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Synopsis

of anti-cancer and anti-viral drugs.

The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma
protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G-phase of the cell
cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with
each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G, to S transition
by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in
regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity
and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of
the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development
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INTRODUCTION

Somatic cell cycle has alternating DNA synthetic (S) and mi-
totic (M) phases, separated by gap phases (G; and G;). The
correct sequence of events, a robust feature in cell cycle, is main-
tained by timely degradation of cell-cycle regulators by ubiquitin
proteasome pathway (UPP). The UPP consists of the ubiquitin
(Ub)-activating enzyme (E1), Ub-conjugating enzyme (E2) and
Ub ligases (E3) that covalently link Ub on to target proteins either
singly or in chains that are formed using various internal lysines
of Ub. Although chains linked through Lys-48 and Lys-11 lead to
destruction of substrate proteins by 26S proteasome, monoubi-
quitination and chains other than Lys-48 and Lys-11 linkages
have non-proteolytic functions. Two related multi-subunit E3s,
the anaphase promoting complex/cyclosome (APC/C) and the
Skp1/Cull/F-box (SCF) complex are crucial for timely proteo-
lysis of cell cycle proteins (Figure 1A). Although SCF performs
throughout the cell cycle, APC/C remains active from M to late

G [1]. The APC/C has emerged as a critical regulator of mi-
tosis not only due to its role in spindle assembly checkpoint
(SAC) but also for being crucial for degradation of mitotic cyc-
lins and securin that paves the way for completion of mitosis. On
the other hand, it is equally important for post-mitotic decisions
of the cell about proliferation, differentiation and quiescence.
Other than cell cycle, the APC/C also regulates neuronal devel-
opment and metabolism [2—4]. With 15 subunits in vertebrates,
APC/C is one of the largest and the most complex E3s known
to date and has been a subject of intense investigation due to
its wide-ranging roles. Combined use of cryo-electron micro-
scopy, mass-spectroscopy and docking of crystal structures and
homology models allowed reconstruction of the pseudo atomic
model and later with more advanced cryo-EM technology, of
the atomic scale structure of its co-activator in complex with the
E2s, UbcH10 and Ube2S and with one of its inhibitory protein,
Emil [5-7]. These studies have given an insight into the mech-
anism of initiation of ubiquitination, inhibition of the complex
and regulation by co-activators. However, we are still far from a
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Schematic diagrams of the modular structure of the SCF (A) and APC/C (B) showing the relative positions of various
subunits. The stages of the cell cycle where activities of these complexes regulates key events are shown in (C) along
with some of the key substrates. The activities of two APC/C assemblies (APC/CCPC20 and APC/C™R1) are regulated in
opposite manner by phosphorylation resulting their manifestation at different stages (D). APC/CCP¢20 is activated upon
phosphorylation by the mitotic cyclin/CDK complex but its activity is kept in check by the SAC. Once SAC is satisfied,
APC/CCPC20 targets mitotic cyclins resulting in decrease in kinase activity thus inactivating APC/CtPC20, At the same time,
activation of the phosphatase Cdc14 dephosphorylate FZR1 resulting in activation of APC/CRt,

complete mechanistic understanding of its various functions, its
complete interactome and substrates and its regulation by phos-
phorylation. This review will focus on G, -S regulation by APC/C
and the readers are directed to other excellent recent reviews on
its other functions [1,8—10]. We review the recent advances in
our understanding of how APC/C regulates Gy/G; stage and con-
trols S-phase entry and discuss the implications of its interaction
with the tumour suppressor protein retinoblastoma (pRB) for cell
cycle regulation and development of anti-viral and anti-cancer
drugs.

G1-S REGULATION BY APC/C

CDC20 and FZR1 are two related co-activators that recruit sub-
strates to APC/C in two distinct assemblies, APC/CPC20 and
APC/CF2R! [11]. Both CDC20 and FZR1 are structurally re-
lated and consist primarily of a seven-bladed WD40-repeat-
propeller that facilitates protein—protein interactions. The CDC20
and FZR1 bound forms of APC/C demonstrate both different
and overlapping substrate specificities [12,13]. The most well
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characterized degrons in APC/C substrates are the destruction
box (D-box) [14] and the KEN-box [15], but other targeting
motifs have also been identified [16-18]. CDC20 and FZR1 re-
cognize specific target proteins depending on the recognition se-
quences present, such as the destruction box (D-box) for CDC20,
and the D-box, KEN box and CRY box for FZR1 [19,20].

APC/CCPC20 5 activated upon phosphorylation by mitotic
cyclin-CDK but its activity is kept in check till the SAC is satisfied
with CDC20 as a component of the mitotic checkpoint complex
[21]. Once SAC is satisfied APC/CCPC? activity is unleashed
resulting in ubiquitination and destruction of many substrates.
Critical among these are the mitotic cyclins and securin (Fig-
ure 1B). This leads to low kinase activity and inactivation of
APC/C®PC2 during metaphase. Low kinase activity also results
in dephosphorylation of FZR1 and activation of APC/C™R! that
has a much broader substrate range. It also targets CDC20 and
any remaining mitotic cyclin and some other mitotic substrates
for degradation [22]. APC/CF”R! continues working till late G,
and negatively regulates DNA replication and cell proliferation
through degradation of multiple proteins that helps in mainten-
ance of G; state (Table 1) [10,23,24]. Some of these critical
targets include pro-proliferative proteins like Polo-like kinase 1
(PLK1), Aurora kinase A and CDC25A, the activator of CDK1
and proteins required for DNA replication (e.g. geminin, Cdc6
and TK1). SKP2, a subunit of the SCF E3 is an important target
of FZR1 that results in stabilization of CKI protein p27X!, fur-
ther stabilizing the G, state. Another critical target of APC/CFR!
in maintaining G is the transcription factor E2F1 that promotes
the S-phase genes once it is released by phosphorylation of pRB
[25]. E2F1 is targeted for degradation by APC/C™R! until the
G,/S transition. Hence APC/CFR! on one hand maintains low
levels of E2F1 to inhibit S-phase; on the other it engages with
pRB in mediating APC/C™R! dependent degradation of SKP2
and allowing the build-up of CKI proteins to inhibit S-phase,
thus utilizing a two pronged strategy involving transcriptional
and post-translational mechanisms to prevent cells from entering
the S-phase.

Regulation of FZR1

For cells to enter the S-phase, the activity of APC/CFZR! has to
be brought down in a regulated manner. There are several mech-
anisms that regulate FZR1 levels in cells that allow APC/C to
be shut-off in late G,. Although FZR1 RNA levels remain con-
stant throughout the cell cycle, its protein levels fluctuate. FZR1
levels are high in mitosis, but lowered in late G,- and S-phases
[26]. FZR1 mediates its own degradation in late G;. This process
of self-destruction requires the two D-boxes of FZR1 [27]. An-
other mechanism of APC/CF?R! inactivation is the ubiquitination
of APC/C-specific E2 UBCH10 by APC/CFR! itself, thereby
providing a negative feedback mechanism [28,29]. Phosphoryla-
tion also regulates FZR 1. The binding of FZR1 to APC/C depends
on FZR1 phosphorylation status. CDC28 mediated phosphoryla-
tion of FZR1 excludes it from the nucleus and dissociates it from
the core APC/C resulting in FZR1 inactivation [30,31]. E2F medi-
ated accumulation of cyclin A at the G,/S transition also results in
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Table 1 Substrates of APC/CFZR!

Gy Mitosis Reference
FZR1 [27]
SKP2 [132]
Cyclin B1 Cyclin B1 [133,134]
FoxM1 [135]
CDCA3 [136]
Anillin [137]
Nek2 [15]
B99 [15]
E2F1 [25]
TOME1 [138]
Geminin Geminin [139]
Aurora B [140]
cDC6 [141]
CKAP2 [142]
CDC20 [143]
Cyclin A [144]
ETS2 [145]
Claspin [46]
Id2 [146]
PLK1 [147]
Rcs1 [148]
Securin [149]
Sgol [150]
SnoN [151]
Tpx2 [152]
Xkid [153]
CLB2 [154]
CDC5 [155]
HSL1 [155]
CDC25A [138]
NDD1 [156]
CtIP [157]

phosphorylation of FZR1 [32]. Phosphorylated FZR1 is targeted
by SCF E3 ligase, further limiting the activity of APC/CF#R! [33].
In Caenorhabditis elegans, cyclin D1/CDK4 phosphorylates N
terminus of FZR1 and linker domain of LIN-35, the pRB homo-
logue thereby counteracting the cell cycle inhibitory functions of
both the proteins in G; [34]. In Drosophila endocycle in which
cells undergo repeated rounds of DNA replication with no in-
tervening mitosis, cyclin E/CDK2 mediated phosphorylation of
FZR1 drive the periodicity of APC/CFR! activity [35].

In addition, inhibitory protein Emil (also known as FBXO5),
not only inhibits APC/CPC20 activity in S- and G,-phases but
also inhibits APC/C™R! in interphase by binding like a pseudo-
substrate to the APC/C and also by antagonizing the two E2s
that function with APC/CF2R! [7,36]. Similarly, the meiotic func-
tion of APC/CF?R! is blocked by Emi2, a homologue of Emil.
The levels of Emil start increasing at the start of G; and are
brought down by SCFFTRCP! i early mitosis to allow activation
of APC/CPC0 [37]. Interestingly, Emil expression is under the
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Table 2 Consequences of FZR1 depletion in cells and model animals

Cells/model Effect of FZR1 depletion Reference
Yeast
Fission yeast FZR1A gene disruption mutants Sterility, defective in cell cycle arrest in the Gi-phase [158]
upon starvation
Fission yeast FZR1A gene disruption mutants Meiotic mutant with aberrant asci having one or two [159]
mature spores
Budding yeast gene replacement FZR1 mutants Premature exit from meiotic prophase | [160,161]
Budding yeast FZR1A mutants Inhibition of mitotic cyclin degradation and [162]
inappropriately induced DNA replication
Mammalian cell lines
FZR1 shRNA treated rat cortical neurons and Increased proportion of cells in S-phase, apoptosis [3]
SH-SY5Y human neuroblastoma cells
FZR1 siRNA treated Saos2 Loss of cell cycle arrest, increased generation time [64]
Lentiviral RNAi mediated KO of FZR1 in Hela Early onset of DNA replication [42]
Human fibroblast cells Premature senescence [46]
MEFs from FZR1-KO mice Poor proliferation, premature senescence [163]
FZR1 shRNA treated Hela Increase in half-life of SKP2 [164]
FZR1 shRNA treated HCT 116 Sub-G; DNA content [164]
Arabidopsis
Arabidopsis xcem9 mutant with loss of function Premature termination of floral shoots, disruption of [165,166]
allele of FZR1 cell cycle progression, defects in cyclin B1
expression, defects in endoreduplication
Drosophila
Loss of function Drosophila mutants of FZR1 Reentry into the cell cycle following embryonic cycle 16 [39]
thereby bypassing the normal G; arrest
RAP/FZR1 loss-of-function mutants of Changes in size and morphology of synapses, [167]
Drosophila locomotion defects
C. elegans
RNAi mediated inactivation of FZR-1 in C. Sterility, aberrant germ cell proliferation [168]
elegans
Mouse
Conditional knockout mouse Embryonic lethality at E9.5-E10.5 [43]
FZR1-/%* mouse Increased susceptibility to spontaneous tumours [43]
FZR1 KO mouse embryos Embryonic lethality, lack of endoreduplication, [45]
placentation defects
Male FZR1 germline knockout (KO) mice Abnormal proliferation of spermatogonia, infertility, [169]
failure of early meiotic prophase | in male germ cells
Female FZR1 germline KO mice Premature onset of ovarian failure, subfertile females, [169]

defects in early meiotic prophase |

control of E2F which promotes G;-S transition when released by
phosphorylation of pRB by cyclin/CDK4, 6.

Consequences of loss of FZR1

A number of studies have investigated the consequences of aber-
rant FZR1 expression and its loss on cell cycle and tumorigenicity
(Table 2). In budding yeast, FZR1 is required for destruction of
mitotic cyclin during mitotic exit [38] but in Drosophila and frog
embryos it is not required for mitotic exit [39-41]. Major out-
comes of FZRI knockdown in different mammalian cells due
to stabilization of several FZR1 substrates are shortening of G;-
phase, a premature and prolonged S-phase, delayed entry into mi-
tosis and aberrant chromosomal separation and cytokinesis [42].
Conditional knockout of FZRI is lethal in mouse and embryos

die at around E10 due to inability of placental trophoblast cells
to endoreduplicate. This lethality is prevented when FZR1 is re-
expressed in placenta [43]. Recent findings that FZR1 is required
for regulation of G,/M transition during differentiation of pla-
cental trophoblast cells in mice [44], provide an explanation for
the previous findings of Garcia-Higuera et al. [43]. Cells derived
from FZRI knockout mice develop both numeric and structural
chromosomal defects indicating that FZR1 is needed for genomic
stability [43]. FZRI heterozygous mice develop tumours of the
mammary gland, lung, kidney, testis, sebaceous glands and B-cell
lymphomas [43]. More recent studies with oocyte specific dele-
tion of FZR1 show that it is not required for completion of meiosis
and viable pups could be obtained when FZR] negative females
were mated with normal males. However, absence of both female
and male FZRI led to major genomic instability with embryos
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arrested at first mitotic division [45]. All these studies suggest
that FZR1 is essential for maintenance of genomic integrity and
its deficiency leads to tumorigenesis. Therefore, FZR1 has been
proposed to be a putative haploinsufficient tumour suppressor
[24,42,43].

FZR1, SKP2 and p27¥'" in human cancers

Normal human fibroblasts undergo premature senescence after
acute loss of FZR1, hinting at a built-in fail-safe mechanism
against cancer development and the possible underlying molecu-
lar mechanism for the less frequently observed FZRI1 loss in
tumour cells. Thus, it is possible that loss of FZR1 occurs late
in tumour development [46]. Nevertheless, SKP2, an FZR1 tar-
get, is up-regulated in many cancers [47—49]. SKP2 recruits the
cyclin-dependent kinase inhibitory protein (CKI) p27%®! to the
SCF complex for degradation. A variety of carcinoma show a
low level of p27XP! [48,50,51]. Decreased p27X*! levels are cor-
related with high grade of malignancy, low survival rate, greater
tumour size and histological differentiation suggesting possible
role of p27%™P! as a promising prognostic marker for cancer. A
number of solid tumours including lung, breast, ovarian, pro-
state, colon and squamous cell carcinoma manifest conditions
of high SKP2 accompanied by low p27X®!considered to be as-
sociated with highly aggressive tumours [48,49,51-55]. Human
colorectal tumour arrays show higher percentage of SKP2 posit-
ive samples and lower percentage of FZR1 and p27X™! positive
samples and high FZR1 expression was associated with tumours
showing lower grade histology [56]. These data demonstrate a
pathological correlation between FZR1, SKP2 and p27X"! and
suggested that FZR1 levels could be used as a prognostic marker
in colorectal samples. Similar investigations in other types of
cancers would indicate whether it is applicable to other cancers
as well.

Reduced expression of FZR1 is observed in several other tu-
mours other than colon, including brain, liver, ovary, breast and
prostate [57] but it is also overexpressed in certain malignant
tumours concomitantly with Emil [58]. This may represent a
compensatory mechanism as overexpression of Emil can over-
come the cell cycle block due to FZR1 overexpression [59]. It is
noteworthy that in these studies levels of APC/C substrate SKP2,
securin, aurora A, PLK1, FZR1 and Emil correlate positively
with malignancy.

G1-S REGULATION BY
RETINOBLASTOMA

The tumour suppressor pRB plays a crucial role in not only reg-
ulating G, to S transition, but also in quiescence, differentiation
and senescence [60]. Its role in inhibiting G;-S transition by
transcriptional regulation is the best understood among its many
different functions. There are two other family members, p107
and p130, that also act as suppressors of cell proliferation by
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modulating transcription of genes required for cell cycle pro-
gression [61]. The canonical model for G,-S regulation by pRB
is the sequestration of E2F family of transcription factors by
hypophosphorylated pRB and release of E2F upon hyperphos-
phorylation of pRB that promotes the transcription of S-phase
genes (Figure 2A) [62]. Although simple and elegant, this model
does not explain the retention of tumour suppressor activity of
pRB mutants that cannot bind E2F [63].

The search for an alternative mechanism of G, regulation by
PRB led to the discovery that APC/CF”R! and SKP2 simultan-
eously bind to pRB resulting in SKP2 degradation and accu-
mulation of p27¥P! [64]. Wild-type pRB expressing cells can
arrest in G, before E2F mediated transcriptional repression, and
a pRB mutant R661W, defective for binding to E2F in vitro, re-
tains the ability to interfere with SCF mediated degradation of
p27XP! [65]. In the absence of growth-promoting signals, pRB
interacts with the N terminus of SKP2 and inhibits SKP2 me-
diated p27%®! degradation [65]. The findings of Binne et al.
[64], provided a satisfactory explanation of these earlier studies
and demonstrated the existence of a post-translational mechan-
ism of pRB with APC/CF?R! that may precede and is distinct
from the pPRB—E2F mediated transcriptional control for G, arrest
(Figure 2A). Apart from SKP2, PLK1 also showed significant
accumulation when pRB levels were down-regulated by shRNA
whereas other known cell cycle proteins like CDC20, aurora A
or geminin were not affected [64]. Although pRB—APCFZR! in-
teraction was not detected in nontransformed, primary human
fibroblasts growing asynchronously, it could be detected when
these cells were contact inhibited suggesting additional factors
controlling the interaction of pRB and FZR 1. pRB depletion from
contactinhibited U20S osteosarcoma cell line caused an accumu-
lation of SKP2 suggesting crucial role of this interaction for cellu-
lar differentiation compared with proliferation situations [64,66].
Accumulation of other FZR1 substrates like PLK1, but not those
of CDC20 substrates, cyclin B1 and securin, in these cells also
suggests that there may be other substrates whose levels may be
regulated by pRB-FZR1 interaction. Identification of these sub-
strates and what pathways they function in will allow a better un-
derstanding of mechanistic aspects of pRB mutations in various
cancers.

Genetic investigations reveal that unlike p107 or p130, only
pRB mutations are commonly found in human cancers. Studies on
mice lacking different combinations of pocket pRB/p107/p130
genes suggest that pRB has significantly stronger tumour sup-
pressor properties than p107 or p130 [61,67]. Retinoblastoma
contains three functional domains: The N-terminal domain
(RB-N), followed by the AB and the C pockets (Figure 2B).
The pRB-AB pocket provides a conserved structural motif called
the double cyclin fold found in cyclins which function as modules
for protein recognition [68].There is structural similarity between
pRB N-terminal domain and the AB cyclin-like folds suggesting
domain duplication [69]. Domains A and B interact with each
other along an extended interdomain interface to form the cent-
ral ‘pocket’ [70,71] which is essential for the tumour-suppressor
activity of pRB [72]. Most mutations in pRB are associated with
pocket domains. The AB pocket domain is not only crucial for
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Figure 2 Different mechanisms of G;-S regulation by pRB

Transcriptional and post-translational regulation of G1-S transition by pRB-E2F and pRB-APC/CFR*! complexes. The phos-
phorylation status of pRB is indicated by black solid balls, with numbers of balls reflecting hypo- or hyper phosphorylation
of pRB (not actual number of phosphorylation sites) (A). Domain organization of pRB showing phosphorylation sites and
regions of interactions with various cellular proteins. Numbers show amino acid positions (B).

interaction of pRB with E2F but also a target of several trans-
forming viruses as detailed below.

Inhibition of pRB function by viral oncoproteins

Transforming viruses like human papilloma virus (HPV), aden-
ovirus and SV40 attack pRB via proteins containing an LxCxE
motif (Figure 3A). HPV E7, SV40 large T-antigen (LT) and Ad-
enovirus 5 E1A proteins bind to pocket proteins and displace E2F
transcription factors. Like pRB, p130 and p107 are also predicted
to contain LxCxE-binding clefts, which bind viral proteins. High
risk HPV16 E7 and 48E7 target other pocket proteins like p130 in
addition to pRB to overcome cell cycle block. LxCxE motif is a
ligand short linear motif (SLiM) that often acts as a simple inter-
face that recruits proteins to multi-protein complexes. This SLiM
of viral and cellular proteins binds within a cleft located in the

B-pocket of pRB (Figure 2B). The hydrophobic groove in pRB
pocket domain B which forms the LxCxE motif binding site con-
sists of four conserved amino acids Tyr-709, Lys-713, Tyr-756
and Asn-757 which are involved in contacting the backbone of the
LxCxE peptide. Mutation of these contact amino acids inhibited
binding of pRB to LxCxE motif carrying proteins [71,73-75].
Crystal structure of pRB reveals that the region of pRB where the
LxCxE peptide binds consists of a patch of positively charged
amino acids [71]. A series of E7- and HDAC-1-derived peptides
with single or double amino acid substitutions in LXCXE mo-
tif was used to show that any positively charged residue in and
around the LxCxE peptides had a significant effect on weakening
the binding [76].

Although several oncogenic viral proteins display a high af-
finity binding to pRB via the LxCxE motif, the molecular mech-
anism of displacement of E2F from pRB is different in each case
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(Figure 3B). Small DNA viruses such as adenovirus, HPV and
polyomavirus carry conserved regions (CRs). The LxCxE motif
is found in the CR2 region in these DNA viruses (Figure 3A) [77].
In spite of the fact that these viral oncoproteins share the LxCxE
motif, its location is in considerably dissimilar molecular context
explaining the differential mechanisms of displacement of E2F
by viral LxCxE proteins (Figure 3B). Although CRI of E1A is
sufficient to compete with E2F for binding to pRB, the equi-
valent region of E7 is neither necessary nor sufficient [78—-80].
HPV ET7 uses high affinity LxCxE mediated binding followed by
engagement of E7-C terminal region with pRB C domain which
is required to displace pRB—E2F [81] and also destabilizes pRB
through proteasomal degradation via reprogramming of the cullin
2 ubiquitin ligase complex [82-84]. CR1 region of Adenoviral-
E1A and the transactivation domain (TA) of E2F compete for
the same binding site on pRB and thus E1A uses a competitive
binding to pRB (Figure 3B) [78]. SV40 LT antigen possess N-
terminal J domain that recruits hsc70, a DnaK homologue and
uses a chaperone like mechanism to displace pRB-E2F complex.
The pRB-E2F complex is then transferred from SV40LT to the

ATPase domain of hsc70 resulting in ATP hydrolysis and con-
formational changes in hsc70 thereby releasing pRB and E2F as
separate molecules (Figure 3B) [85]. These results suggest that
pRB associates with viral oncoproteins and E2F through over-
lapping but distinct domains and viral LXCXE is necessary for its
binding to pRB, though not sufficient to displace E2F.

The binding kinetics of LxCxE to pRB is modulated by a
casein kinase II and PEST sequence (CK2-PEST) present in
all three viral proteins HPVE7, SV40LT and AdE1A. It is be-
lieved that the complex between LxCxE and pRB is stabilized
by CK2-PEST by increasing electrostatic interactions that can
aid in a faster kinetics of association [81]. Although the PEST
sequence is supposed to contribute to long-range interactions, the
phosphate groups contribute to both long and short-range inter-
actions. The long range interactions have fewer conformational
restrictions, the short range interactions will be conformationally
restricted and therefore are likely to form later during association
reaction [81].

Mutations in the LxCxE binding cleft of pRB do not pre-
vent pRB from binding and inactivating E2Fs [86]. Full-length
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E7 protein carrying mutations outside the LxCXE motif inhibits
RB-E2F binding, but retains cell cycle arrest [87], demonstrating
that LxCxE dependent interactions of pRB to be distinct from
pRB pool binding to E2Fs. These studies also indicate that E2F
independent pRB pathways guard proliferative pathways. Bio-
chemical, biophysical and molecular dynamics studies show that
the binding of E7 peptide with pRB-E2F complex alone is not
sufficient for the dissociation of E2F [88-90] leading to the idea
that pharmacological molecules can be designed that can inhibit
the binding of E7 without displacing E2F.

pRB mutations affecting LxCxE based interactions
Many mutations within the pRB LxCxE binding cleft disrupt the
interaction of pRB with the viral oncoproteins [73]. An M704V
variant of pRB retains its ability to interact with E2F3/DP1, but its
ability to interact with LxCxE of SV40LTis greatly compromised
[91]. A C706F variant found in small cell lung cancer is unable
to interact with LxCXE motif of SV40-LT and adenovirus E1A,
whereas retaining its interaction with E2F transcription factors
[92,93].

A number of naturally occurring point mutations of pRB found
in cancer cells result in disruptions of the integrity of the AB
pocket [94,95]. V654L mutation results in reduced penetrance,
but substitution of glutamic acid for valine at the same position
yield a highly penetrant phenotype [96,97]. Structural studies
reveal that this valine residue lie 90-100% buried within the
pRB pocket domain. Hence substitution of valine to a charged
residue may possibly alter the protein structure [71]. However,
effect of this mutation in its binding to E2F and LxCxE has not
been determined. Some pRB mutations have extremely low pen-
etrance caused by pRB promoter mutations or splice mutations
resulting in truncation of translation of unstable mRNA resulting
in reduced pRB expressivity [98]. These weak alleles suppress
tumorigenesis in the biallelic state but not in the monoallelic
state. These include a deletion involving exons 24 and 25 [99],
a splicing mutation C712R at the final base of exon 21 [100],
a deletion of Asn-480 and a point mutation R661W [96,101].
Surprisingly, all these pRB mutations reside in the B box of pRB
and result in reduced binding to LxCxE proteins and minimal
binding to E2F [98,102]. C712R mutation is in proximity to
Lys-713, which is a key residue in binding to LxCxE-containing
proteins such as HDAC [71,86]. These low penetrant mutants
defective in binding to E2Fs and LxCxE, retain partial tumour
suppressor activity suggesting that E2F and LxCxE binding are
not the only mechanisms through which pRB inhibits cell growth
[103,104].

Many cellular proteins that interact with pRB also contain
LxCxE motif and many of these proteins are chromatin modifi-
ers [105]. It can be expected that mutations in LxCxE binding
region in pRB potentially affect many cellular interactions and
defining the molecular basis of any observed phenotype is dif-
ficult. Therefore, deletion or point mutation of LxCxE motif of
individual pRB interacting proteins in isolation is required to
understand the functional importance of this motif in different
cellular partners of pRB.

INTERACTION OF LxCxE CONTAINING
CELLULAR PROTEINS WITH pRB

Approximately 30 cellular proteins, including RBP1, RBP-2,
CtIP, EID-1, MAP3KS5 (ASK-1), gankyrin, cyclin D1, D2, D3
and HDAC-1 and -2, that bind to pRB have a conserved LxCxE
motif. However, mutations in the LxCxE motif of cellular pro-
teins have varied effects on interaction and function with pRB
(Table 3). Mutations in LXCxE motif of cyclin D1, D2 and ASK-1
profoundly diminish their binding to pRB. The LxCxE motif of
cyclin D1 is not necessary for its function, but the motif is required
by cyclin D2 [106-108]. Although mutation in LxCxE motif of
RBP-1 replacing ‘E’ to ‘K’ retains its binding to pRB [109],
mutation at similar position replacing ‘E’ to ‘A’ in oncoprotein
gankyrin abrogates its binding to pRB. Gankyrin binding to pRB
accelerates phosphorylation and degradation of pRB, releasing
E2F transcription factor to activate DNA synthesis genes [110].
Surprisingly, mutation within the LxCxXE motif of RBP2 resulted
in loss of ability to precipitate p107, whereas retaining its bind-
ing to pRB [109]. Replacement of LxCxE of BRCA1 to RxRxH
retained its binding to pRB. However, RxRxH mutation altered
the tumour suppressor activity of BRCA1 [111]. These studies
suggest that the mere presence of the motif is not predictive of
its importance for interaction and function of pRB.

Unlike HPVE7, SV40 LT and AdE1A, that all have the CK2-
PEST sequences, only some cellular LxCxE containing proteins
have an acidic region or phosphorylation site whereas others do
not. No systematic study has been carried out to correlate the
presence or absence of such regions on modulation of binding of
LxCxE containing cellular proteins with pRB. Viral oncoproteins
carrying LxCxE motif can displace cellular proteins like cyclin
D, HDAC-1 and BRG1 from pRB [112]. Cyclin D and BRG1
do not have an acidic region whereas HDAC-1 has an acidic
region. Thus, presence or absence of acidic region does not seem
to determine whether viral proteins can displace cellular proteins
from pRB. Rather, binding affinities and phosphorylation status
may be more important.

pRB is a conformationally plastic protein in response to phos-
phorylation [113]. Among the 16 phosphorylation sites identi-
fied, no phosphorylation site is found in the B-pocket suggest-
ing that modifications in this structure are not tolerated [114].
Phosphorylation at Thr-821 and Thr-826 inhibits binding of pRB
B-box to LxCxE motif containing proteins without affecting pRB
binding to E2Fs [113]. The AB domain is reported to be meta-
stable whose native state can be destabilized even by mild perturb-
ations [115]. RB-AB unfolding presents a three-state transition
involving cooperative secondary and tertiary structure changes
and a partially folded intermediate that can oligomerize. This
property of pRB-AB may allow the formation of multi protein
complexes, constituting a robust mechanism to retain its cell
cycle regulatory role [115]. Equilibrium unfolding studies sug-
gest that the equilibrium between native and non-native states
of the AB domain is strongly influenced by LxCxE and other
ligands, with degree of stabilization correlating with ligand bind-
ing free energy. Molecular dynamics studies suggest that the
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Table 3 Effects of mutations in the LxCxE motif of cellular proteins on their function and interaction with pRB

PRB binding protein LxCxE mutation Effect on binding to pRB Effect on function References
RBP-1 Eto K Retains binding to pRB ND [109]
HBP-1 C to G in both LxCxE and LxCxE No binding to pRB Loss of transcriptional repression [170]
by HBPI
CtIP Deletion No binding to pRB ND [171]
HDAC-1 Deletion No binding to pRB Inhibition of pRB repressive [172,173]
function
BRG-1 Mutation in pRB LxCxE cleft Retains binding to pRB ND [86]
EID-1 Deletion No binding to pRB No effect [174]
Gankyrin Eto A No binding to pRB Inhibition of phosphorylation and [110]
degradation of pRB
RFC-1 CtoG,EtoK No binding to pRB Loss of RFC function in promoting [175]
cell survival after DNA damage
BRCA-1 RXRXH Retains binding to pRB Altered tumour suppressor [111,172]
activity of BRCA1
ASK-1 LKCFE to VRCFD No binding to pRB Altered ASK-1 activity in induction [106]
of apoptosis
Cyclin D1, D2 CtoG,EtoK Profoundly diminished binding Partial abrogation of pRB-induced [107,176]
to pRB growth arrest and senescence
RBBP-9 LtoQ No binding to pRB ND [177]
NuMA CtoG,EtoK No binding to pRB Abnormal organization of spindle [178]

microtubules

stability of pRB-AB in the apo- and in E7 bound forms is similar
but it increases in the E2F bound form. The binding of E7 peptide
through its LxCxE motif with the B box of pRB induces the con-
formational changes around A-B interface where E2F binds to
pRB [115]. These studies suggest that pRB native structure is sta-
bilized in vivo by interactions with its numerous ligands and the
native state may be very sensitive to destabilization by mutations.
There are many mutations reported for pRB in various databases
of cancers but the mechanism by which they affect pRB function
is not understood in each case. Although some of the missense
mutations may have no effect, others may affect the stability and
conformational dynamics of pRB and its ability to interact with
LxCxE containing proteins that can compromise its function.

pRB-APC /CFZR1 jnteraction

Although there is lack of structural details of interactions between
APC/C and pRB, studies on RB mutagenesis suggest that FZR1
binding involves the pRB LxCxE-binding cleft in the AB pocket
[64]. Unlike E2Fs and viral oncoproteins, the possibility that the
same RB molecule can regulate E2F and APC-SKP2—p27XIP!
activities simultaneously does not seem plausible. It is also un-
clear whether pRB—SKP2—p27XP! pathway is equivalent in im-
portance with E2F transcriptional repression in cell cycle regula-
tion. Interestingly, neither p107 nor p130 display any affinity for
APC/C subunits [64]. Further, pRB associates exclusively with
FZR1 and not CDC20 [64]. The C-terminus WD40 domain of
FZR1 contains a motif similar to the LxCXE motif. Loss of the
C-terminal 100 amino acids of FZR1 impairs pRB binding [64].
The presence of LxCxE motif within this deleted region hints at a
possible role of this motif in binding of FZR1 to pRB but the im-

portance of the motif for interaction with pRB is not known. HPV
E7 protein bound to pRB establish a dual-contact mode with 90 %
of the binding energy determined by the E7 LxCxE motif, with an
additional binding determinant located in the C-terminal domain
of E7 [90]. Whether FZR1 has a single or multiple contact sites
for pRB is not known. The modular structure of pRB and the fact
that both pRB and FZR1 interact with multiple partners, binding
between FZR1 and pRB is likely to be weaker compared with
HPV E7 peptide to allow the periodic changes in the downstream
targets like SKP2 that are required for normal cell cycle.

In vitro studies show that FZR1 can regulate E2F activity in
G, that involves its interaction with hypophosphorylated pRB
but independent from its interaction with APC/C [46]. Another
example of APC/C independent function of FZR1 is promotion of
Smurfl E3 activity in vitro by a C-box deletion mutant of FZR1
that cannot bind to the APC/C core implicating it in osteoblast
differentiation [116], although pRB interaction was not checked
in this study. If confirmed in vivo, these results show that there
may be APC/C independent functions of FZR1-pRB other than
cell cycle regulation and should be taken into consideration while
designing any inhibitor or drug against these target proteins.

APC/C and pRB as drug targets

Itis becoming clear in recent years that the role of proteins defined
as tumour suppressors is not as clear cut as previously thought and
the cellular and genetic context defines the functional outcome
of mutations, inactivation and dosage effects. Both APC/C and
pRB regulate many, and often contradictory functions in a cell
and decide the fate of many proteins. Both are also targets of vari-
ous transforming viruses. During cancer progression, changes in
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developmental phenotype are thought to involve pRB [117,118].
Due to their many interacting partners and the fact that APC/C is
a multi-subunit assembly where the functions of each subunit are
still not defined, both protein interface drug discovery and high-
throughput screening approaches may need to be explored. The
latter has been used to find promising lead compounds inhibiting
APC/C and SKP2/CKSI interaction [119,120].

Various components of the UPP are considered attractive drug
targets and the success of Bortezomib, a proteasome inhibitor, in
treatment of multiple myeloma has pushed UPP at the forefront
as drug target. Of the three classes of enzymes in the pathway,
E3s are considered to be better targets compared with E1 and E2
because they determine the substrate specificity thus potentially
more targeted therapies can be developed. Conversely, multipli-
city of substrates can be a challenge for targeted therapies. The
other concerns are the therapeutic window and the selectivity
between normal and cancer cells. Despite of these concerns, the
attractive feature of APC/C as a potent drug target is that out-
come of APC/C activity can be controlled by modulating either
of the two adaptor proteins — FZR1 or CDC20. Anti-mitotic re-
agents like Taxol and Nocodazole, used as anti-cancer therapies,
activate the SAC presumably through inhibiting APCP20 [121].
Therefore, development of inhibitors that will specifically target
CDC20 could reduce the off-target and side effects. CDC20 is
a preferred target compared with FZR1 as its function and sub-
strates are mostly restricted to mitosis whereas FZR1 has a much
broader substrate range and functions. However, due to its role
in maintenance of Gy/G; state and inhibition of G;-S transition
along with pRB, agonists can perhaps be designed that can pro-
mote these functions of FZR 1. For example small molecules that
may stabilize FZR1-pRB interaction or inhibit the release of
FZR1 from pRB may prove useful to prevent proliferation. Inter-
dependence between FZR1, SCF, CDC20 and Emil can also be
exploited by combining antagonists and agonists [122]. Centro-
some amplification, a common feature of many cancer cells has
been proposed to drive genomic instability. Degradation of the
motor protein kinesin-5 (Eg5) by APC/CF2R! is required for the
clustering of these extra centrosomes. Accumulation of Eg5 in
cells expressing FZR1 carrying mutations in certain D- or KEN-
box motifs causes cancer cell death [123]. These studies hint
future prospects of developing drugs targeting FZR1 at specific
motifs.

The strategies for drug development with pRB as a target may
include pRB-mediated promotion of cell cycle inhibition, senes-
cence, apoptosis or differentiation of cancer cells or exploiting
its absence for targeted killing. Each of these strategies will have
to take into account the status of pRB in different cancers. Struc-
turally defining individual protein interaction surfaces within or
outside the pocket domain of pRB that mediate some of the pRB-
specific tumour suppressor functions and that are not conserved
in p107 and p130 represent attractive drug targets for pRB. Cells
deficient in pRB are more susceptible to apoptosis induced by
DNA damage and this capability is linked to its growth sup-
pression activity. This property is useful for cancers that are pRB
negative. Indeed, pRB negative breast cancer cells are more sens-
itive to chemotherapy compared with pRB positive breast cancer

cells [124]. Since cyclin D/CDK4, 6 mediated phosphorylation of
pRB results in release of growth promoting E2F, CDK inhibition
has been explored as a strategy to prevent pRB inactivation and
reestablish cell cycle control. Among these inhibitors flavopiridol
and roscovitine have a very broad range of targets but can inhibit
cell cycle and cause cell death. Despite this flavopiridol is not ef-
fective in many cancers [125]. More specific inhibitors have been
developed against CDK4/6 among which palbociclib, the most
successful, has been evaluated in mono- as well as combination
therapy and is in the Phase III trial [126]. However, a range of
sensitivities to palbociclib was noted in breast cancer [127].

Since the binding of E7 LxCxE peptide with pRB—E2F com-
plex alone is not sufficient for the dissociation of E2F, pharma-
cological molecules can be designed that can inhibit the bind-
ing of LxCxE dependent interactions of viral proteins with pRB
without disturbing pRB/E2F interactions [88]. However, such
an approach will need to consider the effect on cellular LxCxE
containing proteins. Perhaps a better strategy will be to exploit
phosphorylation mediated plasticity of pRB to prevent its inac-
tivation. This approach has been used to investigate the efficacy
of an LxCxE peptide as an inhibitor of phosphorylated T373
mediated conformational change that weakens the interaction of
E2F with pRB [128]. The LxCxE peptide from HPV E7 was
found to have a modest effect and full length HPV E7 had better
effect on activation of phosphorylated pRB in vitro in this study.
Significantly, LxCxE peptides derived from cyclin D could not
activate pRB.

FUTURE DIRECTIONS AND
PROSPECTS

Both APC/C and pRB are critical determinants of important cel-
lular decisions regarding proliferation, differentiation and quies-
cence. Both are also targeted by several viruses for proliferative
advantages. The interaction of these two important players adds
another layer to the G;-S regulation which is an important phase
of the cell cycle in which cells can choose between different
fates. This interaction, although providing an explanation for the
retention of growth suppressor activity of pRB mutants defective
in E2F binding, opens many important new questions. Further re-
search is required to understand the mechanisms that regulate the
FZR1-pRB interaction, the number and type of APC/CFR! sub-
strates that are affected by this interaction, whether pRB makes
contacts with other APC/C subunits and the molecular mechan-
ism by which pRB stimulates SKP2 ubiquitination. What other
substrates, other than PLK1 and SKP2 are directly affected by
this interaction is also an open question. Answers to these ques-
tions will provide further insight into the molecular mechanism
of APC/C function and provide clues that can be exploited to
develop better inhibitors.

It is interesting that among cellular proteins carrying LxCxE
motif that bind to pRB, several are ubiquitin ligases. Apart from
APC/CF2R! BRCA-1 and NRBE3 are other E3 ligases that bind to
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pRB. NRBE3 is a novel pRB ligase that promotes pRB degrada-
tion and is transcriptionally regulated by E2F transcription factors
[129]. All the three E3 ligases contain LxCxE motif (Ramanujan
and Tiwari, unpublished observations). Future work is required
to functionally and structurally dissect the role of ubiquitin li-
gases in association with pRB and to identify E3 ubiquitin lig-
ases responsible for proteasome mediated degradation of pRB.
There are increasing evidences of viruses inactivating key cell
cycle players, the most recent being that of Epstein—Barr virus
(EBV) protein kinase BGLF4 directly binding and phosphorylat-
ing CDC20, possibly allowing CDC20 to be targeted by SCF for
degradation [130]. EBV nuclear antigen 3C (EBNA3C) is also
linked to regulation of the SCF complex thereby mediating de-
gradation of pRB through the SCFSX?2 complex [131]. We spec-
ulate that transforming viruses might disable APC/C throughout
the cell cycle, by inactivating its activity mediated by both its ad-
aptor proteins, FZR1 and CDC20. It is important to understand
the mechanistic basis of these interactions and understand their
functional implications to be able to develop better anti-viral and
anti-cancer drugs.
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