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The National Institute of Mental Health’s Research Domain

Criteria (RDoC) Initiative “calls for the development of new ways

of classifying psychopathology based on dimensions of observable

behavior.”Asaresultof thisambitious initiative, languagehasbeen

identified as an independent construct in the RDoCmatrix. In this

article, we frame language within an evolutionary and neuro-

psychological context and discuss some of the limitations to the

current measurements of language. Findings from genomics and

the neuroimaging of performance during language tasks are dis-

cussed in relation to serious mental illness and within the context

of caveats regarding measuring language. Indeed, the data collec-

tion and analysis methods employed to assay language have

been both aided and constrained by the available technologies,

methodologies, and conceptual definitions. Consequently, differ-

ent fields of language research show inconsistent definitions of

language that have become increasingly broad over time. Individ-

ually, theyhavealso shownsignificant improvements inconceptual

resolution, aswellas inexperimentalandanalytic techniques.More

recently, language research has embraced collaborations across

disciplines, notably neuroscience, cognitive science, and computa-

tional linguistics and has ultimately re-defined classical ideas of

language. As we move forward, the new models of language with

their remarkably multifaceted constructs force a re-examination

of the NIMH RDoC conceptualization of language and thus the

neuroscience and genetics underlying this concept.

� 2016 The Authors.American Journal ofMedical Genetics Part B: Neuropsychiatric

Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

The National Institute of Mental Health’s Research Domain Cri-

teria (henceforth RDoC) Initiative “calls for the development of
2016 The Authors. American Journal of Medical Genetics Part B: Neu
new ways of classifying psychopathology based on dimensions of

observable behavior” [Insel et al., 2010]. These dimensions are

meant to reflect relatively specific domains of functioning that can

be traced to a coherent mechanism across varying levels of human

organization (e.g., genetic, molecular, physiological, behavioral).

As a result of this ambitious initiative, “language” has been

identified as an independent construct in the RDoC matrix, under

theDomainCognitive Systems. Although constantly evolving, as of
ropsychiatric Genetics Published by Wiley Periodicals, Inc. 904
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late 2015, language is defined in the RDoC as “a system of shared

symbolic representations of the world, the self and abstract con-

cepts that supports thought and communication” [RDoC, 2015].

Language is measured across two broad “paradigms.” The first,

language production, includes “naming” which involves verbal

descriptions of visual depictions of events and states” and is often

coupled with “linguistic corpus-based analyses of language out-

put”. The second, language perception, includes both “on-line”

measures, which are based on responses (e.g., listening, reading, eye

movements) to verbal stimuli and “off-line” measures which

involve the ability to detect, distinguish, and answer questions

about verbal features. Indeed, the focus on language is well-

deserved as language is a feature common to many different types

of psychopathology, and can be affected in a myriad of ways.

Examples include reduced speech production (e.g., alogia in

schizophrenia or selective mutism in anxiety spectrum disorders),

a restricted range of expression (e.g., flattened affect or psycho-

motor retardation), deficits in receptive language abilities (e.g.,

literal interpretation of proverbs in autistic spectrum disorder).

Neuroimaging and genetic investigations of language in serious

mental illnesses (SMIs) are starting to generate results that are

tantalizing, although still in their infancy and require a standard-

ized framework to be most effective. For these reasons, we contend

that the advancement of a trans-diagnostic framework for under-

standing language in SMI is a critical step toward understanding

their pathophysiological mechanisms.

In reconceptualizing the RDoC framework, our first line of

argument suggests that a substantially more comprehensive and

multidisciplinary view of language is needed if an RDoC-like

construct is to be maximally useful in translational research of

clinical disorders that affect cortical functions including language.

Such a re-definition necessarily must be drawn from the linguistic,

speech, cognitive, and affective sciences, spanning basic articula-

tory processes to those involved in complicated social interactions,

and thus will openmore profitable avenues of research in genomics

and neuroscience. Our second line of argument is that only with a

reconceptualization of this language construct can we successfully

leverage emerging technologies and methodologies, such as those

involving automated computational linguistics or “big data,”

large-scale cohort studies (e.g., linguistic “biobanks”) where the

benefit of these assays can be capitalized on by clinical studies and

trials. A core premise of this article is that emerging technologies

can be applied to efficiently, objectively, and unobtrusively obtain

and evaluate language in both clinical and natural settings, and that

the application of these technologies can be a boon for RDoC

applications and, eventually, clinical assessment and treatment.

In this article, we ground language within an evolutionary and

neurobiological perspective, and then review potential limitations

to current measurements of language in studies of SMI. Next, we

discuss recent genetic and neuroimaging investigations of language

within the context of psychiatric disorders. In the final part of

the article, we outline ways to reconceptualize language within

the RDoC framework using state-of-the-art approaches including:

(i) novel modalities (e.g., acoustics, ultrasound), (ii) cutting-edge

computational approaches (e.g., machine learning, continuous

language representations such as latent semantic analysis), and

(iii) taking these approaches into large biobanking efforts.
LANGUAGE FROM AN EVOLUTIONARY AND
NEUROBIOLOGICAL PERSPECTIVE

The RDoC notion of language has its origin in a reductionist

framework, and this begs the question as to the purpose that

speech and language evolved to fulfil. Assuming their primary

purpose is to communicate meaning, a framework emerges that

includes a broad range of functions, such as fine-tuned motoric

gestures, episodic recollection, generativity, and lexical creativity.

Furthermore, comparative neurology promotes a case for humans’

incremental prefrontal expansion during evolution as reflecting

a prolonged selection favoring an alternative to the more

basic and highly effective correlative learning strategies, namely

combinatorial and hierarchical learning [Deacon, 1988, 1992a],

and it is assumed that symbolic acquisition was favored. Such a co-

evolutionary process of neurological adaptation and changes in

language use [Deacon, 1992b] is compelling and, regardless of

what any changes in language use may have been, the framework

nonetheless advocates that symbolic communication be included in

a definition of language. Clearly, this necessarily widens any defini-

tion of language to include specific forms of thinking and learning.

At the core of this argument are two issues. First any genetic

changes in the evolution of the human brain thatmade it capable of

language seems small (i.e., any difference between humans and

non-human primates in this matter seem relatively modest).

Second is the question of whether these evolutionary changes

resulted in any specific localization for such so-called language

functions. Traditionally, language has been associated with specific

regions of the brain, notably Broca andWernicke areas around the

planum temporale in the left cortical hemisphere, yet lesion studies

seem to suggest that the localization of language is somewhat

plastic and indeed the data on localization remains quite contro-

versial. When people recover language after a stroke other areas of

the brain reorganize as function returns. Although the changes are

focused in the homologous area of the other hemisphere and areas

close to the damaged area [Cramer, 2008], this pattern reflects only

the average changes and there is marked inter-individual variation

in brain reorganization after an insult that can include areas

anatomically far removed contributing to recovering function.

There are of course multiple levels to language and its evolution.

Protolinguistic processes have been located in the subcortical and

paleocortical brain and in the posterior neocortex (i.e., outside so-

called classic anterior parts such as Broca’s) [Van Lancker, 1987].

Furthermore, a compelling case has been made for emotional

vocalization within the limbic paleocortex being a legacy of

the phylogenetic transition from reptiles to mammals [MacLean,
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1988, 1990]. Moreover, it is widely assumed that the enlarged

perisylvian region of the left hemisphere is central to language

development and function [Geschwind and Galaburda, 1987], yet

this asymmetry was also present in our ancestors Homo erectus.

More problematic are findings that question whether the perisyl-

vian association cortices, in toto, even have consistent asymmetry

at all since whereas the planum temporale seems larger on the left,

the planum parietale (its counterpart in the ascending ramus of

the Sylvian fissure) is larger on the right ([Jancke et al., 1994]; for

commentary see Elvevåg and Weinberger, 1997]). Neuroanatomi-

cal changes that were distinctly more unique to humans may have

in fact been those within the prefrontal brain which opens the

possibility for both an upstream and downstream evolution and

ontogenesis of language and metacognition.

Following on the line of argument above, the centrality of

symbols in language begs the question of where they might be

“grounded.” Multiple possibilities emerge: first, these symbols

(e.g., semantics and syntax) may emerge from visual and inter-

modal perceptual experience (i.e., from below). Second, it may be

that semantics emerges from thinking (i.e., from above). Third, it is

possible that social interaction is the medium for the emergence of

semantic reference and syntax. Put differently, the cognitive system

exists in a linguistically structured environment and has to con-

form to the environmental demands by learning to use the symbols

and putting them together in suitable ways. Undoubtedly, this

requires recognizing and using patterns. At a general level such a

position is consistent with pluripotency of cortical computations,

in this case “that the specificity of functions depends on the

embedding of an area in the brain’s connectome rather than on

its intrinsic organization” [p. 329; Friederici and Singer, 2015].

Thus the computational principles employed in language are likely

based on those that are also evident in other cognitive processes.
CONCERNS WITH MEASURING LANGUAGE

Evolutionary and cognitive science perspectives notwithstanding,

language is affected in a broad range of brain disorders, necessitating

the development of tests of language that can be readily applied to

heterogeneous populations in clinical settings. To date, there exists a

large number of psychometrically “supported” measures of lan-

guage;measureswhich vary tremendously in scope aswell aswhether

they are based on self-report [e.g., Raine, 1991], clinician impression

[e.g., Andreasen, 1981], or objective performance [e.g., Gershon

et al., 2013]; though the latter predominates clinical practice. Col-

lectively, these measures have been instrumental for assessment and

rehabilitation of clinical dysfunction in disorders stemming from

neurodevelopmental or neurodegenerative conditions.

Not surprisingly, a large scientific literature exists supporting the

use of these clinical tests, which assess abilities such as verbal fluency;

spelling, reading, and writing skills; vocabulary; and receptive

listening skills.While fewof these testsweredeveloped tounderstand

SMIs per se, they have become the dominant method for under-

standing language in them. Verbal fluency, for example, which

requires the generation of words given a set of specific parameters,

has been the focus of several meta-analyses in schizophrenia [e.g.,

Bokat and Goldberg, 2003; Henry and Crawford, 2005a] and in

mooddisorders [e.g.,Henry andCrawford, 2005b;Bora et al., 2009].
From a psycholinguistic perspective, however, many compo-

nents of language are not well represented in current clinical tests,

and more importantly, from the extant literature. Indeed formal

tests of language phonetics, prosodics, syntax, and semantics

(beyond single word generation) are few and far between, except

for the specific assessment of speech and language disorders.

Consider further that major recent neuropsychological batteries

either specifically developed for, or commonly used in SMI pop-

ulations, exclusively measure language in terms of verbal fluency

[Randolph et al., 1998; Keefe et al., 2004; Nuechterlein and Green,

2006]. While measures of other language abilities exist, for exam-

ple, evaluating semantic aspects of language using the Thematic

Apperception Test or the Rorschach, their use is controversial and

normative data for this use has limited validity [e.g., Wood et al.,

2003]. Thus, relying on existing tests provides a grossly inadequate

view of language abilities or how we might measure them.

Moreover, many existing language tests have been designed to

yield reliablemeasures for an epochwhere results were based on the

clinician’s perception, and documented using available technology,

namely pen and paper. Therefore, many of the tests and metrics

that are employed today focus mostly on easily counted surface

phenomena. Modern technologies allow for much more sophisti-

cated measures of language. For example, when assessed by ear,

intonation can only be described subjectively, whereas objective

criteria, such as accuracy or reaction time, are overly simplistic. The

alternative assessment through computerized acoustic analysis, as

discussed below, allows acoustic features such as average pitch and

pitch range to be automatically and objectively extracted, and

described precisely [e.g., Jurafsky and Martin, 2008].

Beyond these concerns, it is also critical to consider that existing

measures fail to account for contextual factors. The notion that

language is a dynamic function that is dependent on a range of

contextual factors has been foundational for modern linguistics

and semiotics. Many situation-specific factors affect how people

use language to communicate, such as physical characteristics of

the communication environment (e.g., background noise), the

language used by the interlocutor [Pickering and Garrod, 2004],

social factors relevant to the communication [Trudgill, 2000], and

other idiographic factors. In addition, it is important to consider

cognitive factors, such as attentional resources for producing

speech while performing other functions (e.g., driving, walking)

in order to better represent a more ecologically-valid measure of

language. Speech also differs as a function of automatic speech

reception/production (e.g., counting from 1 to 10) versus more

resource-demanding speech (e.g., recounting specific childhood

autobiographical memories). Context of use intersects with all the

components of language described above. For example, irony

detection vis �a vis prosodic cues may fail due to problems on

the part of the listener with social cognition or cultural unfamil-

iarity. A speaker with depressionmay fail to make the phonetic and

prosodic adjustments that are required to be understood in a noisy

environment [Lombard speech, c.f. Garnier and Henrich, 2014].

Importantly, existing clinical measures control for the potential

impact of contextual variables by standardizing administration,

and hence, miss the very opportunity to evaluate how language

varies as a function of context. Moreover, the majority of extant

language research in SMI has been reliant on these standardized
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measures, and thus, has systematically neglected the role of context

in language. With these deficits in the state of current language

measurement in mind, we turn our attention to current genomic,

and then neuroimaging, investigations of language in SMI.
THE GENOMICS OF LANGUAGE

Despite impressive advances in genetics technology, themeasurable

genetic effects on various cognitive constructs, including language,

have thus far been modest. One limiting factor is the measurement

of the cognitive constructs themselves. Thus, there is anurgent need

for intermediate phenotypes that relate more directly to how genes

affect neural systems and behavior [Green et al., 2008]. The

approach of focusing on cognition as an intermediate phenotype

in neuropsychiatric research is quite compelling [Goldberg and

Weinberger, 2004; Meyer-Lindenberg and Weinberger, 2006;

Tan et al., 2008; but see Flint andMunafo, 2007]. The intermediate

phenotype can be expressed in unaffected close (generally first-

degree) relatives of SMI probands on cognitive tasks. For many

cognitive phenotypes the performance of close relatives is “inter-

mediate” between probands and healthy controls, indicating the

phenotype of interest is at least partially genetically influenced.

Importantly, such a research strategy is also advocated in the case

of neurodevelopmental language disorders [Bishop, 2009]. In the

quest to relate phenotype to genotype, a strong case has been

made to move away from categorizing the disorder based upon

clinical diagnosis to refining the cognitive phenotype [Newbury

et al., 2005], and this is a hallmark feature of the RDoC framework.

To illustrate, progress in research on neurodevelopmental language

disorders has been reported by focusing on phonological short-

termmemory, measured for example by nonword repetition. Such

an approach to the phenotype does not assume that discovery of

genetic relationships at this level (e.g., phonological short-term

memory) will indicate a gene for language, rather it reflects the

realization that language and communication are composed of

many building blocks which contribute in a quantitative fashion,

which is naturallymoderated bymultiple alleles and environmental

factors. In the case of phonological short-term memory, it is

arguably crucial in the acquisition of language [Gathercole and

Baddeley, 1990]. Although research explicating the genomics of

language in SMI is relatively modest, there exists evidence of

genetic constraints that govern global language abilities, notably

language acquisition and processing. Thus, any possible candidate

“language gene” (e.g., FOXP2 [Lai et al., 2001]) most probably

influences factors such as domain-general procedural systems

and genes that are downstream (e.g., CNTNAP2), the latter which

modulates phonological short-termmemory [Fisher, 2006; Vernes

et al., 2008; Whitehouse et al., 2011].

Following on from this reasoning, a compelling case has been

made for rule- and memory-based processes underlying language,

such that the processing of rule-governed knowledge (including

syntax) is assumed to recruit the procedural memory system rooted

in frontal/basal-ganglia circuits, whereas the processing of memo-

rized idiosyncratic knowledge (which includes “semantics”)

depends on temporal lobe regions involved in declarative memory

[Ullman, 2001, 2004]. This argument illustrates the complex and

intertwined nature of episodic memory and the semantic and
syntactic aspects of language. In sum, language abilities likely take

contribution froma range of geneticmechanisms, as is typical of any

complex trait. To explore this further, we consider language pro-

duction and perception separately in the following sections.

Genomics and Heritability of Language
Production
As mentioned previously, much of the existing research investigat-

ing the genetics of language has been dependent on relatively

circumscribed tasks that tap only basic processes (e.g., “naming”),

and thus are not likely to capture all or even most of the relevant

information that can be derived using more modern approaches.

Another limitation in these studies derives from themodest sample

sizes often employed by genetic investigations of language. How-

ever, with the advent ofmultiple very large-scale biobanking efforts

worldwide (e.g., UK Biobank [Collins, 2011], Generation Scotland

[Smith et al., 2006]), we argue that state-of-the-art approaches now

have an unprecedented opportunity to be leveraged with adequate

sample sizes to investigate the genetic architecture of language in

individuals with and without SMI.

Verbal fluency tasks have been the mainstay of language pro-

duction tasks in studying the genomics of SMIs. The reason for the

focus on these tasks is that they are simple to administer and so have

been widely used. Subsequently, verbal fluency performance has

been shown to be heritable [e.g., Vandenberg, 1962; Bratko, 1996;

Aukes et al., 2008]. In bipolar disorder, individuals currently in

manic or mixed episodes who carried the catechol-O-methyltrans-

ferase (COMT) Val158Met G (Met) allele showed improved verbal

fluency performance [Soeiro-de-Souza et al., 2012]. The COMT

gene has been associated with numerous cognitive processes,

including intelligence, executive functioning, working memory,

and attention [for a review, see Dickinson and Elvevåg, 2009]. In
patients with schizophrenia and controls, single nucleotide poly-

morphisms (SNPs) in the genome-wide significant [Schizophrenia

Working Group of the Psychiatric Genomics Consortium,

2014] gene TCF4 were significantly associated with verbal fluency

(again, the number of words produced; individual group compar-

isons) [Wirgenes et al., 2012].

Genomics and Heritability of Language
Perception
Perception of language in SMI comprises a broad range of abilities,

including judgements about semantic, syntactic, prosodic, and

lexical factors of speech as well as social cognition. Deficits in

many of these abilities have been well documented in a range of

SMIs [e.g., Lavoie et al., 2013], and the few studies that exist

often suffer from small sample sizes. In this section, we have

expanded the discussion to also include a review of rarer disorders

with highly penetrant mutations that effect language perception

and comprehension.

Thus far, very few studies have been performed to examine the

heritability or genetics of language perception, and those that do

focus on relatively constrained facets of language, often exclusively

on non-verbal emotion or affect recognition. In general, existing

studies support the notion that social perception and emotion
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recognition are poorer in biological first-degree relatives of patients

with SMIs. A recent meta-analysis of 29 studies found moderate

effect sizes in healthy first-degree family members of patients with

schizophrenia across a range of social cognition tasks, notably

tapping mentalizing, emotional processing, and social perception

abilities [Lavoie et al., 2013]. Allott et al. [2015] reported deficits in

recognition of anger and surprise in first-episode schizophrenia

patients and a similar deficit in healthy first degree relatives of

patients versus controls. However, as in many studies employing

novel language-related phenotypes, the sample sizes were relatively

small (N patients¼ 30, N first-degree relatives¼ 27, N controls

¼ 30). A similar study design comparing autism spectrum disorder

probands (N¼ 90), their unaffected siblings (N¼ 79), and healthy

controls (N¼ 139) reported that autism spectrum disorder pro-

bands showed significant deficits in recognition of affective pros-

ody versus healthy controls [Oerlemans et al., 2014]. Similar to

results of the study of schizophrenia probands, siblings of autism

spectrum disorder probands performed less well in the detection of

emotional prosody versus controls, supporting the notion that

nonverbal language deficits may be an intermediate phenotype for

these SMIs. Ronald et al. [2005] reported high heritability in

individuals with autism spectrum disorders in social cognition,

with h2 estimated at>0.6. Irony perception and comprehension, a

component of social cognition and of meta-cognition more gen-

erally, is an important social skill that aids understanding between

people which is often less fine-tuned in patients with SMIs and

autism-spectrum disorders Emerging evidence is suggesting that

this ability is modestly heritable [h2¼ 0.27; McGrath et al., 2009].

Outside of SMIs, other, generally rare, disorders with highly

penetrant mutations show deficits in speech and language. Wil-

liams syndrome is characterized by heart disease, failure to thrive,

speech and language delay, and other cognitive deficiencies, but

these individuals show exaggerated social behavior [Mervis and

Shelley, 2011]. Williams syndrome is caused by a 7q11.23 deletion.

Individuals with Williams syndrome show relatively preserved

speech and facial recognition versus individuals with SMIs such

as autism [Bellugi et al., 1999], making this syndrome of potential

importance in disentangling the genetics of language delay versus

understanding of social language processes.

Worthey et al. [2013] studied childhood apraxia of speech using

an auditory perception task of verbal and nonverbal aspects of

linguistic stimuli and found that poorer performance was observed

in those carrying a potentially deleterious variant in one or two of

the following genes: FOXP1, CNTNAP2, ATP13A4, CNTNAP1,

KIAA0319, and SETX. Fronto-temporal lobar degeneration and

progressive non-fluent aphasia are commonly associated with

mutations in C9orf72. Rohrer [2010] reported that patients with

non-fluent aphasia performed significantly poorer than healthy

controls on tests of acoustic (pitch, intensity, and duration of

sound), linguistic (stress, e.g., “black and blue;” and intonation,

e.g., “apple” versus “apple?”), and emotional prosody (recordings

of neutral phrases like “one hundred and thirty-seven” read out

with different intonations to convey six basic emotions).

The brain degeneration condition in Huntington’s disease is

caused bymutations in theHuntingtin gene. Patients with this gene

who have not developed signs of overt neurodegeneration show

decreased performance on prosody comprehension tasks with
performance comparable to that of stroke patients [Speedie et al.,

1990]. Similarly,Vogel et al. [2012] collected speech samples from30

Huntingtin gene mutation carriers and 15 unrelated healthy con-

trols. Analyses of the acoustic properties showed that carriers spoke

significantly more slowly than controls, with longer pauses between

and within phrases and took longer to pronounce words.
Ways Forward: Genomics of Naturalistic
Language and Computational Approaches
Technological andmethodological advances in objective analysis of

language afford more sophisticated and ecologically valid tools for

understanding the genetics of language. These advances will be

discussed later in this article, but it is worth noting they are

beginning to be applied to genomics research. Of note, using novel

speech intermediate phenotypes derived from Latent Semantic

Analysis (LSA) of performance on a category fluency task, Nic-

odemus et al. [2014a] showed that a measure of the unusualness of

speech (the average vector length) produced in a one-minute

response to the cue “animal,” was significantly associated with a

functional SNP in the gene Disrupted in Schizophrenia 1 (DISC1)

in both male probands with schizophrenia and in male controls.

Individuals who were minor allele carriers at rs121133766 pro-

duced significantly less complex terms in response to the cue

“animal” than homozygous major allele genotype carriers. Al-

though this is an intriguing initial investigation into the use of

computational language phenotypes, these results are preliminary,

and these computational approaches have not yet been shown to be

heritable nor have they been studied at the level of GWAS or

exome/whole-genome sequencing, although we argue this is the

logical next step in the study of the genomics of language.
NEUROIMAGING OF LANGUAGE

Neuroimaging is another methodology that provides insights into

the neurobiological mechanisms supporting language dysfunc-

tions in SMI, and has a large literature involving language tasks.

Investigations involving a variety of paradigms have been con-

ducted using a broad range of tasks, including traditional verbal

fluency (either overt or covert) tasks, lexical decision, semantic

processing, speech comprehension and perception, prosody, para-

digms exploring the understanding irony and metaphors, and

more recently naturalistic language processes. In this section, we

focus on functional magnetic resonance imaging (fMRI) as the

dominant modality in the study of language in SMIs, though of

course other neuroimaging techniques are important. The litera-

ture using fMRI alone is voluminous and hence cannot exhaus-

tively be reviewed here. Rather, our goal is to provide a flavor of the

types of tasks and methods that have been used, with a focus on

their limitations when paired with neuroimaging as well as the

evolution ofmore naturalistic and ecologically valid paradigms and

analyses employing computational linguistic analysis approaches.
Neuroimaging of Language Production
Due in large part to restrictions on physical movement (and

speaking) within the neuroimaging scanner, research involving
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language production (see below for elaboration), particularly

involving extended or “natural” speech has been limited. Verbal

fluency is the most commonly used language production task in

psychiatric neuroimaging studies, and is consistently associated

with activation in the left middle and inferior frontal gyri, the

cingulate gyrus, as well as the right cerebellum and the temper-

oparietal cortex [Stuss et al., 1998; Fu et al., 2002]. A recent meta-

analysis indicated both phonemic and semantic verbal fluency tasks

activated these regions, but there was potential spatial separation in

frontal sub-regions (left inferior frontal gyrus) depending on

which type of verbal fluency task was performed [Wagner et al.,

2014]. Although there is a degree of inconsistency, in patient

populations, particularly schizophrenia, there is generally reported

to be additional recruitment of brain regions in order to establish

performance at a similar level to healthy controls, usually involving

right-sided homologs of what are considered left lateralized lan-

guage regions [Costafreda et al., 2011]. Typically, similar findings

are also reported in individuals at high familial risk [Li et al.,

2007a] as well as in bipolar disorder, although to a lesser degree

than in schizophrenia [Costafreda et al., 2011].
Neuroimaging of Language Perception
A broad range of language perception and comprehension abilities

in SMI have been examined. For example, a relatively large

literature focusing on language perception of semantic and lexical

features at the “word” level has emerged. Of note, studies involving

discrimination between word and non-word stimuli [i.e., lexical

decision tasks; e.g., Li et al., 2007b; Natsubori et al., 2014; Sass et al.,

2014a,b], are common. In healthy participants, such tasks have

consistently shown stronger word than non-word activity in

widespread left lateralized regions, and greater non-word activity

associated with inferior frontal regions [Natsubori et al., 2014].

Althoughno unequivocal consensus of findings exists, typically this

leftward lateralization of brain activity related to lexical decision

and speech processing has been reported to be significantly reduced

in patients with schizophrenia compared to controls [Sommer

et al., 2001, 2003; Ngan et al., 2003].

Affective perception involving language have also been exam-

ined [Mitchell et al., 2004; Eigsti et al., 2012]. As with many

emotion paradigms, the processing of the emotional content is

indirect, where participants are asked to make some judgement

about the content of the speech and not explicitly requested to

attend to the affective component. These types of task, like other

language-based paradigms, have not generated a coherent pattern

of deficits in SMI populations. However, these studies have indi-

cated an increased recruitment of higher-order cognitive regions in

the processing of emotional prosody in autism [Eigsti et al., 2012],

as well as decreased fronto-temporal connectivity, and increased

right lateralization in schizophrenia [Mitchell et al., 2004; Leitman

et al., 2011].

The neural bases of higher order language perception abilities

have also been examined. For example, linguistic irony, which is a

metacognitive and social cognitive function, is reported to be

disrupted inmany psychiatric conditions, including schizophrenia

and autism [Rapp et al., 2010; Rapp et al., 2013; Varga et al., 2013].

These studies have indicated involvement of posterior medial
prefrontal and right temporal regions in the defective irony com-

prehension in schizophrenia, together with an association between

activation in these regions and schizotypal personality traits [Rapp

et al., 2013].

Limitations of Neuroimaging Methodologies in
the Study of Language
A discussion of the use of neuroimaging, particularly functional

magnetic resonance imaging (fMRI) in the study of linguistic

processing in SMI, would not be complete without some mention

of the difficulties and limitations of such paradigms within the

scanner environment. As mentioned above, one of the main

problems with neuroimaging is the need to minimize movement

during the experiment. The generation of speech inside the scanner

creates motion artifacts and susceptibility changes in and around

the vocal cavity which can fundamentally confound analysis.

Several methods have been employed to overcome these issues

including the internal generation/articulation of responses [Curtis

et al., 1998; Curtis et al., 2001; Boksman et al., 2005; Takami et al.,

2007], or the use of continuous paradigmswhere individuals have a

set time period to generate as many words as possible [Weiss et al.,

2004; Backes et al., 2014]. The inherent problem with both

paced and continuous paradigms is the inability to monitor the

behavioral responses of the participant within the scanner. A

number of functional neuroimaging paradigms havemore recently

utilized techniques such as sparse temporal sampling or clustered

volume acquisition, that allow for overt response generation

between periods of image acquisition hence enabling ongoing

monitoring of behavioral responses [Fu et al., 2005; Curtis

et al., 2007; John et al., 2011; Allen et al., 2012; Backes et al.,

2014]. Other methodological techniques have been employed to

overcome these difficulties at both the data collection and analyses

levels [Crosson et al., 2007].

Another important caveat to functional neuroimaging is that the

results are based on the premise of cognitive subtraction. The

measured activation is a representation of the relative differences in

brain activity between two or more brain states elicited by the task

and therefore dependent on the intricacies of not only the task but

also “baseline” conditions. Individual differences in default net-

work activation, and their relatively importance to language func-

tions, have yet to be well understood. Hence, language paradigms,

falling into discrete categories as defined by psychological con-

structs, should be interpreted cautiously as to whether the sub-

tracted component truly isolates the discrete function of interest.

In addition, performance matching of patient populations to

comparison groups is another consideration for the neuroimaging

literature, conducted in order to interpret findings as relating to

disease-specific differences in neurobiology rather than simple

behavioral disengagement from the task. Fedorenko et al.

[2012] have further argued that the lack of consistency between

language studies may also be due to differences in anatomical and

functional specialization among individuals and that conventional

analysis methods may actually hinder knowledge about the func-

tional architecture of the language system. Furthermore, in patient

populations, the fundamentals of functional specialization fre-

quently observed in healthy individuals may be less applicable.
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Ways Forward: Neuroimaging of Naturalistic
Language and Computational Approaches

As with genomics, technological and methodological advances in

objective analysis of language have afforded unique opportunities

for neuroimaging of language (discussed later). These advances are

beginning to be seen in some recent studies. For example, a recent

study examined the relationship of computationally derived se-

mantic coherence scores from free discourse generated outside of

the scanner to activation during awordmonitoring task performed

inside the scanner [Tagamets et al., 2014]. While coherence scores

from free discourse in healthy individuals were related to executive

function regions, the coherence scores in patients with schizophre-

nia were related to auditory and visual regions, particularly supe-

rior/middle temporal cortex. Of course, the limitation of this study

is that these two correlatedmeasures were acquired at two different

time points and using two different tasks (free speech versus task

performance on a simple cognitive task). Beyond the use of

computational methods to understand language, this study is

important in that it focused on language discourse, which is an

inherently more ecologically valid method of examining language

production compared to verbal fluency tasks.

Examples of using ecologically valid methods for understanding

language perception are many. Of note, there are an increasing

number of studies exploring the brain’s typical functional

responses to continuous, naturalistic, and dynamic natural stimuli,

including speech [e.g., Silbert et al., 2014; Fang et al., 2015].

Although considered more ecologically valid in comparison to

traditional focused task based methods, this type of approach has

created methodological challenges including the modelling of the

stream of external stimuli and the corresponding brain responses.

One such study used narrative shifts in story listening as the cue to

examine the corresponding neural responses and reported the

involvement of the precuneus and posterior cingulate in updating

mental story representation [Whitney et al., 2009]. Silbert et al.

[2014] measured activation during the telling of a rehearsed real-

world narrative within the scanner, and the audio playback of the

original story to the listener, thus capturing both production and

comprehension components of speech. The data indicated that

speech production recruits an extensive bilateral network of lin-

guistic and extralinguistic brain areas, in line with current con-

ceptualizations of the involvement of widespread networks in

these processes. In another example, Sabb et al. [2010] attempted

to predict symptomatic and functional outcome in adolescents

at high risk for psychosis using a naturalistic task to assess

the ability to comprehend discourse. The task here involved

evaluating question and answer pairs based on either the topic

and or the semantic logic of the sentence [Sabb et al., 2010]. The at-

risk participants demonstrated increased neural activity in lan-

guage-associated brain regions, proposing finding interpreted as

indicative of neural inefficiency in those at greatest risk for

psychosis.

At present, there is a very limited neurobiological understanding

of how various aspects of language are integrated—for example, in

how words are combined and meaning is created, although recent

research on the spatiotemporal dynamics of meaning construction

is extremely promising [Bemis and Pylkk€anen, 2012; Pylkk€anen
et al., 2014]. Studying the dynamics of creating coherence is a

valuable research framework that enables detailed examination of

where problems in generating meanings may arise in patients

with schizophrenia [Ditman and Kuperberg, 2010], and may

benefit from the use of MEG, event-related potentials (ERP), and

other technologies with high temporal resolution. Arguably

paradigms with such superior temporal resolution hold the clues

for why, for example, those with a genetic risk for schizophrenia

(by virtue of having a higher familial risk for the disorder than the

general population) have been shown to display a pattern of

hemodynamic modulation in inferior frontal/temporal network

as a response to a simple word task that seems very different to

the activation spread from a control group [Thermenos et al.,

2013].

RECONCEPTUALIZING LANGUAGE FROM AN
RDoC PERSPECTIVE

It should be clear to the reader that language is a complicated and

multifaceted construct. The notion that language is a unitary

construct, as proposed by RDoC, is overly simplistic and the classic

ideas of language functions being relegated solely to specific regions

of the left temporal lobe is simply outdated in the modern

neuroscience era. Indeed, “the era of the classical model is over”

(p. 14125; Poeppel et al., 2012]. Associated with this neuroscience-

based re-conceptualization of language are radical improvements

in resolution, both in terms of experimental techniques that afford

superior spatial and temporal resolution but also in terms of

methodological sophistication because of the increasing dialog

between the different levels of research. Within language research

a paradigm shift is occurring courtesy of the explosion of cross-

disciplinary research and significant improvements in technologi-

cal and conceptual resolution. This article is in keeping with this

philosophy, namely that the RDoC construct of language is in need

of a major reconceptualization. Moreover, despite ambiguity

regarding its roots, language is clearly intertwined with a host

of other cognitive and socioemotional abilities and functions.

Indeed, the RDoC authors acknowledge this, as documented by

the Cognition Workshop Proceedings [RDoC, 2015]: “Language

involves a mapping between thought (production) and sensory

representations (comprehension) via a symbolic systemofmultiple

representations (which include prosody, phonology, syntax, or-

thography, and lexical-semantics).” Interestingly, many language-

related constructs are included within the RDoCmatrix as distinct

constructs. For example, “Social Communication,” “Production of

Non-Facial Communication,” “Reception of Non-Facial Commu-

nication,” “Self-Knowledge,” “Perception and Understanding

of Others,” and “Understanding Mental States.” Whether this

taxonomy of constructs is optimal or useful in future research is

unclear.

That being said, a core question at hand concerns whether the

language construct, as currently conceptualized and defined, will

achieve the goals of the RDoC initiative, namely to focus on

disturbances of specific brain functions to better understand the

underlying causes of mental disorders. We argue that the attempt

to define language as a distinct unitary RDoC construct results in

a construct that is both too narrow but also too broad. One
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alternative strategy involves deconstructing language into sub-

constructs for study. Although a comprehensive evidence-based

taxonomy of language that successfully integrates behavioral and

neurobiological features does not exist at this time, linguistic,

speech, communication, and cognitive sciences have made strides

in demarcating distinct subcomponents of language. A handful of

salient and highly replicable findings emerge from this literature

that can be used to inform how language could be organized using

an RDoC structure.

Consider one of the most well-regarded findings from neuro-

linguistics involving the neuroanatomical distinction between

language perception (e.g., involvingWernicke’s area) and language

production (e.g., Broca’s area) [Lezak, 2004; Strauss et al., 2006].

Functionally speaking, damage to these regions results in distinct

aphasias; though manifest across modes of communication (e.g.,

verbal, visual sign language). Neurodevelopmentally speaking,

receptive and expressive language delays are distinct, with highly

similar prevalence rates and only modest overlap across the popu-

lation [Law et al., 2000]. Thus, it is clear that that perceptual and

production abilities are functionally and neurobiological distinct,

and should be considered as separate entities within the RDoC

construct of language.

Even these linguistic subdomains are overly broad. Consistent

throughout modern linguistic theories is the notion that language

is composed of separable components (e.g., Levelt, 2013). Inter-

estingly, variability in these components explains how languages

differ across cultures and dialects. These components include the

following: (i) phonetics and phonology—referring to the way in

which language is expressed and perceived through sounds and

signs, and the way in which these sounds and signs are organized

into systems (ii) prosodics—referring to the way in which stress,

intonation, rhythm, speaking rate, or voice quality complement,

andmodulatemeaning of language, (iii) syntax andmorphology—
FIG. 1. A preliminary organization of language for RDoC.
referring to the internal structure of how words and phrases are

organized, (iv) semantics—referring to the conceptual meaning of

language, and (v) pragmatics—referring to the knowledge of when

and how to use language, and how to do things with words

[Warren, 2012]. These components are each important to both

the perception and the production of language, while abnormali-

ties in these components differentially correspond to distinct

symptoms of mental illness. For example, disruptions in prosodic

but not necessarily semantic or syntactic aspects of speech are

characteristic of psychomotor retardation in depression and

blunted affect in schizophrenia [Andreasen, 1984; Cohen et al.,

2012; APA, 2013]. Similarly, aberrant semantic communication is a

hallmark of tangential speech in schizophrenia; speech that is

often phonetically, prosodically, and syntactically unremarkable

[Andreasen, 1981; APA, 2013; for a review see Elvevåg and

Goldberg, 1997].

An initial attempt to expand the language construct for RDoC is

highlighted in Figure 1. By no means is this figure comprehensive,

though it does employ well-accepted constructs that can serve as a

starting place until more scientifically useful replacements can be

realized. Functionally speaking, an organization involving these

constructs while accounting for pragmatics and basic cognitive

abilities can provide critical information about mental illness and

their mechanisms and can be illuminated by the use of relatively

novel highly sensitive technologies.

THE FUTURE OF LANGUAGE MEASUREMENT IN AN
RDoC FRAMEWORK

Three major innovations promise to reshape how language, partic-

ularly production subdomains, will be assessed. These include the

development and application of novel technologies, novel analytic

procedures, and big data and large-scale biobanking efforts.
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Innovation 1: Novel Technologies

A first major innovation involves the development and application

of relatively inexpensive technologies for understanding key lan-

guage functions, for example, the use of portable acoustic, lexical,

and semantic analysis [Cohen and Elvevåg, 2014]. While many of

these technologies have existed for decades, the scientific knowl-

edge base supporting their use has improved in recent years, and

their application across disciplines has helped resolve obstacles

limiting their implementation. For example, crowdsourcing has

been used to provide larger data sets for statistical speech and

language processing [e.g., Novotney and Callison-Burch, 2010].

Hardware advances, for example, using ultrasound assessment of

physical vocal processes, also have been developed. Ultrasound is

safe [Epstein, 2005], non-invasive, and has been used in linguistic

fieldwork [Gick et al., 2005] and speech therapy [Bernhardt et al.,

2005]. It can, thus, easily be applied to psychiatry research.

Technological advances, such as smaller sensors and improved

signal processing, allow the relatively unobtrusive collection of

continuous data, while a patient navigates their daily routine, thus

extending assessment well beyond the confines of the clinical

setting and providing naturalistic data. Key innovations are

highlighted in the following section.

Measures of speaking rate. One key example in the use of

these novel technologies is in the analysis of speaking rate. As

discussed above, language use is heavily affected by context. This

means that in order to determine whether a particular language-

related indicator is indicative of mental illness, and might be

linked to a relevant behavioral phenotype, we first need to estab-

lish whether the variationmight not be due to other factors. A case

in point is speaking rate, that is, the speed at which a person

produces words, syllables, and sounds. Slowed speaking rate is one

of the key indicators of depressed mood [Cannizzaro et al., 2004;

Mundt et al., 2012; Cummins et al., 2015], and is thought to be

related to general psychomotor retardation, which also affects

measures such as reaction time [Sobin and Sackeim, 1997; Buyuk-

dura et al., 2011; Bennabi et al., 2013]. Speaking requires a person

to coordinate the movement of jaw, lips, vocal folds, tongue,

velum, and (depending on the language] uvula with millisecond

precision [Laver, 1994]. It is a highly skilled process that can be

disrupted both at the level of planning (apraxia of speech) and

execution [dysarthria; Duffy, 1995]. In clinical neurology, slowed

speech often occurs together with general fine and gross motor

retardation [Duffy, 1995].

While it may appear tempting to use an appropriate absolute

measure of speaking rate (fast/medium/slow) as part of a behav-

ioral phenotype relating to psychomotor retardation, such an

approach would introduce gross distortions. Speaking rate has

been shown to vary by language [Yuen et al., 2006], dialect

[Jacewicz et al., 2009], and age [Benjamin, 1997; Jacewicz et al.,

2009; Mefferd and Corder, 2014]. As the overview by Cummins

et al. [2015] shows, most of the studies that did find significant

effects of depressed mood on speaking rate were pre/post-studies

that tracked the same population during treatment. Therefore, the

appropriate behavioral marker is not speaking rate as such, but

change in speaking rate over time. Similar caveats hold for most of

the phonetic and phonological behavioralmarkers of language that
might reflect mood, and we argue that these measures should be

ascertained longitudinally in large biobanking efforts.

Acoustic and prosodic measures. Prosodic production, char-

acterized by patterns of speech rhythm, vocal fold vibration fre-

quency, and volume in vocal expression, is an important nonverbal

facet of communication and is affected in a number of psychiatric

disorders such as depression, schizophrenia, and autism-spectrum

disorders [Andreasen, 1984; Cohen et al., 2012; APA, 2013]. Using

clinical rating scales in schizophrenia samples, for example, these

deficits are estimated to be on the order of three to five standard

deviations below nonpsychiatric populations [Cohen et al., 2014a].

While these deficits are assumed to be stable over time, it is not clear

that they are static over context.

Generally, a number of contextual variables influence prosodic

production, for example, emotional [Tolkmitt and Scherer, 1986;

Sobin and Alpert, 1999], arousal [Johnstone et al., 2007; Cohen

et al., 2010], and social [Nadig et al., 2010] factors, to name a few.

Emerging results have been taken to suggest that prosodic produc-

tion is also linked to cognitive state variables. Of note, a number of

studies, mostly correlational in nature, have documented links

between acoustic properties of natural speech and state measures

of cognitive stress, for example, in how vocal expression in air

pilots changes as a function of demanding flight conditions [e.g.,

Huttunen et al., 2011].

More generally speaking, cognitive load [Plass et al., 2010] and

information processing [Baddeley, 1992; Tombu et al., 2011] theo-

] theories suggest that resources for engaging in motivated activi-

ties/behaviors are finite, and thus reflect a “bottleneck” for central

nervous system operations more generally [Tombu et al., 2011].

When this capacity is exceeded, either because of task complexity or

demands from competing tasks, performance is impaired. Indeed,

increased processing load is associated with reduced performance

on a range of learning, motor, and other activities [e.g., Plass et al.,

2010] within healthy adults. This result has been important for

understanding illness state for a broad range of neurological and

psychiatric conditions, such as Alzheimer’s disease [Huntley and

Howard, 2010], various dementias [Calderon et al., 2001], and

schizophrenia [Granholm et al., 2007].

If indeed prosodic deficits manifest, at least in part, as a function

of limited cognitive resources, then several important and clini-

cally-pertinent implications warrant mention. From an assessment

perspective, acoustic analysis of natural speechmay provide insight

into an individual’s cognitive functioning or mental state more

generally. Thus, longitudinal tracking of individuals who are either

experiencing or at risk for experiencing cognitive difficulties, for

example, in older adults experiencing mild cognitive impairments

or individuals at-risk for psychosis, may provide valuable infor-

mation about their clinical state and treatment needs, especially

within the context of large biobanking efforts. Notably, prosodic

production was found to be an important biomarker in a recent

longitudinal study of mild cognitive impairment and dementia

[Satt et al., 2014].

Importantly, acoustic vocal analysis is easy to conduct, repeat-

able and objective in a way traditional clinical assessments are not.

Assessment of natural speech offers many practical advantages

over standard neuropsychological tests, for example, employing

data capture over mobile technologies, and has the potential to
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detect subtle changes in information processing capacity in a way

not practical with standard neuropsychological measures [see

Mundt et al., 2007; Cohen and Elvevåg, 2014 for elaboration].

Standard clinical language measures (e.g., verbal fluency) suffer

from profound practice effects even after a few administrations

[Lezak et al., 2012]. From a treatment perspective, prosodic deficits

may ameliorate by improving cognitive resourcesmore generally; by

employing cognitive compensation strategies (e.g., limiting activi-

ties requiring multi-tasking) or by bolstering capacity or efficiency

more generally (e.g., cognitive remediation).While admittedly in its

infancy in terms of psychometric evaluation, vocal analysis offers

promise as a window into more basic cognitive operations.
Innovation 2: Novel Analytics
Natural language processing andmachine learning. A second

innovation involves the advancement of statistical natural language

processing and machine learning techniques applied to genetics

and clinical cognitive neuroscience [e.g., Hofmann, 2001; see also

Nicodemus andMalley, 2009; Cohen et al., 2014b]. On the genetics

side, these approaches have successfully detected validated epistasis

in schizophrenia [Nicodemus et al., 2010a,b, 2014b].

In the last two decades, a variety of lexico-semantic modeling

approaches have gained popularity within cognitive science and

subsequently within cognitive neuroscience and clinical science.

One such cognitive modeling approach that has gained increased

attention is latent semantic analysis (LSA), which uses natural

language processing techniques to extract word meaning from text

[Furnas et al., 1988; Deerwester et al., 1990], and it has been

heralded as a theory of meaning [Landauer, 2007] and a computa-

tional model of vocabulary acquisition [Biemiller et al., 2014]. The

major idea behind these models is that people are sensitive to weak

statistical regularities in the linguistic environment, such as the

co-occurrence of words in a sentence. Using text corpora, LSA can

learn the meaning of a word by estimating the relatedness of any

arbitrary set of words as a function of the contexts in which they

co-occur. One of the key advantages of this approach is that, using

singular value decomposition or probabilistic inference, represen-

tations for all kinds of words including abstract or low frequency

words can be derived, even if those words never co-occur in the

same text or sentence. Large, corpus-based statistical models of

language have enabled the operationalization of semantic structure

of discourse because they in essence quantify semantic similarity by

analyzing large sets of documents. Related techniques include

TopicModels [Blei et al., 2003], Independent Component Analysis

[Hyv€arinen et al., 2004], and Neural Networks, specifically Deep

Learning [Hinton et al., 2006].

Evidence for the success of many of these approaches derives

from solving difficult problems in computer science, such as speech

recognition and image annotation (in the case of deep learning),

rather than a focus on simulating and understanding cognition per

se. Put differently, although at first glance, it might be tempting to

assume that these methods simulate human data so well because at

their core are basic low-level functions that may be somewhat

analogous to neurocognitive processes in the brain during learning

and memory formation; however, this is most probably not the

case. Rather it may be that such techniques are sensitive because
they accurately model the structure of meaning as imposed by the

limits of brain function averaged across large quantities of text.

Thus, when presented with examples of discourse that are “differ-

ent,” it is because the language originated from a person where

divergent development or injury has changed the boundaries

imposed by brain function and we can detect those differences.

Thus, although it is possible that LSA may in fact be model of

cognition, an alternative possibility is that it has just learned some

of the structure of semantics that the brain imposes on human

composed text, and other learning algorithms might yield similar

results. Therefore, it may not be surprising that such models might

be more sensitive than either humans or simple measures over text

(Mark Rosenstein, personal communication, June 2015).

Natural language processing and machine learning techniques

provide much needed and necessary tools to re-define what we

understand by language and how it can be usefully studied within

neuropsychiatry. In addition, these fields provide methodologies

for combining different types of high-dimensional data (e.g.,

speech and neuroimaging, genomics and speech, genomics and

clinical data), using ensemble machine learning methodologies

such as mixture-of-experts approaches [Jacobs et al., 1991; Jordan

and Jacobs, 1994; Lê Cao et al., 2010]. Successful examples of these

innovations applied to SMI research include predicting from

discourse samples who among those at risk will eventually transi-

tion to psychosis [Bedi et al., 2015]. This result expands on recent

similar computational language approaches that use discourse

alone to successfully discriminate patients with schizophrenia

from controls [Elvevåg et al., 2007], discriminating schizophrenia

probands, first-degree relatives, and unrelated healthy controls

[Elvevåg et al., 2010], and differentiating those at high risk of

psychosis from unrelated putatively healthy participants [Rose-

nstein et al., 2015].

It seems realistic to anticipate that these machine learning and

natural language processing approaches will provide the founda-

tion for the much needed new language phenotypes that is at the

core of the RDoC mission. However, in order to achieve this

enormous potential that these approaches afford, we must strive

to collect purpose-designed data sets, containing large popula-

tions on which the power of natural language processing tech-

niques can be leveraged so as to ensure effective assimilation into

clinical research to provide valid and reliable measures [Foltz

et al., 2016]. This broader and more modern definition of

language (i.e., that goes beyond previous work that focuses on

simple aspects such as word count) can shed light on their genetic

and neurobiological mechanisms and concomitants and offer

insight into how language can go awry in psychiatric and

neurological disorders.

Computational network sciences. Computational network

sciences tools have also recently been applied to study the mental

lexicon. Uses include attempts to shed light on the putative rigidity

of thought in those with Asperger’s versus healthy controls [Kenett

et al., 2015], to examine creative thinking [Kenett et al., 2014], to

chart thought disorder in patients with psychosis [Mota et al.,

2012], and to detail the effect of drugs of abuse (MDMA [“ecstasy”]

and methamphetamine) on spoken language [Bedi et al., 2014].

Indeed, network-based models of cognition offer a multi-level

research approach where the global (macro), intermediate
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(meso), and detailed (micro) structure mutually constrain pro-

cesses and representations [Baronchelli et al., 2013]. Such network

approaches to the mental lexicon provide an extension of the

classical model proposed by Collins and Loftus [1975] as well as

an alternative to the notion of a hierarchical taxonomic knowl-

edge repository. Also, since these models can include the majority

of words used in language the structure is primarily thematic in

nature [De Deyne et al., 2015a,b]. The sheer scale of these

networks provides metrics sensitive to the dynamic processes

in language production, as well as the structural ones. Such

approaches are well-suited to looking at individual differences

either at a case level or group level, and promise to be of

great value in charting the mental lexicon in patients with

severe mental illness as compared with a normative network

[De Deyne et al., 2015c]. Such rich network approaches thus

enable the examination—within a single framework—of factors

such as the degree of organization and efficiency of information

retrieval, type of information that is activated in language use as

well as the accessibility of words. Importantly, given the highly

interdependent nature of each level, possible interpretations

are naturally constrained. These network approaches illustrate

the emerging possibilities of combining a modern understanding

of language with unprecedented computational facilities to create

a new research framework for objective investigations that can

establish the locus of aberrations in a dynamic network. The

combination of these linguistic computational approaches with

state-of-the art machine learning applied to genomics, neuroim-

aging, or other high-dimensional omics data will lead to advances

in better understanding SMI, and, ultimately, the goals of per-

sonalized medicine.

Innovation 3: “Big Data” Applications and
Large-Scale Biobanking Efforts
A final innovation involves the integration and synthesis of large

scale data collection efforts such as that undertaken by Generation

Scotland [Smith et al., 2006] or the UK Biobank [Collins, 2011]. A

major result from the machine learning community is that big data

is at least as important as algorithms in achieving high performance

in machine learning tasks. Recently, Google released an open-

source machine learning infrastructure TensorFlow, and as noted

in Technology Review, “Google was able to give away the code for

TensorFlow because the data it owns is a far more valuable asset for

building a powerful AI engine.” [Knight, 2015]. For many of the

approaches described above, big data are critical for learning

models and validating hypotheses.

The collection and curation of natural language samples has

been a staple of communication sciences for decades. These data-

bases of samples (also called corpora) are the linguistic equivalent

of biobanks [Biber et al., 1998]. While some corpora are domain

specific (e.g., the Canadian Hansard parliament transcripts, http://

www.isi.edu/natural-language/download/hansard/), others strive

to collect samples from a range of communication contexts (e.g.,

the BritishNational Corpus ofUKEnglish, http://www.natcorp.ox.

ac.uk). Thematerial in these corpora ranges fromwritten to spoken

language, from read to spontaneous speech, from conversations to

radio news, and from video-recordedmeetings to novels.However,
application of these large databases to understanding SMI has been

limited. In the last 20 years, as part of research on the automatic

detection and generation of emotional speech, corpora have been

created that contain information about the mood of the speaker or

writer. For example, as part of ongoing, long-term work on the

detection of emotion in speech, the speech technology community

has been creating data sets such as the corpus that was used for the

AVEC 2013 Depressed Speech Challenge [Valstar et al., 2013],

which features both video and audio data, and contains speech that

has been annotated with mood.

Another source of big data for language research is the mining

of microblogging (e.g., Twitter and Facebook posts). Research on

microblogging platforms may be limited to evaluating only

certain aspects of language; however, it can provide important

information about lexical expression. Research of this kind is still

in its infancy, but is providing potential sources of longitudinal

data for text and emoticon mining, including data pre-dating an

acute episode of SMI and during the recovery phase. Using

machine learning of case status from Twitter posts of self-

reported cases of schizophrenia versus healthy controls showed

high precision (92%) and moderate recall (71%) in predicting

case status on independent, “held out” test data. The features that

were most important in predicting case versus control status were

the use of the word “schizophrenia”, increased happy emoticon

usage, and timing of posts, especially more frequent early morn-

ing posts [McManus et al., 2015]. An earlier study also reported

70% accuracy and 74% precision using Twitter posts preceding

the onset of a Major Depressive Episode in individuals self-

reporting being clinically diagnosed with MDD [De Choudhury

et al., 2013]. Critical predictors of a Major Depressive Episode

that could be obtained via Twitter posts included increases in

negative affect, social/medical concerns, the closeness of social

networks, and religious involvement; this was accompanied by

decreases in social engagement. These types of microblogging

data resources may be combined with large-scale biobanking

efforts as a source of longitudinal data to provide data pre-dating

ascertainment for these cohort studies.

Onemajor limitation in the use of biobanking for understanding

the genetics of language disorder is that the heritability of

language abilities more generally is poorly understood. Proof of

heritability—that a trait is genetically influenced—is required

before the next logical step of determining its genomic architecture.

The collection of data from these novel technologies and applica-

tion of novel analytics can provide both the foundational herita-

bility estimates and the large-scale normative data required for

understanding differences among those with SMIs. For the pho-

netic and prosodic levels, objective, robust measures are needed

that focus on longitudinal trends, as many of the key behavioral

signs are subject to age, dialect, and sociolinguistic variation. Since

speakers adapt their language production to their interlocutors,

and the setting in which they speak, such longitudinal measures

need to be obtained under comparatively controlled circumstan-

ces, aswell as establishment of reliably and validity of themetrics. In

order to be able to leverage big data approaches, we need innovative

ways of collecting data that provide regular samples of speech data

from the same individual over the course ofmonths to years, ideally

covering at least one cycle of illness and recovery.

http://www.isi.edu/natural-language/download/hansard/
http://www.isi.edu/natural-language/download/hansard/
http://www.natcorp.ox.ac.uk
http://www.natcorp.ox.ac.uk
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CLOSING REMARKS
In many ways, the oversimplification of language in the current

version of the RDoC matrix is a function of the inadequacy of

historical-based definitions of language, and consequently the mea-

sures thatwere traditionallyused tomeasure it, suchasverbalfluency

tasks which tap only very basic and circumscribed linguistic pro-

cesses.However, recent technological advances inmobile telephony,

multimedia assessment, ubiquitous computing, ultrasound, statis-

tical modelling, and neuroimaging afford previously unimaginable

opportunities to collect remarkably rich, high-dimensional natural-

istic data thatprovidehithertountapped informationaboutpeople’s

ability to comprehend and use appropriate language in context, the

fine-grained temporal detail regarding articulatory gestures, and

assays of the effectiveness of their linguistic communication. As the

data collection methods continue to evolve in terms of their resolu-

tion, so too do the data analytic methods. Computational linguistic,

cognitive, affective, and speech scientists have already devised

impressive datamining and analyticmethods, such as latent seman-

tic analysis and lexical analysis, to make these high-dimensional

datasets tractable via dimension reduction, information theory, and

statistical machine learning techniques. These analytic methods

continue to evolve in sophistication so as to better leverage the

evolving levels of resolution in the data. This trend is fundamentally

important as analysis of language holds enormous (mostly un-

tapped) value for understanding cognitive, affective, physiological,

and pathological states more generally and can serve as a proxy of

brainhealth. In this article,wehaveargued forabroaderdefinitionof

language and one that is motivated by modern cognitive neurosci-

ence and which usefully reconceptualizes language processes such

that they can be of value in translational research and thereby shed

light on critical issues in the NIMH RDoC initiative. In turn, the

combination of computational linguistic approaches, natural lan-

guage processing, and machine learning in genomics and neuroim-

aging—and combining data across these high-dimensional data

types—will lead to significant advances in understanding SMIs

and pave the road toward personalized medicine.
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Lê Cao KA, Meugnier E, McLachlan GJ. 2010. Integrative mixture of
experts to combine clinical factors and gene markers. Bioinformatics
26:1192–1198.

Lezak MD. 2004. Neuropsychological assessment. New York: Oxford
University Press.

Lezak MD, Howieson DB, Bigler ED, Tranel D. 2012. Neuropsychological
assessment, 5th edition. New York: Oxford University Press.

Li X, BranchCA,Ardekani BA, BertischH,HicksC,DeLisi LE. 2007a. FMRI
studyof language activation in schizophrenia, schizoaffectivedisorder and
in individuals genetically at high risk. Schizophr Res 96(1):14–24.

LiX, BranchCA,BertischHC,BrownK, SzulcKU,Ardekani BA, LEDeLisi.
2007b. An fMRI study of language processing in people at high genetic
risk for schizophrenia. Schizophr Res 91:62–72.

http://www.technologyreview.com/news/544356/heres-what-developers-are-doing-with-googles-ai-brain/
http://www.technologyreview.com/news/544356/heres-what-developers-are-doing-with-googles-ai-brain/
http://www.technologyreview.com/news/544356/heres-what-developers-are-doing-with-googles-ai-brain/


918 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
McLeanPD. 1988. Themidline frontolimbic cortex and evolution of crying
and laughter. In: Perecman E, editor. The frontal lobes revisited. Hill-
sdale, NJ: Lawrence Erlbaum Associates. pp 121–140.

McLean PD. 1990. The triune brain in evolution. New York: Plenum.

McGrath JA, Avramopoulos D, Lasseter VK,Wolyniec P, FallinMD, Liang
KY, et al. 2009. Familiarity of novel factorial dimensions of schizophre-
nia. Arch Gen Psychiatry 66:591–600.

McManus K, Mallory EK, Goldfelder RL, Haynes WA, Tatum JD. 2015.
Mining Twitter data to improve detection of schizophrenia. AMIA Jt
Summets Transl Sci Proc 2015:122–126.

Mefferd AS, Corder EE. 2014. Assessing articulatory speed performance as
a potential factor of slowed speech in older adults. J Speech Lang Hear
Res 57:347–360.

Mervis CB, Shelley LV. 2011. ChildrenwithWilliams syndrome: Language,
cognitive, and behavioral characteristics and their implications for
intervention. Perspect Lang Learn Educ 18.3:98–107.

Meyer-Lindenberg A, Weinberger DR. 2006. Intermediate phenotypes
and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci
7:818–827.

Mitchell RL, Elliott R, BarryM,CruttendenA,Woodruff PW. 2004.Neural
response to emotional prosody in schizophrenia and in bipolar affective
disorder. Br J Psychiatry 184:223–230.

Mota NB, Vasconcelos NAP, Lemos N, Pieretti AC, Kinouchi O, Cecchi
GA, et al. 2012. Speech graphs provide a quantitative measure of thought
disorder in psychosis. PLoS ONE 7:e34928.

Mundt JC, et al. 2007. Voice acoustic measures of depression severity
and treatment response collected via interactive voice response (IVR)
technology. J Neurolinguistics 20(1):50–64.

Mundt JC, Vogel AP, Feltner DE, Lenderking WR. 2012. Vocal acoustic
biomarkers of depression severity and treatment response. Biol Psychi-
atry 72:587–580.

Nadig A, Lee I, Singh L, Bosshart K,Ozonoff S. 2010. Howdoes the topic of
conversation affect verbal exchange and eye gaze? A comparison between
typical development and high-functioning autism. Neuropsychologia
48:2730–2739.

Natsubori T, Hashimoto R, Yahata N, Inoue H, Takano Y, Iwashiro N,
Koike S,GonoiW, SasakiH, TakaoH, et al. 2014. An fMRI study of visual
lexical decision in patients with schizophrenia and clinical high-risk
individuals. Schizophr Res 157:218–224.

Newbury DF, Bishop DVM, Monaco AP. 2005. Genetic influences on
language impairment and phonological short-term memory. Trends
Cogn Sci 9(11):528–534.

Ngan ET, Vouloumanos A, Cairo TA, Laurens KR, Bates AT, Anderson
CM, Werker JF, et al. 2003. Abnormal processing of speech during
oddball target detection in schizophrenia. Neuroimaging 20:889–897.

Nicodemus KK, Elvevåg B, Foltz PW, Rosenstein M, Diaz-Asper C,
Weinberger DR. 2014a. Category fluency, latent semantic analysis and
schizophrenia: A candidate gene approach. Cortex 55:182–191.

Nicodemus KK, Hargreaves A, Morris D, Anney R, Gill M, Corvin A,
Donohoe G, Schizophrenia Psychiatric Genome-wide Association Study
(GWAS)Consortium,WellcomeTrustCaseControlConsortium2.2014b.
Variability in working memory performance explained by epistasis vs
polygenic scores in the ZNF804A pathway. JAMA Psychaitry 71:778–785.

Nicodemus KK, Law AJ, Raduescu E, Luna A, Kolachana B, Vakkalanka R,
Rujescu D, Giegling I, Straub RE, McGee K, Gold B, Dean M, Muglia P,
Callicott JH, Tan HY, Weinberger DR. 2010a. Biological validation of
increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via
functional neuroimaging in healthy controls. Arch Gen Psychiatry
67:991–1001.
Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK,
Vakkalanka R, Giegling I, Rujescu D, St Clair D, Muglia P, Shugart YY,
Weinberger DR. 2010b. Evidence of statistical epistasis between DISC1,
CIT and NDEL1 impacting risk for schizophrenia: Biological validation
with functional neuroimaging. Hum Genet 127:441–452.

Nicodemus KK, Malley JD. 2009. Predictor correlation impacts machine
learning algorithms: Implications for genomic studies. Bioinformatics
25(15):1884–1890.

Novotney S, Callison-Burch C. 2010. Cheap, fast and good enough:
Automatic speech recognition with non-expert transcription. InHuman
Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics. pp 207–215.

NuechterleinKH,GreenMF. 2006.MATRICS consensus cognitive battery.
Manual. Los Angeles, CA: MATRICS Assessment, Inc.

Oerlemans AM, et al. 2014. Recognition of facial emotion and affective
prosody in children with ASD (þ ADHD) and their unaffected siblings.
Eur Child Adolesc Psychiatry 23.5:257–271.

Pickering MJ, Garrod S. 2004. Toward a mechanistic psychology of
dialogue. Behav Brain Sci 27:169–226.

Plass JL, Moreno R, Branken R. 2010. Cognitive load theory. New York,
NY: Cambridge University Press.

Poeppel D, Emmorey K, Hickok G, Pylkk€anen L. 2012. Towards a new
neurobiology of language. J Neurosci 32:14125–14131.

Pylkk€anen L, Bemis DK, Blanco Elorrieta E. 2014. Building phrases in
language production: An MEG study of simple composition. Cognition
133(2):371–384.

Raine A. 1991. The SPQ: A scale for the assessment of schizotypal
personality based on DSM-III-R criteria. Schizophre Bull 17(4):555.

Randolph C, TierneyMC,Mohr E, Chase TN. 1998. The repeatable battery
for the assessment of neuropsychological status (RBANS): Preliminary
clinical validity. J Clin Exp Neuropsychol 20(3):310–319.

Rapp AM, Langohr K, Mutschler DE, Klingberg S, Wild B, Erb M. 2013.
Isn’t it ironic? Neural correlates of irony comprehension in schizophre-
nia. PLoS ONE 8:e74224.

Rapp AM, Mutschler DE, Wild B, Erb M, Lengsfeld I, Saur R, Grodd W.
2010. Neural correlates of irony comprehension: The role of schizotypal
personality traits. Brain Lang 113:1–12.

Research Domain Criteria (RDoC). 2015. Retrieved from: http://www.
nimh.nih.gov/research-priorities/rdoc/index.shtml (AccessedOctober1,
2015).

Rohrer JD 2010. Language impairment in frontotemporal lobar degener-
ation. Diss. UCL (University College London).

Ronald A, Happe F, Plomin R. 2005. The genetic relationship between
individual differences in social and non-social behaviors characteristic of
autism. Dev Sci 8:444–458.

Rosenstein M, Foltz PW, DeLisi LE, Elvevåg B. 2015. Language as a
biomarker in those at high-risk for psychosis. Schizophr Res 165:249–250.

Sabb FW, van Erp TG, Hardt ME, Dapretto M, Caplan R, Cannon TD,
Bearden CE. 2010. Language network dysfunction as a predictor of
outcome in youth at clinical high risk for psychosis. Schizophr Res
116:173–183.

SassK,HeimS, SachsO, Straube B, Schneider F,HabelU, Kircher T. 2014a.
Neural correlates of semantic associations in patients with schizophre-
nia. Eur Arch Psychiatry Clin Neurosci 264:143–154.

Sass K, Kircher T, Gauggel S, Habel U. 2014b. An fMRI-study on semantic
priming of panic-related information in depression without comorbid
anxiety. Psychiatry Res 222:37–42.

http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml
http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml
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