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Abstract

BACKGROUND AND PURPOSE—The objectives of this pilot study were to 1) evaluate the 

feasibility and investigate the efficacy of a 3-week, high volume (450 minutes/week) Adapted 

Tango intervention for community dwelling individuals with mild-moderate PD, and to 2) 

investigate the potential efficacy of Adapted Tango in modifying electromyographic (EMG) 

activity and center of body mass (CoM) displacement during automatic postural responses to 

support surface perturbations.

METHODS—Individuals with PD (n=26) were recruited for high volume Adapted Tango (15 

lessons, 1.5 hour each over 3 weeks). Twenty participants were assessed with clinical balance and 

gait measures before and after the intervention. Nine participants were also assessed with support-

surface translation perturbations.

RESULTS—Overall adherence to the intervention was 77%. At posttest, peak forward CoM 

displacement was reduced (4.0±0.9 cm, pretest, vs. 3.7±1.1 cm, posttest; P=0.03; Cohen’s d=0.30) 

and correlated to improvements on Berg Balance Scale (BBS; rho=−0.68; P=0.04) and Dynamic 

Gait Index (rho=−0.75; P=0.03). Overall antagonist onset time was delayed (27 ms; P=0.02; 

d=0.90) and duration was reduced (56 ms, ≈39%, P=0.02; d=0.45). Reductions in EMG 

magnitude were also observed (P<0.05).

DISCUSSION AND CONCLUSIONS—Adherence was acceptable and improvements on 

clinical measures of balance and gait were comparable to that obtained with lower volume, 12-

week programs. Following participation in Adapted Tango, changes in kinematic and some EMG 

measures of perturbation responses were observed in addition to improvements in clinical 
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measures. We conclude that 3-week, high volume Adapted Tango is feasible and represents a 

viable alternative to longer duration adapted dance programs. Video Abstract available for more 

insights from the authors (see Supplemental Digital Content 1)
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INTRODUCTION

Balance problems are common in Parkinson disease (PD) and are challenging to treat via 

pharmacotherapy or surgical interventions.1,2 Improvements on clinical measures of balance 

and gait have been demonstrated after several rehabilitative exercise programs for 

individuals with PD,3–6 including Adapted Tango dance.7,8 Adapted Tango elicits clinically-

measured balance improvements that are superior to exercise,9 non-partnered dance,7 other 

dance-based and martial arts-based interventions,10,11 no intervention,8,11 and health 

education.12 Recently, the importance of rehabilitation volume has received increased 

attention.13,14 In PD, high volume rehabilitation may be particularly effective, as individuals 

exhibit superior increases in gait speed after higher volume/low intensity exercise therapy 

(12 weeks, 150 minutes/week, 40%–50% of heart rate reserve) compared to lower volume/

high intensity exercise therapy (12 weeks, 90 minutes/week, 70%–80% of heart rate reserve) 

with comparable overall work.14 Further, exercise therapy of at least 180 minutes/week is 

required to improve gait speed in older adults.15 Recently, 450 minutes/week has been 

demonstrated to be the upper threshold of exercise volume (i.e., the sweet spot) required for 

lowered mortality risk (by 39%), compared to sedentary older adults.16 Previously, 

individuals with PD demonstrated functional improvements after two weeks of high volume 

(450 minutes/week) Adapted Tango training.17 Although these improvements are promising, 

it is unknown if longer-term therapy (i.e., 3 weeks) with similar volume is feasible and 

possibly more effective. Also, it is unknown whether clinical changes after Adapted Tango 

are associated with alterations in responses to postural perturbations assessed in a laboratory 

setting, a common paradigm in human neurophysiology research.18–20

Previous studies in populations other than PD suggest that improvements in clinical 

measures of balance after rehabilitation may be associated with improved kinematic and 

electromyographic measures during balance and gait.21–24 For example, three weeks of high 

volume (450 minutes/week) Tai Chi training advanced agonist muscle activation onset times 

and reduced co-contraction in response to support-surface perturbations during walking in 

mildly balance-impaired older adults whose balance had only slightly improved, as 

measured by a 2 point increase on the Berg Balance Scale (BBS).22 In individuals with post-

stroke hemiparesis, agility exercise therapy (10 weeks, 180 minutes/week) improved gait 

speed, and reduced muscle activation onset times in response to support-surface 

perturbations during standing.23 Locomotor rehabilitation also improved timing of ankle 

plantar flexors during gait in hemiparetic individuals (12 weeks, 120 minutes/week).24 

However, it is unknown whether changes in clinical measures after Adapted Tango, a dance-

based rehabilitation, which may address PD impairments through different mechanisms than 
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Tai Chi and agility exercise, 25 would be associated with changes in muscle activity or 

kinematic measures during postural responses.

Electromyographic (EMG) and kinematic abnormalities during responses to support surface 

translation perturbations in PD18,20 differ from those of older adults22 and stroke 

survivors.23,24 During translation perturbations of the support surface, the center of mass is 

displaced and medium- (≥ 80 ms) and long-latency (≥ 100 ms) corrective responses are 

generated in leg and trunk muscles, referred to as the automatic postural response.19 Unlike 

the delayed responses in balance-impaired older adults22 and in individuals with post-stroke 

hemiparesis,23,24 in individuals with PD, automatic postural response onset latency is 

typically normal or earlier than normal in agonist muscles18 and typically earlier than 

normal in antagonist muscles, leading to inappropriate co-contraction.18,20 PD is also 

associated with increased total center of mass displacement during perturbation responses.26 

We initiated this investigation because, to the best of our knowledge, no studies have 

examined changes in postural responses in PD before and after Adapted Tango,.

The primary objectives of this pilot study were to determine the feasibility and investigate 

the efficacy of 3 weeks of high volume (450 minutes/week) Adapted Tango in improving 

clinical measures of balance and gait in community-dwelling individuals with PD. We 

performed a repeated measures observational study of high volume Adapted Tango with 

duration increased to 3 weeks to estimate adherence and investigate efficacy. We predicted 

that 1) three-week high volume Adapted Tango would be feasible for individuals with mild-

moderate PD, as demonstrated by adherence with a 95% confidence interval lower bound of 

≥60%, 2) clinical measures of balance and disease severity would improve from pretest to 

posttest, and be retained for at least one month, based on results from previous studies 

demonstrating retention for three months,8,12 and that 3) clinical measures would be stable 

over the 1 month before pretest, when tested in a subset of participants.

The secondary, exploratory, objectives of this pilot study were to evaluate postural responses 

before and after Adapted Tango to examine the feasibility of and utility of using kinematic 

and electromyographic outcome measures in this type of intervention. We allocated a 

convenience sample of intervention participants to receive additional perturbation response 

testing at pretest and posttest. Muscle onset time measurements have been demonstrated to 

be stable across multiple days in healthy young individuals 27 and across multiple months in 

individuals with PD.28 Thus, we determined that we would consider a randomized trial to be 

feasible and justified if we obtained preliminary efficacy evidence, as determined by 

reductions in CoM displacement or in antagonist muscle onset time, duration, or magnitude. 

In order to further investigate preliminary evidence of efficacy, we also examined 

associations between changes in clinical measures and changes in CoM displacement or in 

muscle activity measures after Adapted Tango.

METHODS

Study design

This study was a repeated measures, observational study without a control group. A double 

baseline procedure was employed to improve internal validity of clinical outcomes. Multiple 
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post-test periods were used to assess stability of observed changes in clinical outcome 

measures. A convenience sample of study participants was allocated to additional 

perturbation testing before and after the intervention.

Participants and setting

Participants were recruited at PD outreach events, senior centers, and the Emory Movement 

Disorders clinic.. Participants met the following inclusion criteria: Hoehn & Yahr stage I-IV, 

diagnosis of “definite” idiopathic PD,29 age ≥ 35 years. Exclusion criteria were: deep brain 

stimulation, other significant comorbidities, or significant musculoskeletal impairment as 

determined by the investigators. Participants were observed for outcome measures on three 

separate occasions. All participants were assessed within one week before (pretest) and 

within one week after (posttest) the intervention. Participants recruited early in the trial 

(n=7) were assessed 1 month before the beginning of the intervention (one-month pretest) to 

establish a double baseline for these participants and examine stability of clinical measures. 

Participants recruited later in the trial (n=13) were observed in a follow up appointment, 1 

month after the intervention’s cessation (one-month post). The double baseline was 

conducted to examine the stability of measures between one-month pretest and pretest: a 

time period (~1 month) that was similar to the intervention time period of 3 weeks. The one-

month posttest (follow-up) was used to detect retention (or loss) of changes between posttest 

and one-month posttest also over a period of time that was similar to the interventional time 

period. Adapted Tango classes and clinical assessments were performed in a large 

multipurpose room on a university campus. Perturbation response assessments were 

performed in a dedicated balance laboratory elsewhere on campus. Participants provided 

written informed consent according to protocols approved by institutional review boards at 

Emory University and the Georgia Institute of Technology.

3-week high volume Adapted Tango intervention

Participants received high volume, moderate intensity Adapted Tango, taught by a 

professional dance instructor,30 and were to complete fifteen 90-minute Adapted Tango 

sessions in three weeks. Classes were designed to induce expenditure of ≥3 Metabolic 

Equivalents of Task (METs) per minute, as per estimates for typical ballroom dance, which 

is considered light-moderate intensity exercise by the United States Center for Disease 

Control.31 Classes began with standing warm-ups to upbeat music, and continued with 

dancing to commercial music selections. Participants spent equal time leading and following 

dance steps, performed in an adapted ballroom frame, holding forearms, and classes were 

progressive. (See Video Abstract, Supplemental Digital Content 1, for an example of the 

adapted ballroom frame.) Individuals with PD were coupled with individuals without PD. 

Participants spent 1/3 of class working on rhythmic entrainment to the beat during the warm-

ups, such as tapping of toes or heels, or sequentially opening and closing the hands. Further, 

the participants spent ample time (i.e., 20–30 minutes) simply walking to various tango 

rhythms intended to enhance their musicality, i.e., the ability to control the gait cycle in a 

more complex rhythm than typical gait. As in previous studies,7,9,10,12 participants were 

allowed to take breaks as needed throughout the classes in order to decrease fatigue.
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Outcome measures

Clinical balance and gait measures—Assessments were administered in the same 

order at each evaluation in order to minimize the effects of fatigue on measurements. 

Participants were assessed for general health, and were observed at each visit with clinical 

measures including: Parkinson’s disease severity (Unified Parkinson Disease Rating Scale 

[UPDRS] motor subscale III32), dyskinesia (total of scores 0–4 for each limb and face), the 

Berg Balance Scale (BBS33), Dynamic Gait Index (DGI34), Fullerton Advanced Balance 

Scale (FAB35,36), the two-footed Jump test, a test of neuromuscular synergies and 

musculoskeletal health,37 6 minute walk test (6MWT38), functional reach (FR39), Single/

Dual Timed Up and Go (TUG34), fast and preferred gait speed and cadence were measured 

using a stopwatch over a 20′ path.40 The Activities-Specific Balance Confidence 

questionnaire (ABC41), and the Freezing of Gait questionnaire (FOG42) were also 

administered. FAB was recently validated in community-dwelling individuals with PD,36 

and was used to avoid BBS ceiling effects. For each participant, all assessments occurred at 

a standardized time of day coinciding with a self-determined optimal ON period to minimize 

pharmacologically-related motor fluctuations. Clinical balance and gait measures were 

performed by an experienced rehabilitation scientist or by trained research assistants. An 

experienced rehabilitation scientist certified by the Movement Disorders Society 

administered the UPDRS-III. To minimize the variability of individual UPDRS items, 

including the retropulsion test,43 the same rehabilitation scientist administered the exam at 

each observation. Clinical data were entered and cross-verified by research assistants.

Response to perturbation—A convenience sample of the study participants was 

allocated to receive additional perturbation response assessments within two weeks before 

(pretest) and within two weeks after (posttest) the intervention. These participants were 

assessed at a standardized time of day (either 9 AM or 1 PM) coinciding as closely as 

possibly to the participants’ self-determined ON time. While wearing a safety harness, 

participants stood with each foot on a 6-axis (3D ground-reaction forces and moments) force 

plate (OR6-6, AMTI, Watertown, MA) embedded in a custom perturbation platform that 

translated in the horizontal plane. They were instructed to cross their arms over their chest, 

to focus on a landscape scene 3 m ahead, and to maintain balance with their feet in place but 

to take protective steps if necessary. Three perturbations were induced in each of the forward 

(displacing the center of mass anterior towards the toes) and backward (displacing the center 

of mass posterior towards the heels) directions of body sway.19 These perturbations were 

induced within a set of 36 perturbations spanning all directions in the horizontal plane and 

delivered in random order. At pretest, three to six test perturbations were delivered to select 

the highest perturbation level each participant could maintain balance without stepping. 

These perturbations were excluded from analysis to control for startle effects.44 Participants 

PR7 and PR9 (“PR” designates “Perturbation Response”) used level 4 (peak displacement 

10 cm; peak velocity 20 cm/s; peak acceleration 0.2 g; 700 ms total duration); all others used 

level 3 (7.5 cm; 15 cm/s; 0.1 g; 700 ms). Self-selected stance width was measured at pretest 

and subsequently enforced at posttest. (See Video Abstract, Supplemental Digital Content 1, 

for video of the perturbation apparatus.)
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Platform kinematics, surface EMG, and ground-reaction forces were sampled at 1080 Hz 

and processed in Matlab (The MathWorks, Natick, MA). Trials with stepping responses or 

arm movement were excluded from analysis. Ground reaction forces were low-pass filtered 

(100 Hz, third-order zero-lag Butterworth filter), and CoM acceleration in the medial-lateral 

and anterior-posterior directions was calculated by adding horizontal-plane ground reaction 

force components at each foot and dividing by participant mass (acceleration = force/

mass).19,45,46 Because estimates of CoM position from kinematic marker data were 

unreliable, we then integrated the acceleration twice, assuming zero initial velocity and zero 

initial displacement at the onset of the perturbation, to arrive at the displacement of the 

center of mass.47–51 Linear trends were removed from acceleration signals before integration 

to avoid introducing integration constants in velocity signals, and computed velocity and 

displacement signals were set to zero at perturbation onset to enforce the assumed initial 

conditions. Surface EMG (Konigsberg Instruments, Pasadena, CA) was collected from leg 

and trunk muscles, high-pass filtered (35 Hz, third-order zero-lag Butterworth filter), 

demeaned, rectified, and low-pass filtered (40 Hz).48,52,53 EMG was analyzed from ankle 

muscles tibialis anterior (TA) and medial gastrocnemius (MG), recorded bilaterally.22,54 

During backward sway, agonist TA is lengthened and antagonist MG is shortened. During 

forward sway, agonist MG is lengthened and atagonist TA is shortened. To minimize 

variability in electrode placement between pretest and posttest silver/silver chloride disc 

electrodes were placed at 2-cm interelectrode distance according to standard EMG electrode 

placement guidelines19,55 by the same experimenter at each assessment. EMG records from 

each trial were normalized to the maximum value observed during each assessment after 

averaging across similar trials and across 50 ms bins.

Before statistical analysis, computed CoM displacement signals in the anterior-posterior 

direction and normalized EMG signals from each recorded muscle were averaged across 

similar trials for each participant at each assessment. The peak of each average CoM 

displacement signal was calculated. Onset and offset times of each average EMG signal 

were calculated with a computer program and corrected as necessary (14 records, ≈11%). 

For each average EMG signal, the first sample within a window between 80 ms and 300 ms 

after perturbation onset to cross a threshold of M + 6 × SD was first identified. Onset time 

was then determined as the last sample prior to the threshold-crossing sample for which the 

preceding 10 samples were all below M + 2 × SD. Offset time was determined as the first 

sample subsequent to the threshold-crossing sample for which the following 10 samples 

were all below M + 2 × SD. To avoid including responses to platform deceleration,54 offset 

times were truncated to the earlier of 280 ms after EMG onset or 450 ms after perturbation 

onset. The duration of each average EMG signal was calculated as offset time - onset time. 

The magnitude of each average EMG signal was calculated by averaging over a window 80–

450 ms after perturbation onset after removing background level.18,20 After all processing, 

kinematic and electromyographic data of each participant were summarized as a dataset 

containing 13 variables (CoM displacement, one variable, and 3 variables [Onset, Duration, 

and Magnitude] for each of the 4 muscles analyzed [TA from the left and right leg and MG 

from the left and right leg], for a total of 13 variables) for each level of the independent 

variables Time [pretest, posttest], Perturbation Direction [forward, backward], and 

Perturbation Level [3, 4]).
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Sample size

Sample size for the intervention (n=26) was selected to achieve effect sizes in clinical 

balance and gait measures comparable to a previous 2-week intervention (conducted with 

n=14)17 after allowing for ~40% attrition given the longer term of the intervention. Sample 

size for the group of participants allocated to postural response testing (n=10) was selected 

based on previous literature demonstrating the feasibility of identifying effects of interest in 

electromyographic and kinematic measurements of individuals with PD in cross-sectional56 

and longitudinal57 studies.

Statistical Analyses

Descriptive analyses and effect sizes—Descriptive statistics were calculated for all 

outcomes at each timepoint. Magnitude effect sizes representing changes from pretest to 

posttest was calculated with Cohen’s d,58 which describes the difference in means scaled to 

units of standard deviation, in this case taken from pretest.

Sampling and stability of clinical measures at pretest—To test that participants 

allocated to perturbation response testing represented an unbiased sample of the study 

population, baseline demographic characteristics were compared between perturbation 

response participants and the rest of the study participants with 1-way Analyses of Variance 

(ANOVAs) (Group [allocation to perturbation response testing vs. non-allocation to 

perturbation response testing]) or Kruskal-Wallis 1-way ANOVAs on ranks for 

nonparametric data. To establish test-retest stability of clinical balance and gait measures in 

this cohort, intra-class correlation coefficients were calculated between one-month pretest 

(screening) and pretest. Intra-class correlation coefficient values > 0.75 and > 0.40 were 

characterized as “excellent” and “fair to good,” respectively.

Statistical analyses of changes in clinical measures across pretest, posttest, 
and follow-up—To investigate the efficacy of the intervention in improving clinical 

measures of balance and gait, repeated measures ANOVAs (Time [pretest, posttest, follow-

up]), with Holms-Sidak post hoc tests determined significance of changes in clinical 

measures between pretest, posttest, and follow-up. Greenhouse-Geisser corrections to 

degrees of freedom were applied when sphericity was violated as per Mauchly’s Test. The 

last observation was carried forward in cases of missing data. Additional paired t-tests on 

individual UPDRS-III items and on average tremor score (the average of the scores of items 

III.20 and III.21; cf.59) were performed post-hoc to identify items that changed from pretest 

to posttest.

Statistical analyses of changes in postural responses from pretest to posttest
—To investigate the potential efficacy of the intervention in altering CoM displacement and 

muscle activity during perturbation responses, separate repeated measures ANOVAs (Time 

[pretest, posttest], with Perturbation Level [3, 4] included as a covariate) were initially run. 

Perturbation level was entered as a covariate in these analyses to control for the potential 

effects of perturbation level on CoM displacement and muscle activity demonstrated in 

previous studies.19,27 No statistical testing of differences between perturbation level 3 and 4 

was performed. These ANOVAs determined the significance of changes in peak CoM 
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displacement and in onset time, duration, and magnitude of each recorded muscle (TA-L, 

TA-R, MG-L, MG-R) in each perturbation direction.

Changes in postural responses based on pooled EMG data—Secondary 

univariate ANOVAs were also conducted on EMG variables onset time, duration, and 

magnitude after recoding data from individual muscles as either TA or MG, or as agonist or 

antagonist. In these analyses: 1) Data from TA-L and TA-R were pooled for analysis as 

“TA,” and data from MG-L and MG-R were pooled for analysis as “MG.” Secondary 

ANOVAs (Time [pretest, posttest] × Perturbation Level [3, 4] × Participant [1–9]; with 

Participant as a nested factor within Perturbation Level, and a Time × Participant interaction 

term) were then conducted to determine significance of changes in onset time, duration, and 

magnitude of TA and MG in each perturbation direction. 2) Data from MG during forward 

CoM perturbations and from TA during backward CoM perturbations were pooled for 

analysis as “agonists,” and data from TA during forward CoM perturbations and from MG 

during backward CoM perturbations were pooled for analysis as “antagonists.” Secondary 

ANOVAs (Time [pretest, posttest] × Perturbation Level [3, 4] × Participant [1–9]; with 

Participant as a nested factor within Perturbation Level, and a Time × Participant interaction 

term) were then conducted to determine significance of changes in onset time, duration, and 

magnitude of agonists and antagonists.

Associations between changes in clinical measures and changes in postural 
responses—To test whether improvements in clinical measures of balance function after 

Adapted Tango were associated with alterations in perturbation responses, and to detect 

possible evidence of efficacy of the intervention in altering CoM displacement and muscle 

activity during perturbation responses, associations between changes on BBS, FAB, and 

DGI and changes in perturbation response measures were determined with Spearman’s 

correlation coefficients in a complete-case analysis. Statistical analyses were performed 

using IBM SPSS 20 software and SAS University Edition. All tests were performed with 2 

tails and considered significant at P < 0.05. Summary statistics are reported as M ± SD 
unless otherwise noted.

RESULTS

Participant flow and recruitment

A flow-chart of participants through the study is presented in Figure 1. Twenty-six 

participants were recruited for the trial. Of these, 4 withdrew before pretest assessment 

(family/health issues, n=1; lack of interest, n=1; loss of contact/unknown, n=1). These 

individuals were excluded from analyses of outcome measures as no data were available, but 

they were included in estimates of adherence to the intervention. Of the remaining 22 

participants, 2 participants withdrew before posttest (family/health issues, n=1; scheduling 

difficulties, n=1); all others completed all planned assessments. Adherence to the 

intervention exceeded previously expected targets (20/26 observed vs. 15/26 expected), 

providing evidence that 3-week high volume Adapted Tango is feasible. Overall adherence 

to the intervention was 77%, with 95% confidence interval (61%, 93%). Adherence was 

higher among those who attended at least 1 class (91% [95% CI 78%–100%]). Posttest and 
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one-month post data were unavailable for participants who withdrew before posttest (n=2). 

One-month post data were not collected for those (n=7) allocated to one-month pretest 

(screening) assessments. Participants who completed at least one clinical assessment were 

invited to participate in postural response assessments until the Adapted Tango intervention 

began and enrollment for additional testing was closed. Nine participants were enrolled in 

postural response testing. Demographic characteristics of the 22 participants included in the 

final analysis (68% female, 65.4 ± 12.8 years) are summarized in Table 1. Detailed 

characteristics of the 9 participants allocated to additional postural response testing are 

summarized in Table 2.

During the study no adverse events or deviations from the intervention were observed. Two 

small deviations from the perturbation response assessment protocol occurred. In one 

participant (PR1) self-selected stance width was not correctly enforced. This participant 

used a 9.5 cm wider stance width at posttest. These data were retained in analyses as stance 

width minimally affects forward and backward perturbations.18 Due to equipment failure, 

only MG recorded from the right leg (MG-R) was available at posttest for participants PR4, 

PR5, and PR6. Adapted Tango classes and all assessments were conducted from August 

through October 2011.

Baseline data

At pretest, no significant effects of Group (allocated to perturbation response testing vs. not 

allocated to perturbation response testing) were identified in age, sex, height, weight, disease 

duration, UPDRS-III, Hoehn and Yahr stage, or dyskinesia score. Correlational analyses 

showed very strong correlations between FAB and BBS (r=0.81; P <0.001) and between 

FAB and DGI (r=0.87; P<0.001). Test-retest analyses demonstrated that clinical measures 

were stable over the month before treatment, with “excellent” intra-class correlation 

coefficient values (>0.75) obtained for BBS (0.93), DGI (0.90), FR (0.79), ABC (0.94), and 

FOG (0.88) and intra-class correlation coefficients characterized as “fair to good” (>0.4) 

obtained for 6MWT (0.60).

Clinical measures

Descriptive statistics, change scores, and effect sizes for all clinical measures are tabulated 

in Table 3. At posttest, scores increased on BBS, (P<0.01), FAB (P<0.001), and DGI 

(P=0.01) (Figure 2). All significant increases at posttest remained significant at one-month 

post testing in post-hoc tests (BBS, P<0.001, FAB, P<0.001, DGI, P=0.04). Participants also 

increased preferred and fast cadence (preferred, P<0.01; fast, P=0.03) and exhibited 

decreased UPDRS-III (motor subscale) total scores (P<0.01) from pretest to follow-up. 

Paired t-tests performed post-hoc on individual UPDRS-III items identified significant 

improvements on postural stability (item III.30; 0.95±0.58, pretest, vs. 0.60±0.68, posttest, 

M±SD, P=0.03), and speech (item III.1; 1.18±0.73, pretest vs. 1.00±0.79, posttest; P=0.02). 

No changes were observed on 6MWT (P=0.11), FR (P=0.48), ABC (P=0.22), FOG 

(P=0.38), gait speed (preferred, P=0.69; fast, P=0.18), Jump (P=0.06) or TUG (P=0.30).
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Postural responses

Changes in postural responses from pretest to posttest—Descriptive statistics 

and effect sizes for kinematic and individual EMG measures are tabulated in Table 4. At 

posttest, CoM displacement was reduced during forward CoM perturbations (P=0.03) and 

unchanged during backward CoM perturbations (P=0.39) (Figure 3). Initial analyses of 

individual muscles revealed significant reductions in TA-L magnitude (P=0.02) and MG-R 

magnitude (P=0.01) during forward CoM perturbations and no statistically significant 

changes in onset, duration, or magnitude of any individual muscles during backward CoM 

perturbations.

Secondary analyses using pooled EMG data—Descriptive statistics and effect sizes 

for pooled EMG measures are tabulated in Table 5. Secondary analyses of EMG data pooled 

across legs revealed significant delays in TA onset time (forward CoM perturbations, 

P=0.04; backward, P=0.03), TA duration (forward, P=0.02), and MG onset time (backward, 

P<0.01). Secondary analyses of EMG data pooled across legs and across perturbation 

directions revealed significant delays in antagonist onset time (27 ms; P=0.02), agonist onset 

time (10 ms, P<0.05), and a significant reduction in antagonist duration (56 ms, ≈39%, 

P=0.02).

Associations between clinical changes and changes in postural perturbations

Significant correlations were identified between reductions in forward CoM displacement 

and increased BBS scores (rho =−0.68; P=0.04) and DGI (rho=−0.75; P=0.03). No 

significant correlations were identified between increased BBS scores and delayed 

antagonist onset times (rho=0.78; P=0.07), between reductions in forward CoM 

displacement and increased FAB scores (rho=−0.49; P=0.19), nor between changes in 

backward CoM displacement and improvements in BBS (rho=0.37; P=0.33), FAB 

(rho=0.52; P=0.15), or DGI (rho=0.21; P=0.62).

DISCUSSION

The low attrition observed here (2/22 participants who began the intervention) and 

improvements observed in these individuals with mild-moderate PD on clinical measures of 

balance, gait, and disease severity after 3-week, high volume Adapted Tango demonstrate 

the program volume is feasible and may have efficacy comparable to longer programs with 

similar total doses. This pilot study is the first to measure automatic postural responses 

before and after Adapted Tango. In convenience sample of the study participants, we 

observed reductions in forward CoM displacement and changes in some measures of EMG 

magnitude and timing after Adapted Tango. Based on this, we consider a subsequent 

randomized Adapted Tango trial with kinematic and electromyographic outcome measures 

to be feasible and justified.

Benefits and feasibility of high volume exercise in persons with PD

High volume exercise (> 180 minutes/week) is necessary to improve older adults’ gait 

speed.15 We observed overall adherence to the high volume intervention of 77%, with 95% 

confidence interval 61%–93%, achieving the stated primary feasibility criterion of 60% and 
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demonstrating that 3-week, high volume Adapted Tango is feasible in this population. After 

the intervention, we observed improvements in measures of disease severity and balance 

(changes: UPDRS, 2.9; BBS, 3.8) comparable to a previous 2-week high volume Adapted 

Tango trial (UPDRS, 4.6; BBS 2.8)17 and to two previous longer duration trials (i.e., 20 

hours over 13 weeks: UPDRS, 1.6; BBS, 3.9; 20 hours over 10 weeks: BBS, 3.6).7,10 

Minimal clinically important differences (MCID) have not been established for many of the 

outcome measures used in this population. However, clinically significant changes were 

observed in UPDRS-III (2.9 points vs. MCID 2.560) and marginally-significant changes 

were observed in DGI (1.8 points vs. MCID 1.9 in community-dwelling older adults61). 

While these results ostensibly support the benefits of the program, it is important to be 

extremely cautious in any interpretation. The results of this pilot study will require 

replication with a more appropriately powered sample size. Although the participants 

exhibited a 3.4 point improvement on BBS, this change is below the MCID of 7 points 

established in older adults with balance impairments62 and also below the Minimal 

Detectable Change (MDC) of 5 points established in individuals with PD. This cohort was 

relatively higher functioning than the reference population for the MDCs determined for the 

BBS in PD (49.3 ± 6.4 vs. 42 ± 11.2); therefore, there may have been some ceiling effects 

on this measure. Improvements were observed on the more challenging but lesser used FAB, 

and small improvements were observed in the postural stability UPDRS-III item (0.35 

points, comparable to the difference observed in this item between the OFF and ON 

medication states63). However, clearly a similar cohort would need to be recruited and 

examined in comparison to a control group to make definitive conclusions about the efficacy 

of this high volume but short term dose of Adapted Tango. Vigorous ongoing exercise that 

increases heart rate and oxygen uptake could be neuroprotective for individuals with PD;64 

however, high volume/low intensity exercise therapy may be superior to low volume/high 

intensity exercise therapy for changes in gait speed.14 We noted sustained gains 1 month 

after the high volume Adapted Tango treatment ended, consistent with prior work 

demonstrating gains maintained over one month,7 and three months,12 after intervention 

cessation. The 3-week Adapted Tango protocol may be useful in crossover designs that can 

be completed in a short overall time frame, which is beneficial for academic research studies 

that rely on student volunteer personnel over the course of an academic semester.

Electromyographic and kinematic measures from support-surface perturbation as 
rehabilitation outcome measures

Based on the observed reductions in forward CoM displacement and changes in antagonist 

onset and duration, we consider a subsequent randomized trial of Adapted Tango with 

kinematic and electromyographic outcome measures to be feasible and justified. Given the 

limited sample size, the observed changes in muscle activity could be attributed to chance in 

many cases. However, average effect sizes observed in individual muscle analyses were 

moderate (average effect size 0.50), and generally comparable to those observed in UPDRS-

III (0.47), BBS (0.59), FAB (0.56), and DGI (0.53). Particularly because effect sizes are less 

susceptible to the influence of small sample sizes than P-values, we interpret these results as 

evidence that electromyographic and kinematic measures would be feasible and potentially 

useful when applied in a larger sample in this type of intervention. Associations between 

changes in clinical measures observed after the intervention and changes in kinematic 
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measures provided additional evidence that laboratory-assessed balance measures are 

feasible as objective rehabilitative outcomes for Adapted Tango.

Generalizability

The feasibility results obtained here appear generalizable to subsequent controlled trials 

without substantial modifications to the basic protocol. We anticipate that a subsequent 

randomized trial would test the hypothesis that CoM displacement would be reduced and 

automatic postural response onset latency would be delayed from pretest to posttest after 

Adapted Tango, compared to standard care. The following modifications could improve the 

precision of subsequent studies. A reduced number of clinical outcomes, all collected at the 

same visit as postural response testing, would improve the precision of correlational 

analyses and reduce the potential for fatigue effects. The postural stability UPDRS item has 

known limitations in discriminating fallers from non-fallers63 and lower inter-rater reliability 

than tests including the Push and Release test.43 Balance outcome measures should be 

evaluated carefully to improve external validity and to reduce participant burden. At posttest, 

we did not observe reductions in backward CoM displacement, despite reductions in forward 

CoM displacement, altered antagonist activity, and improved postural stability as measured 

by the UPDRS. This may reflect the increased difficulty and fewer biomechanical strategies 

available to recover balance when falling backward in individuals with PD, who are 

particularly unstable during backward sway.20,65 Overall, the number of trials delivered in 

which a foot, heel, or toe lift or arm flailing occurred was reduced from 31% at pretest to 

23% at posttest, suggesting that perturbations in both directions were less challenging at 

posttest, possibly due to altered postural strategies that were not captured in our analyses of 

CoM displacement. A more complete kinematic and kinetic dataset including variables such 

as center of pressure and stability margin65 should be collected in order to better 

characterize postural strategies during perturbation responses and investigate this 

asymmetric response. As posterior perturbation responses and the UPDRS postural stability 

item are correlated in the practically-defined 12-hour OFF,65 but not in the ON,66 

medication state, testing should be performed in the practically-defined 12-hour OFF state to 

improve the precision of correlational analyses66 and the discriminatory ability of clinical 

measures.63,67

Limitations

This pilot study has several limitations that should be addressed in subsequent controlled 

trials. Caution should be used in interpreting these results, given the reported small effect 

sizes of most measures, the potential for Type II error and the lack of a control group. 

Further, the small sample size left the study underpowered. Although we provide test-retest 

reliability findings that demonstrate stability of clinical mobility measures within these 

individuals with PD, the absence of a parallel control group for electromyographic and 

kinematic measures prevents us from attributing changes in these measures to the effects of 

the intervention. The study used a large number of outcomes, which increases the likelihood 

of chance findings. In particular, a plausible mechanism for Adapted Tango in improving 

speech (UPDRS-III item 1) is unknown. PD is most often associated with hypokinetic 

dysarthria attributed to decreased range of motion in the speech mechanism.68 We observed 

improved preferred and fast cadence after the intervention, as well as improved speech – 
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these changes may reflect a common underlying mechanism. However, it is also possible 

that this unexpected finding is spurious, and should be interpreted with caution. The study 

also used a convenience sample of participants for postural response outcome measures. 

Although these participants did not differ in demographic measures from the other 

participants in the study, unknown selection biases limit the generalizability of these 

findings. Since the Adapted Tango classes represent a form of group exercise, in future 

studies it would be valuable to assess changes in measures of social participation.71

CONCLUSIONS

These results demonstrate that a 3-week, high volume Adapted Tango rehabilitative 

intervention is feasible for individuals with mild-moderate PD and that randomized Adapted 

Tango trials using laboratory-assessed measures of postural responses are feasible and 

justified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram depicting flow of participants through the study.

McKay et al. Page 18

J Neurol Phys Ther. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Clinical measures of balance and gait before and after the intervention.

Abbreviations: UPDRS, Unified Parkinson’s Disease Rating Scale, motor subscale III; BBS, 

Berg Balance Scale; FAB, Fullerton Advanced Balance Scale; DGI, Dynamic Gait Index. 

Bars and error bars indicate M±SD. The last observation was carried forward in cases of 

missing data. All measures shown exhibited a main effect of time (P < 0.05) in repeated 

measures ANOVA. Asterisks (*) indicate significant differences from pretest determined 

with Holms-Sidak post hoc tests, P < 0.05.
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Figure 3. 
Examples of center of mass (CoM) displacement and muscle activity during automatic 

postural responses to forward (above) and backward (below) perturbations before and after 

the intervention. From left to right in each row, a cartoon describing perturbation direction, 

exemplar data of one participant at pretest and posttest, and group data across participants 

are shown. Shaded regions in exemplar data plots designate area under average EMG curves 

80 ms – 450 ms after perturbation onset. Note scale is reversed for antagonist muscles, and 

absolute CoM displacement is shown as positive for both perturbation directions. Bars and 

error bars in group data designate M ± SD. *P < 0.05, **P < 0.01; ANOVA.
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Table 1

Characteristics of participants in the 3-week high volume Adapted Tango rehabilitative intervention.

Variable All participants (n=22)

Participants allocated to receive 
perturbation response testing 

(n=9)

Participants not allocated to 
receive perturbation response 

testing (n=13) P-valuesa

Age, y (M±SD) 65.4 ± 12.8 68.0 ± 14.6 63.5 ± 11.7 0.46

Sex (n, %) 0.65

 Male 7, 32% 2, 22% 5, 38%

 Female 15, 68% 7, 78% 8, 62%

Height, m (M±SD) 1.72 ± 0.11 1.76 ± 0.07 1.68 ± 0.12 0.06

Weight, kg (M±SD) 74.3 ± 13.7 73.2 ± 11.4 75.0 ± 15.5 0.76

PD duration, y (M±SD) 6.1 ± 3.8 6.0 ± 3.9 6.2 ± 3.8 0.89

UPDRS III (M±SD) 30.4 ± 6.1 30.0 ± 4.7 30.6 ± 7.0 0.81

H & Y (n, %) 0.83

 Stage 1.5 1, 4% 0, 0% 1, 8%

 Stage 2 12, 55% 5, 56% 7, 54%

 Stage 2.5 4, 18% 1, 11% 3, 23%

 Stage 3 5, 23% 3, 33% 2, 15%

Dyskinesia score (M±SD) 1.8 ± 2.5b 2.1 ± 2.5c 1.6 ± 2.5d 0.65

Tremor score (M±SD) 0.4 ± 0.4 0.5 ± 0.7 0.3 ± 0.2 0.32

Abbreviations: PD, Parkinson’s disease; UPDRS III, Unified Parkinson’s Disease Rating Scale Motor Subscale III; H & Y, modified Hoehn and 
Yahr stage.

a
P-values are from independent-samples t-tests for continuous variables or Fisher’s exact tests for categorical variables comparing participants 

allocated to receive perturbation response testing to those not allocated to receive perturbation response testing.

b
n=19.

c
n=7.

d
n=12.
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