for important baseline characteristics. In particular cluster size is important to 

balance since that has direct implication on power and those with similar cluster sizes often 

have other characteristic similarities (e.g. large clinics are often in denser part of the city 

with more similar patient characteristics).

Discussion

Pragmatic clinical trials are extremely important to reflect real world settings and to move 

research quickly into practice. Statisticians working on these trials need to be flexible, but 

still assure that the findings of pragmatic clinical trials are unbiased, efficient, generalizable, 

and replicable. The first question needs to be, “Should this study be addressed using a 

pragmatic clinical trial approach?” Pilot efficacy and feasibility studies, especially in terms 

of proof of concept, are still needed before moving to pragmatic clinical trials which tend to 

be large simple studies without as much control or oversight as more traditional randomized 

clinical trials. Of course, patient safety is a top priority and is often why a pragmatic clinical 

trial design may not be feasible if monitoring of safety outcomes cannot be achieved using 

electronic health record data. Best practices for data safety monitoring of pragmatic clinical 

trials are being developed and are beyond the scope of this manuscript.

There are open statistical questions using electronic health record for data safety monitoring 

especially in terms of data lag issues. Different health care systems have different data lag 

timing and a statistician needs to understand the implications of such lagged data (e.g. if the 

patient goes out of network it may take months before the billing claim information arrives 

in the system). Therefore it may be statistically better to not use all the available data at an 

interim monitoring analysis, but instead incorporate the data lag time so that you have 

relatively complete information to assess an unbiased estimate.

Another major factor is that new information on a patient is only observed if that patient 

interacts with the delivery system. For example, if an intervention improves the health of a 

patient, that patient may discontinue interacting with the health care system, which, although 

the intervention was successful has implications on missing outcome information on which 

to evaluate the intervention. Defining outcomes appropriately and choosing the correct 

statistical approach requires intimately understanding the health care delivery system and 

implications for outcome assessment.
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Health care pragmatic clinical trials provide statistical challenges, but are needed to address 

important “real world” questions. This paper discussed some design and analysis challenges 

and solutions based on actual pragmatic clinical trials being conducted within the NIH 

Collaboratory. As pragmatic clinical trials continue to be conducted there will certainly be 

numerous new statistical challenges in this very important research area.

Acknowledgments

Grant Support: National Institutes of Health grants 1U54AT007748-01, 1UH2AT007769-01, 1UH2AT007782-01, 
1UH2AT007755-01, 1UH2AT007788-01, 1UH2AT007766-01, 1UH2 AT007784-01, and 1UH2AT007797-01.

The views presented here are solely the responsibility of the authors and do not necessarily represent the official 
views of the National Institutes of Health.

References

1. Zwarenstein M, Oxman A. Why are so few randomized trials useful, and what can we do about it? J 
Clin Epidemiol. 2006; 59:1125–1126. [PubMed: 17027421] 

2. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time 
lags in translational research. J R Soc Med. 2011; 104:510–520. [PubMed: 22179294] 

3. Weiss NS, Koepsell TD, Psaty BM. Generalizability of the results of randomized trials. Arch Intern 
Med. 2008; 168:133–135. [PubMed: 18227357] 

4. Patsopoulos NA. A pragmatic view on pragmatic trials. Dialogues Clin Neurosci. 2011; 13:217–224. 
[PubMed: 21842619] 

5. Treweek S, Zwarenstein M. Making trials matter: pragmatic and explanatory trials and the problem 
of applicability. Trials. 2009; 10:37. [PubMed: 19493350] 

6. Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research 
for decision making in clinical and health policy. JAMA. 2003; 290:1624–1632. [PubMed: 
14506122] 

7. Chalmers I, Bracken MB, Djulbegovic B, et al. How to increase value and reduce waste when 
research priorities are set. Lancet. 2014; 383:156–165. [PubMed: 24411644] 

8. Etheredge LM. A rapid-learning health system. Health Aff. 2007; 26:107–118.

9. Greene SM, Reid RJ, Larson EB. Implementing the learning health system: from concept to action. 
Ann Intern Med. 2012; 157:207–210. [PubMed: 22868839] 

10. Thorpe KE, Zwarenstein M, Oxman AD, et al. A pragmatic-explanatory continuum indicator 
summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009; 62:464–475. [PubMed: 
19348971] 

11. MacPherson H. Pragmatic clinical trials. Complement Ther Med. 2004; 12:136–140. [PubMed: 
15561524] 

12. Donner, A.; Klar, N. Design and analysis of cluster randomization trials in health research. 
London: Arnold; 2000. 

13. Murray, DM. Design and analysis of group-randomized trials. New York, NY: Oxford University 
Press; 1998. 

14. Coronado GD, Vollmer WM, Petrik A, et al. Strategies and Opportunities to STOP Colon Cancer 
in Priority Populations: design of a cluster-randomized pragmatic trial. Contemp Clin Trials. 2014; 
38:344–349. [PubMed: 24937017] 

15. Jarvik JG, Comstock BA, James KT, et al. Lumbar Imaging With Reporting Of Epidemiology 
(LIRE)-Protocol for a pragmatic cluster randomized trial. Contemp Clin Trials. 2015; 45:157–163. 
[PubMed: 26493088] 

16. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Cont Clin 
Trial. 2007; 28:182–191.

17. Fay MP, Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. 
Biometrics. 2001; 57:1198–1206. [PubMed: 11764261] 

Cook et al. Page 12

Clin Trials. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. J 
Am Stat Assoc. 2001; 96:1387–1396.

19. Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. 
Biometrics. 2001; 57:126–134. [PubMed: 11252587] 

20. Morel JG, Bokossa MC, Neerchal NK. Small sample correction for the variance of GEE 
estimators. Biom J. 2003; 4:395–409.

21. Eldridge SM, Ukoumunne OC, Carlin JB. The intra-cluster correlation coefficient in cluster 
randomized trials: A review of definitions. Int Stat Rev. 2009; 77:378–394.

22. Cornfield J. Randomization by group: a formal analysis. Am J Epidemiol. 1978; 108:100–102. 
[PubMed: 707470] 

23. Murray DM, Hannan PJ, Baker WL. A Monte Carlo study of alternative responses to intraclass 
correlation in community trials. Is it ever possible to avoid Cornfield’s penalties? Eval Rev. 1996; 
20:313–337. [PubMed: 10182207] 

24. Donner A. Sample size requirements for stratified cluster randomization designs. Stat Med. 1992; 
11:743–750. [PubMed: 1594813] 

25. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 
1986; 42:121–130. [PubMed: 3719049] 

26. Moore KL, van der Laan MJ. Covariate adjustment in randomized trials with binary outcomes: 
Targeted maximum likelihood estimation. Stat Med. 2009; 28:39–64. [PubMed: 18985634] 

27. Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression 
models. Int Stat Rev. 1991; 59:227–240.

28. Huang Y, Leroux B. Informative cluster sizes for subcluster-level covariates and weighted 
generalized estimating equations. Biometrics. 2011; 67:843–851. [PubMed: 21281273] 

29. Seaman S, Pavlou M, Copas A. Review of methods for handling confounding by cluster and 
informative cluster size in clustered data. Stat Med. 2014; 33:5371–5387. [PubMed: 25087978] 

30. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982; 38:963–974. 
[PubMed: 7168798] 

31. Turner RM, White IR, Croudace T. Group PIPS. Analysis of cluster randomized cross-over trial 
data: a comparison of methods. Stat Med. 2007; 26:274–289. [PubMed: 16538700] 

32. Rhoda DA, Murray DM, Andridge RR, et al. Studies with staggered starts: multiple baseline 
designs and group-randomized trials. Am J Public Health. 2011; 101:2164–2169. [PubMed: 
21940928] 

33. [accessed 17 August 2015] Stepped wedge randomized controlled trials. 2015. http://
www.trialsjournal.com/series/SteppedWedge

34. Diehr P, Martin DC, Koepsell TD, et al. Breaking the matches in a paired t-test for community 
interventions when the number of pairs is small. Stat Med. 1995; 14:1491–1504. [PubMed: 
7481187] 

35. Donner A, Taljaard M, Klar N. The merits of breaking the matches: a cautionary tale. Stat Med. 
2007; 26:2036–2051. [PubMed: 16927437] 

36. Imbens, GW. [accessed 14 May 2014] Experimental design for unit and cluster randomized trials. 
2011. http://cyrussamii.com/wp-content/uploads/2011/06/Imbens_June_8_paper.pdf

37. Donner A, Klar N. Pitfalls of and controversies in cluster randomization trials. Am J Public Health. 
2004; 94:416–422. [PubMed: 14998805] 

38. Moulton LH. Covariate-based constrained randomization of group-randomized trials. Clin Trials. 
2004; 1:297–305. [PubMed: 16279255] 

39. Li F, Lokhnygina Y, Murray DM, et al. An evaluation of constrained randomization for the design 
and analysis of group-randomized trials. Stat Med. Epub ahead of print 23 November 2015. 

Cook et al. Page 13

Clin Trials. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.trialsjournal.com/series/SteppedWedge
http://www.trialsjournal.com/series/SteppedWedge
http://cyrussamii.com/wp-content/uploads/2011/06/Imbens_June_8_paper.pdf


Figure 1. 
Example of a common configuration of a health care system.
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Figure 2. 
Different Cluster Randomized Design Configurations
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