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Multiple novel gene-by-environment interactions
modify the effect of FTO variants on body mass
index
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Genetic studies have shown that obesity risk is heritable and that, of the many common
variants now associated with body mass index, those in an intron of the fat mass and obesity-
associated (FTO) gene have the largest effect. The size of the UK Biobank, and its joint
measurement of genetic, anthropometric and lifestyle variables, offers an unprecedented
opportunity to assess gene-by-environment interactions in a way that accounts for the
dependence between different factors. We jointly examine the evidence for interactions
between FTO (rs1421085) and various lifestyle and environmental factors. We report
interactions between the FTO variant and each of: frequency of alcohol consumption
(P=3.0x10"%); deviations from mean sleep duration (P=8.0 x 10~4): overall
diet (P=5.0x10"9), including added salt (P=12x10"3); and physical activity
(P=31x10"%).
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he obesity epidemic is causing a growing burden on public

health!. Body mass index (BMI), defined as weight divided

by height squared, is the most commonly used measure of
adiposity, with individuals exceeding a certain BMI threshold
classed as obese?. BMI, such as obesity, is positively correlated
with metabolic abnormalities, many common diseases and all-
cause mortality’. While the principal causes of the obesity
epidemic may be environmental at a societal scale, studies have
shown that genetic differences underlie much of the variation in
BMI between individuals*. Understanding the genetic risk factors,
as well as the way in which they interact with environmental risk
factors, can thereby give new insights into the biology underlying
obesity.

The common genetic variants with the largest effect on BMI
variation between individuals are located in an intron of the
fat mass and obesity-associated (FTO) gene®. In Europeans,
each additional copy of the risk allele at single-nucleotide
polymorphism (SNP) rs1558902, one of the cluster of
associated SNPs, increases average BMI by between 0.35 and
0.43kgm ~ 2, explaining ~0.34% of the variation in BMI>®. The
fact that the variants are located in an intron of the FTO gene
does not establish that they act through that gene. Nevertheless,
for convenience, we will follow other authors and refer to the
locus and to the associated variants as ‘FTO’, with specific SNPs
referenced when relevant. While progress has been made in
understanding the causal mechanisms through which the FTO
risk alleles increase BMI, implicating regulation of expression of
other genes’™, the mechanisms and their interactions with
lifestyle and environmental factors are not fully characterized.

There have been many small studies examining interactions
between the FTO locus and various environmental and lifestyle
variables. Results have often been inconsistent, especially when
comparing studies across different cultures or ethnicities. One
possible cause of the inconsistencies may be the difficulty of
measuring environmental variables consistently across studies,
but low power to detect interactions may also be a contributing
factor. Nevertheless, large meta-analyses have found a reduction
of the effect of FTO on BMI of ~30% in physically active
people!®~12. FTO has also been linked to interactions with diet,
especially fried and fatty foods!>~1®, but did not appear to interact
with macronutrient intake or dietary energy in a meta-analysis!”.

Meta-analyses typically involve some level of data aggregation
within studies before combining across studies. Meta-analyses
have usually proceeded by dichotomizing continuous or ordinal
variables so as to reduce between-study heterogeneity. This
leads to a loss of power compared with a similarly sized study
using the original measurements!8, Dichotomizing variables
can also reduce the specificity and interpretability of results,
which can reduce their utility for public health. The
heterogeneity between different studied cohorts, in both
measurement of the environment and genetic and cultural
heterogeneity, can reduce power compared with a similarly
sized single-cohort study'!.

A major challenge in studying environmental risk factors is
that many of these are highly correlated with each other. It is then
unclear whether an observed interaction between FTO and an
environmental variable might be driven by its correlation with
other environmental variables. When they are simultaneously
measured on the same individuals, fitting multiple interaction
effects jointly can help determine whether the environmental
variables interact with FTO independently of their correlations
with each other. Power considerations, and/or lack of the
appropriate data, have precluded the fitting of multiple interac-
tion effects simultaneously in smaller studies, and large meta-
analyses have typically analysed only one interaction effect
at a time'®!17, Tt is therefore unclear whether many of the
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interactions reported in the literature are truly independent of
each other and of other variables.

The UK Biobank is a large prospective study of 500,000
individuals aged between 40 and 69 years at recruitment between
2006 and 2010. Extensive measurements and questionnaire
responses, including rich lifestyle and environmental information,
were gathered from individuals at baseline, and biological samples
taken to allow additional assays'®~2!. The recent interim genetic
data release includes genotype data on ~152,000 of these
individuals?>?3. The UK Biobank therefore offers a unique
opportunity to examine interactions between FTO and various
lifestyle, and environmental variables simultaneously in a large
and relatively homogeneous sample.

By joint modelling, we investigated interactions between FTO
(specifically SNP rs1421085) and physical activity, frequency of
alcohol consumption, dietary variation, sleep duration, smoking,
TV watching, and socioeconomic status. We focussed on
rs1421085 following a recent study suggesting this is the causal
variant’. We note that rs1421085 is highly correlated with the
main previously studied SNPs, in particular 1rs9939609
(r* =0.89). This facilitates comparison with previous interaction
studies'®, and we note that the results of our analyses are little
changed if rs9939609 is used for the genetic effect.

We find evidence for novel interactions between FTO and
frequency of alcohol consumption and deviations from mean
sleep duration, with the effect of FTO diminishing with the
frequency of alcohol consumption and increasing with deviations
from average sleep duration. We estimate that dietary variation
has the strongest interaction with FTO and make a novel
observation that the effect of FTO on BMI is enhanced in those
who add salt to food more frequently. Our joint modelling
increases confidence that the interaction between FTO and
physical activity is not due to confounding with other lifestyle
variables in our model. These findings increase our understanding
of how lifestyle modifies the effect of FTO on BMI, which may be
indicative of more general mechanisms of relevance to the
management of obesity genetic risk.

Results

UK Biobank samples. We first constructed three distinct subsets
of individuals from the full UK Biobank sample with complete
information for the requisite lifestyle and anthropometric
variables (Methods). The first subset is a set of 231,906 indivi-
duals with self-declared British ancestry who were born in the
United Kingdom or Ireland on whom genetic data were not
available in the interim data release. The second subset is a set of
89,552 ‘British” individuals on whom genotype information was
available and who passed sample QC and were identified in the
UK Biobank QC analysis as being of self-declared British ancestry
and for whom genome-wide genetic analyses confirmed
northern-European ancestry. We pruned this subset of any
individuals with third degree or closer relatives genotyped in the
UK Biobank. The third subset is the remaining 29,580 individuals
passing UK Biobank sample QC for whom genetic data is
available, which we label the ‘Diverse Sample’. The self-declared
ethnicities of this subset are reported in Supplementary Table 1.
While 71% are of British and Irish ethnicity, there is considerable
genetic diversity present (Supplementary Fig. 1), with ~17% of
the sample from a non-white background and 21% born outside
the United Kingdom and Ireland.

We used the first of these subsets, which we refer to as the
‘non-genotyped sample’ to learn about the relationship between
lifestyle factors and BMI.

The reason for defining two separate groups among individuals
with genotype data was to allow us to deal with the differing types
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of population structure present in a computationally efficient
manner. Population structure affects genetic association testing
when a trait differs in a systematic way between populations that
differ genetically?®. A similar effect can be caused by family
relatedness between members of a sample?%. Linear mixed models
have been proven to be effective at controlling for both population
structure and family relatedness®®, although they are compu-
tationally expensive. Our split of the samples enabled us to only use
a computationally expensive mixed model analysis in the smaller
‘Diverse’ Sample to control for the complex structure present
(Supplementary Note 1). The British Sample, in contrast, has
weaker population structure and has been pruned of relative pairs,
allowing us to employ principal component analysis (Methods),
which has been proven effective at controlling for structure in UK
samples without close relatedness?>2® and is computationally more
efficient. The sample split also gives us some power to observe
heterogeneity of effects between the British Sample and a more
genetically and culturally Diverse Sample.

The baseline characteristics of the samples are recorded in
Table 1. Height was measured at assessment centres by a Seca
240 cm height measure, and weight was measured using a Tanita
BC418MA body composition analyser?’.

Construction of activity and diet scores. The UK Biobank
contains many highly correlated lifestyle variables that affect BMI
(Methods). To reduce dimensionality, we constructed a single
summary variable, which we refer to as a ‘score’, for physical
activity and diet. We briefly outline the score construction in the
following—see Methods for details.

The scores weight the different variables in a category
(for example, physical activity) by the strength and direction of
their association with BMI, while accounting for their correlations
with other predictors of BMI. In brief, in the non-genotyped

sample, we regressed log-BMI on all the variables in the categories
together with other variables associated with BMI. We then used
cross-validation to remove variables without any apparent
predictive ability?, and refitted the model on the remaining
variables. The fitted coefficients from this model for the variables
in a particular category were then applied to those variables for
each individual with genotype data to calculate the category score
for that individual. The category score can be thought of as the
best single predictor of BMI based on the variables in that
category. Note that to avoid possible over-fitting, we estimated
the coefficients used to calculate the score in a distinct set of
individuals from those in which we actually calculated scores. The
variables used to construct each score are listed in Table 2 under
the ‘BMI’ model.

Modelling. We fitted models separately in the British and Diverse
Samples and tested for heterogeneity between the samples using
the standard Q statistic for heterogeneity in meta-analysis®®. We
combined estimates in a fixed effects meta-analysis using the R>
package ‘meta’! if the P value for the heterogeneity test was
above 0.05. We performed 25 interaction tests in total and
considered an interaction significant if its P value was less
than the Bonferroni-corrected significance threshold of
0.05/25=0.002. The same numbers of tests for main effects
were performed, so we used the same significance threshold for
these. We report the uncorrected P values.

Unless otherwise stated, we modelled BMI on the log-scale
(Methods), and we report estimated effects transformed back
onto the original scale, where we express them as a percentage
change in BMI per s.d. of the relevant predictor. We give the 95%
confidence intervals in square brackets.

Our primary analyses involved fitting the ‘Scores Model’
(Table 2) that jointly models all main effects of BMI-associated

Table 1 | Baseline characteristics of the samples.

British Diverse
Sample size 89,552 29,580
BMI 27.4 (4.69) 27.4 (4.82)
Age (years) 56.8 (7.93) 55.6 (8.21)
% Male 48.2% 46.1%
Copies of rs1421085 risk allele 0.801 (0.69) 0.799 (0.694)
Townsend deprivation index —1.64 (2.9) —0.881(3.26)
Sleep duration (hours per night) 7.18 (1.05) 713 (1.11)
% Regular tobacco smoker 9% 10.1%
Hours watch TV per day 2.78 (1.57) 2.71 (1.68)
Alcohol intake frequency (0-5) 3.2 (1.47) 2.96 (1.56)
Number of days/week walk 10 + minutes 5.37 (1.96) 5.38 (1.97)
Number of days/week moderate physical activity 10+ minutes 3.59 (2.33) 3.62 (2.35)
Number of days/week vigorous physical activity 10 + minutes 1.84 (1.94) 1.91 (2)
Cooked vegetable intake (heaped teaspoons per day) 2.69 (1.57) 2.85 (1.95)
QOily fish intake* 1.64 (0.912) 1.66 (0.942)
Non-oily fish intake* 1.81 (0.765) 1.77 (0.8)
Processed meat intake* 1.92 (1.04) 1.82 (1.09)
Poultry intake* 2.32 (0.859) 2.3 (0.91)
Beef intake* 1.48 (0.821) 1.42 (0.869)
Lamb/mutton intake* 1.11 (0.694) 112 (0.749)
Pork intake* 116 (0.698) 111 (0.772)
Cheese intake* 2.56 (1.06) 2.51 (1.1)
Bread intake (slices per week) 12.7 (8.35) 12.3 (8.49)
Tea intake (cups per day) 3.54 (2.77) 3.4 (2.76)
Frequency of added salt (1-4) 1.64 (0.855) 1.71 (0.899)
The mean and s.d. (in brackets) are shown.
*A indicates that the variable is encoded as: O, never; 1, less than once a week; 2, once a week; 3, 2-4 times a week; 4, 5-6 times a week; and 5, once or more daily. Alcohol intake frequency is encoded as:
0, never; 1, special occasions only; 2, one to three times a month; 3, once or twice a week; 4, three or four times a week; and 5, daily or almost daily. For the frequency of added salt, the categories are:
1, never/rarely; 2, sometimes; 3, usually; and 4, always.
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Model

Table 2 | Summary of the variables used as predictors of BMI in each of the models.

BMI Scores Activity Diet

Age and sex
(sex, age x sex, age?, age? x sex, age3, age3 x sex)
East co-ordinate
East co-ordinate x age
East co-ordinate x sex
FTO (rs1421085)
Activity variables

vigorous physical activity 10 + minutes’, and their interactions with age and sex)
Activity variables x FTO
Activity score
Activity score x FTO
Diet variables

Diet variables x FTO

Diet score

Diet score x FTO
Other variables

watch TV, and their interactions with age and sex)
Other variables x FTO

Genotyping array

Genotyping array x FTO

(‘Number of days/week walk 10 + minutes’, ‘'Number of days/week moderate physical activity 10 + minutes’, ‘Number of days/week

(‘cooked vegetable intake’, ‘non-oily fish intake’, ‘oily fish intake’, ‘processed meat intake’, ‘poultry intake’, ‘beef intake’, ‘lamb/mutton
intake’, ‘pork intake’, ‘cheese intake’, ‘bread intake’, ‘tea intake’ and ‘frequency of added salt’)

(‘age’,"alcohol intake frequency’,'sleep duration’,'sleep duration?, ‘current regular smoker (yes/no)’, Townsend deprivation index’, ‘Hours

BMI, body mass index; Cl, confidence interval; FTO, fat mass and obesity associated.

Sample, and we added random effects in a mixed model in the Diverse Sample (Methods).

An ' x " between two variables indicates an interaction effect. The ‘BMI" model is the model chosen by the cross-validation procedure in the non-genotyped sample (see Methods), and the ‘Scores’ Model
uses the coefficients fitted in the ‘BMI" model to construct the activity and diet scores. The ‘Activity’ and ‘Diet’ Models each have their relevant score variable replaced with the constituent variables of the
score: 'Activity score’ replaced with ‘Activity variables’ and so on. Note that to adjust for population structure in the models fitted in the genotyped samples, we added principal components in the British

variables, including the activity and diet scores, and their
interactions with FTO. We report effects from fitting this model
(Fig. 1), and additionally we report main and interaction effects
for the components of the activity (Fig. 2) and diet (Fig. 3) scores
from the ‘Activity’ and ‘Diet’ Models (Table 2). Where there is no
strong evidence for heterogeneity of effects between samples, we
report only the combined estimate. Table 3 gives a statistical
summary of the estimated effects.

FTO. In the Scores Model (Table 2), we estimate that each addi-
tional copy of the rs1421085 risk allele is associated with a BMI
increase of 1.17% in the British Sample ([0.90%, 1.44%], P=1.0
x10~17) and 1.07% in the Diverse Sample ([0.58%, 1.57%],
P=122x 10~ "°). There is no evidence for heterogeneity (P=0.73),
with a combined estimate of 1.15% ([0.91%, 1.38%], P=1.22
x 10~ 2% Fig. 1a). To compare with earlier studies, we also fitted
the Scores Model (Table 2) on untransformed BMI in the British
Sample, giving an estimated additive effect of 0.34kgm ~2, with a
95% confidence interval of [0.26kgm ~2, 0.41kgm ~ 2]. This is in
agreement with a previous meta-analysis (total N ~250,000) esti-
mate of 0.39kgm ~ 2 for 151558902, another FTO SNP in strong
linkage disequilibrium with rs1421085 (refs 5,6).

Physical activity. The activity score is associated with a reduction
in BMI of 1.98% ([ —2.07%, — 1.90%], P<10 %) per s.d., and
there is strong evidence that all the individual activity variables
are also associated with reduced BMI in each sample (Fig. 2a). We
found that FTO interacts with the activity score (—0.23%
[—0.36%, —0.11%], P=3.1 x 10 ~ %), with FTO having a weaker
effect in more physically active individuals.

Physical activity is the variable with the strongest prior evidence
for an interaction with FTO'%!, There is strong evidence for an
interaction between FTO and physical activity from meta-analyses
of North American cohorts and combined European and North
American Cohorts. Some but not all individual studies in European
cohorts have found statistically significant interactions between
physical activity and FTO on BMI*>"%. Large meta-analyses have
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not found statistically significant interactions between FTO and
physical activity when restricted to European cohorts'®!l, To aid
comparison with a previous meta-analysis'®, we fitted the ‘Scores’
Model (Table 2) on untransformed BMI with the activity score
dichotomized at its 20th percentile. Our estimate for the interaction
between physical activity and FTO on BMI in this model is
—0.19kgm ~ 2 difference in per copy FTO effect ([ —0.29kgm ~ 2,
—0.08 kgm’z], P=0.001), which is larger (P=0.075 for
difference) than a meta-analysis estimate of Eurozpean cohorts
(n=164,307: —0.06kgm ~2, [—0.16, 0.03]kgm ~ 2, P=0.18)'°.
We note that the estimate is very close to the estimate from the
European Prospective Investigation of Cancer (EPIC) Norfolk
cohort reported in the meta analysis (—0.18kgm 2
[—0.34 kgm_z, —0.02 kgm_z])lo, which is a cohort of similar
genetic, cultural and age composition®? to the UK Biobank. Our
estimate is thus intermediate between a meta-analysis of North
American  cohorts  estimate  (n=47938: —049kgm 2
[—0.65 —033]kgm~2) and the meta-analysis of European
cohorts estimate’® and is consistent with the EPIC Norfolk
estimate. Our results support the picture in the literature of a
larger interaction effect in North American cohorts compared to
European cohorts.

Alcohol consumption. Frequency of alcohol consumption
is associated with a decrease in BMI of 1.97% per s.d.
(95% confidence interval [—2.06%, —1.88%], P<10%;
Fig. 1a). This is in agreement with previous studies that have
observed the number of days per week that an individual drinks
alcohol is inversely associated with BMI, whereas total alcohol
intake is positively associated®3°.

While FTO has been shown to affect alcohol consumption
patterns®, alcohol consumption patterns have not been
previously found to modify the effect of FTO on BMIL We
found that the effect of FTO on BMI is diminished with more
frequent consumption of alcohol (—0.24% [ — 0.37%, — 0.11%],
P=3.0x10"%.
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Figure 1 | Main effects and interactions with FTO. The estimated (a) main effects on BMI (% change in BMI per risk allele for FTO, per decade for age and
per s.d. for other variables) and (b) interaction effects with FTO on BMI (% change in BMI per FTO risk allele per decade for age and % change in BMI per
FTO risk allele per s.d. for other variables). All main and interaction effects were fitted jointly in the ‘Scores’ Model (Table 2) in both the British
(n~90,000) and Diverse (n~30,000) Samples. The estimated effects are shown along with their 95% confidence intervals in both the British (blue) and
Diverse (red) Samples along with the combined estimate from a fixed effects meta-analysis when no significant heterogeneity between samples was
observed (diamonds). ‘Sleep Squared' refers to squared deviations from mean sleep duration. A star on the right indicates a P value below the Bonferroni-
corrected significance threshold of 0.05/25=0.002.
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Figure 2 | Main effects and interactions with FTO of activity variables. For the components of the activity score, the estimated (a) main effects on BMI
(% change in BMI per s.d.) and (b) interaction effects with FTO on BMI (% change in BMI per FTO risk allele per s.d.). All main and interaction effects
were fitted jointly in the ‘Activity’ Model (Table 2) in both the British (n~90,000) and Diverse (n~30,000) Samples. The estimated effects are shown
along with their 95% confidence intervals in both the British (blue) and Diverse (red) Samples along with the combined estimate from a fixed effects
meta-analysis when no significant heterogeneity between samples was observed (diamonds). A star on the right indicates a P value below the
Bonferroni-corrected significance threshold of 0.05/25 = 0.002.
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Figure 3 | Main effects and interactions with FTO of dietary variables. For the components of the diet score, the estimated (a) main effects on BMI
(% change in BMI per s.d.) and (b) interaction effects with FTO on BMI (% change in BMI per FTO risk allele per s.d.). All main and interaction effects were
fitted jointly in the ‘Diet" Model (Table 2) in both the British (n~90,000) and Diverse (n~30,000) Samples. The estimated effects are shown along with
their 95% confidence intervals in both the British (blue) and Diverse (red) Samples along with the combined estimate from a fixed effects meta-analysis
when no significant heterogeneity between samples was observed (diamonds). A star on the right indicates a P value below the Bonferroni-corrected

significance threshold of 0.05/25=0.002.

Table 3 | Summary of the variables with evidence for
interactions with FTO.
Variable Estimate 95% CI P value
—-0.19 [-0.34, —0.05] 1.0e — 02
Activity score —-035 [-0.6, —0.1] 5.8e—-03
—-0.23 [-0.36, —0.11] 31le—04
—-0.28 [-0.43, —0.13] 2.8e—-04
Alcohol frequency —-0.12 [-0.38, 0.14] 3.6e — 01
—-0.24 [-0.37, —0.11] 3.0e—-04
0.25 [0.11, 0.4] 7.0e — 04
Diet score 0.43 [0.17, 0.69] 11e—-03
0.30 [0.17, 0.43] 5.0e — 06
0.13 [0.04, 0.22] 4.6e — 03
Sleep squared 0.14 (—0.01, 0.3] 7.3e —02
0.13 [0.06, 0.21] 8.0e — 04
0.23 [0.08, 0.38] 2.9e—-03
Added salt 0.17 [—0.09, 0.44] 1.9e — 01
0.21 [0.08, 0.34] 1.2e - 03
BMI, body mass index; Cl, confidence interval; FTO, fat mass and obesity associated.
The table shows the estimated interaction effect with FTO expressed as the % change in BMI
per copy of FTO and per s.d. of the variable. The first line for each variable gives the estimate in
the British Sample, the second line gives the estimate in the Diverse Sample and the third line
gives the combined estimate. ‘Sleep squared’ refers to squared deviations from mean sleep
duration.

Diet score. The diet score was associated with an increase in BMI
of 2.56% per s.d. in the British Sample ([2.45%, 2.67%],
P<1072% and 2.32% ([2.13%, 2.50%], P<10 ~*Y) in the Diverse
Sample, with some evidence for heterogeneity (P=0.024). To
better understand which nutritional properties of diet were
driving the association between diet score and BMI, we took
advantage of a small subsample (~ 12,500 in the British Sample;
~4,500 in the Diverse Sample) of people who had a 24-h diet
recall questionnaire administered, from which UK Biobank esti-
mated nutrient quantities (Methods)*L. Protein, food weight and
saturated fat all had strong positive associations with both BMI
and the diet score.(Supplementary Fig. 2).

We found that the effect of FTO on BMI is enhanced in
individuals with a higher diet score (0.30% ([0.17%, 0.43%],
P=5.0 x 10 ~ %), the strongest estimated FTO interaction effect in
the joint model.

Dietary components. We investigated the relationship between
specific components of the diet score and BMI (Fig. 3a). We
found that how frequently one adds salt to food (added salt)
was associated with increased BMI in the British Sample
(0.60% [0.49%, 0.71%], P<10~3%) and the Diverse Sample
(0.37% [0.19%, 0.56%], P=7.5 x 10 ), with some evidence for
heterogeneity (P =0.034). Added salt was associated with food
energy estimated from 24-h diet recall (P=12x10"3;
Supplementary Fig. 3).
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Cooked vegetable intake is consistently associated with
increased BMI in both the British and Diverse Samples
(combined estimate: 0.76% [0.67%, 0.85%], P<10~39). In the
detailed nutrient study, cooked vegetable intake is associated with
increased protein, carbohydrate and food weight (Supple-
mentary Fig. 3), which are all associated with increased BMI
(Supplementary Fig. 2), possibly explaining the positive associa-
tion between cooked vegetable intake and BMI.

We investigated whether there was evidence for an interaction
between FTO and any of the 12 variables comprising the diet
score (Fig. 3b). The strongest evidence for any particular
dietary variable interacting with FTO is for added salt

(021% [0.08%, 0.34%], P=12x10"3); the effect of
FTO is increased for individuals who add salt to food more
frequently.

We also tested for interactions between FTO and the estimated
nutrient quantities for the subset of the British Sample for whom
a 24-h dietary recall questionnaire had been administered
(n~12,500, so substantially less powered than our main
analyses), and we did not find any statistically significant
evidence for interactions (data not shown).

Sleep. A non-linear U-shaped relationship between sleep dura-
tion and BMI has been observed*2. We fitted both sleep duration
and the squared deviation from mean sleep duration as effects on
BMLI, finding that the linear term is associated with reduced BMI
(British: — 0.48% [ — 0.58%, — 0.38%], P=7.7 x 10~ 2%; Diverse:
—0.36% [ — 0.55%, —0.18%], P=1.1 x 10 % Fig. 1a), while the
squared deviation is associated with increased BMI (British:
0.42% [0.36%, 0.49%], P<10 ~ %% Diverse: 0.47% [0.36%, 0.58%],
P=4.7x10"18), This is in agreement with previous studies
showing that more sleep is associated with lower BMI in a small
range around the average, while large deviations from the average
amount of sleep are associated with increased BMI.

There was no evidence that linear variation in sleep duration
modifies the effect of FTO on BMI (— 0.02% [ — 0.17%, 0.13%],
P=0.43), whereas there was evidence that increases in the
squared deviation from mean sleep enhance the effect of FTO on
BMI (0.13% [0.06%, 0.21%], P=8.0 x 10~ *4).

Townsend deprivation index. Lower socioeconomic status has
been shown to be associated with higher BMI in developed
countries®>. The Townsend deprivation index is a combined
measure of indicators of socioeconomic deprivation in a
geographic region*!, and in our data it is associated with
increased BMI (1.15% [1.06%, 1.25%], P< 10 ~3Y). The estimated
interaction between FTO and Townsend deprivation index was
not significant after Bonferroni correction (P=0.035).

Age. We found evidence that age is associated with reduced BMI
in the joint model in the British Sample (—0.25% per decade
[—0.48%, —0.03%], P=0.026; Fig. la), although its univariate
correlation with BMI is positive. In the Diverse Sample, age is
associated with increased BMI in the joint model (0.44% per
decade [0.02%, 0.86%], P=0.040 in the Diverse Sample).
The age range in the genotyped sample is between 39 and 70, so
the effect of age estimated here reflects the difference between
middle and older age, and is not informative for ages outside this
range. While we saw evidence for an interaction between FTO
and age this was not significant after Bonferroni correction
(P = 0.006).

TV watching. TV watching has been shown to strongly correlate
with BMI*®, and does so in our data (2.76% [2.66%, 2.85%],
P<1073%). In contrast to a previous study*’, we do not find

strong evidence for an interaction between TV watching and FTO
(0.11% [ — 0.03%, 0.24%], P =0.15). However, we note that fitting
a non-joint model with only the interaction between TV and FTO
in the British Sample results in a much more statistically
significant interaction estimate (0.21% [0.07%, 0.35%], P = 0.003),
demonstrating that joint interaction modelling can prevent
overestimation of interaction effects in the presence of multiple
correlated lifestyle factors.

Current smoking. While there is evidence that being a current
regular smoker is associated with having a lower BMI than
otherwise (—1.48% [—1.57%, —139%], P<10~3), there
is no evidence that the effect of FTO is different between current
regular smokers and others (0.03% [ —0.11%, 0.16%], P = 0.69).

Robustness of interaction effects. We undertook various sensi-
tivity analyses to examine how robust the interaction effect esti-
mates were to potential sources of bias and confounding
(Methods).

First, we tested whether our results were sensitive to exclusion
of individuals with depression or diabetes and found they were
not.

We analysed data on only one time point, so the effects we
estimated between BMI and lifestyle variables could have been
partially caused by behavioural modifications in response to
changes in BMI—instances of ‘reverse causation’. Reverse
causation would only generate a statistical interaction between a
lifestyle factor and FTO on BMI if changes in the lifestyle factor in
response to BMI depend on FTO genotype. We had limited
power to address this issue, but there was information in
participants’ responses to questions about changes in dietary and
alcohol consumption in the last 5 and 10 years, respectively.
We found no evidence that the interaction effects were
driven by recent changes in diet and alcohol consumption
(Methods). However, by analysing the effect of FTO on lifestyle
variables before and after correcting for BMI (Methods and
Supplementary Table 2), we did find evidence that alcohol
consumption may be decreased in response to increased BMI
(Methods).

Given that all of the environmental variables we tested for
interactions with FTO are related to overall health, we added
self-rated overall health and its interaction with FTO to the
models to test whether any of these interaction effects were being
driven by their correlation with overall health (Methods). The
interaction effects estimates were barely changed by this, arguing
against major confounding with overall health.

Discussion
We have jointly analysed interactions on BMI between a variant
in the first intron of the FTO gene (rs1421085) and several
environmental and lifestyle factors. We undertook these joint
analyses separately in two subsets of the UK Biobank data, a large
(n~89,500) ‘British® Sample, and a somewhat smaller
(n~29,500) ‘Diverse’ Sample. We found evidence that FTO
interacts with physical activity, frequency of alcohol consump-
tion, dietary variation and squared deviations from mean sleep
duration (Figs 1b, 2b, 3b and 4; Table 3). We did not find
statistically significant evidence for interactions with current
smoking status, Townsend deprivation index, age and TV
watching. As our data relates mainly to individuals of European
ancestry living in the United Kingdom, the results may not extend
to other populations in different environments, or to children and
adolescents.

As previous authors have argued®, there are major advantages
in being able to assess main and interaction effects in the context
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of joint models that simultaneously include many potential
predictors and covariates. While preferable, this approach has
often not been possible in many earlier studies, either because a
broad set of lifestyle factors have not been measured on study
participants, or in the context of meta-analyses, because
individual-level data are not available!™8, In our data, we
found that testing only one interaction at a time would have led to
a large overestimation of the interaction between FTO and TV
watching, potentially leading to a statistically significant result
that is not present in the joint model.

Very large resources such as UK Biobank that simultaneously
measure genetic, lifestyle and phenotypic information thus offer
substantial promise to further our understanding of gene x
environment interactions. In our study, the joint interaction
modelling gives us confidence that the interactions we find with
physical activity, frequency of alcohol consumption, dietary
variation and squared deviations from mean sleep duration are
not due to confounding with each other and with variables
correlated with age, socioeconomic status, current smoking and
TV watching. This is an advantage over previous meta-analyses
that have tested only one interaction at a time.

All of the diet and lifestyle variables we analysed in the UK
Biobank data (but not BMI) were self-reported. While we cannot
exclude that self-reporting affected our results, we think this
unlikely: while self-reported data may be noisy and biased, it
can only lead to spurious interactions with FTO on BMI if
self-reporting as a function of BMI depends on FTO genotype, a
phenomenon that seems a priori unlikely. The individual
components of the activity and diet scores could be viewed as
noisy observations of underlying latent ‘activity’ and ‘diet” factors
affecting BMI that may interact with FTO. Our construction and
use of a single summary ‘score’ from variables in these categories
can be seen as a way of estimating these latent factors, helping to
overcome the lack of precision in individual component
measurements.

Evidence for an interaction between FTO and physical activity
has been reported in several US-based studies, with the
interaction estimated to be smaller in European cohorts!?. We
found evidence for a stronger interaction between FTO and
physical activity than suggested by meta-analysis in European
cohorts alone, but similar in magnitude to the interaction in
another large British cohort (EPIC Norfolk)!®!2, We estimated
an interaction effect of —0.23% per activity score s.d. per copy of
FTO risk allele. For BMI of 25 kg m ~ 2, this represents a change of
0.41kgm ~2 per copy of FTO for —2 s.d. activity score versus
0.17kgm ~ 2 for + 2 s.d. activity score, more than a halving of the
original FTO effect. Care must be taken in interpreting this and
earlier published results due to the fact that physically active
people with higher BMIs may be more muscular than physically
inactive people with equivalent BMIs.

We saw strong evidence of an interaction on BMI between FTO
and diet score, which reflects variation in intake of 12 different
variables. The combined estimate was 0.30% per s.d. per FTO risk
allele; for BMI=25kgm 2 this represents a change of
0.44kgm ~2 per copy of FTO for +2 s.d. diet score versus
0.17kgm ~2 for — 2 s.d. diet score, more than doubling the FTO
effect. The estimated effect was not stronger in those reporting
dietary change in the past 5 years, reducing the chance it is due
primarily to reverse causation. The interaction between
FTO and diet score was the strongest interaction with FTO in
our model.

We found evidence that the effect of FTO on BMI is enhanced
in those who add salt to food more frequently: combined estimate
of 0.21% per s.d. per FTO risk allele; for BMI of 25kgm ~ 2, this
represents a change of 0.25kgm ~2 per copy of FTO for those
who never or rarely add salt versus 0.43kgm ~2 for those who
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always add salt. More frequent addition of salt to food is
associated with increased energy intake (Supplementary Fig. 3). It
is plausible that adding salt to energy dense foods increases their
palatability and therefore intake, and that this effect may be
stronger in FTO risk allele carriers and those at the risk of
obesity*’.

We find strong evidence that greater frequency of alcohol
consumption is associated with decreased BMI in both samples
(Fig. 1a), which is in agreement with previous studies*®>°, which
have also shown a positive association between total alcohol
consumption and BMIL Both these findings have been reported
repeatedly, and so are likely real, even if they appear difficult to
reconcile. Data on total alcohol consumption were only available
for a small minority of our sample, preventing a joint analysis with
the frequency of alcohol consumption. As far as we are aware, the
only previous study reporting a gene-alcohol interaction for
obesity found evidence that genetic risk for greater central
abdominal fat, defined using a twin design, was reduced by
greater alcohol consumption within the moderate range
(P<0.05)*8. Here we report evidence that the effect of FTO on
BMI is reduced in more frequent consumers of alcohol. The
combined estimate is — 0.24% per s.d. per FTO risk allele; for BMI
of 25kgm ~ 2, this represents a change of 0.33kgm ~ 2 per copy of
FTO for those who drink two to three times a month versus
0.21kgm ~ 2 for those who drink daily or almost daily. There was
almost no difference in the estimated interaction in those reporting
no change in alcohol consumption over the past 10 years compared
with those reporting a change, increasing confidence that the result
is not primarily due to reverse causation. However, we did find
evidence that FTO reduces alcohol consumption frequency, in
agreement with previous studies?’, possibly as a response to
increased BMI. We therefore cannot rule out the possibility that
the interaction we observe is due to a greater reduction of alcohol
consumption frequency in response to higher BMI in FTO risk
allele carriers compared with non-carriers. Nevertheless, our results
highlight the need to further investigate the complex and
statistically important relationship between alcohol consumption
patterns, BMI and FTO.

The heritability of BMI has been observed to be higher in
people who sleep <7h a night compared with those that sleep
>9h a night (P<0.05)*°, implying the genetic effects on BMI
differ depending on sleep. We found evidence that squared
deviations from mean sleep duration are associated with an
enhanced effect of FTO on BMI (combined estimate: 0.13% per
s.d. per FTO risk allele; for BMI of 25kgm ~ 2, this represents a
change of 0.42kgm ~2 per copy of FTO for those who sleep
2h more or less per night than the average versus 0.29 kg m ~ 2 for
the average, 7.16 h per night).

In common with other studies, it is possible that all the
FTO-lifestyle interactions we report are driven by unobserved
latent factors with which they are correlated. One possible
confounder is overall health. We tried to control for this
using a self-reported measure of overall health. The interaction
effect estimates reduced only slightly in magnitude when self-
reported overall health was included in the model, increasing
confidence they are not simply reflecting an interaction with an
underlying factor related to overall health. While controlling for
factors such as overall health can increase confidence that an
observed gene-lifestyle interaction is not due to a hypothesized
confounding, there remains a need for randomization-based
methods to demonstrate the causality of FTO-lifestyle interactions.

Methods

Selection of environmental variables. The variable names here are taken
verbatim from the UK Biobank release, and information on them can be viewed
in the UK Biobank Data showcase’.
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Figure 4 | Modification of FTO effect by lifestyle. The effect of the FTO risk allele for different levels of different lifestyle variables in the British

subsample. We split each lifestyle variable into two roughly equally sized categories. For each category, we plot the mean BMI and its 95% confidence
interval for one and two copies of the FTO risk allele relative to zero copies. If there is no interaction between FTO and the environmental variable, the effect
of adding another copy of FTO should be the same whatever the value of the environmental variables, and the lines for different categories should have the

same gradient. If there is an interaction, they should diverge.

Out of 17 continuous and ordinal dietary intake variables, we selected those
without a large amount of missing data in the genotyped sample, where we count
those who chose not to answer the question or did not know the answer as missing.
This left 12 variables, 9 of which were ordinal (‘Oily fish intake’, ‘Non-oily fish
intake’, ‘Processed meat intake’, ‘Poultry intake’, ‘Beef intake’, ‘Lamb/mutton
intake’, ‘Pork intake’, ‘Cheese intake” and ‘Salt Added to Food’) and 3 of which
were continuous (‘Cooked vegetable intake’, ‘Bread intake” and ‘Tea intake’).

All of the ordinal variables apart from ‘Salt Added to Food” were encoded as: 0,
never; 1, less than once a week; 2, once a week; 3, 2-4 times a week; 4, 5-6 times a
week; 5, once or more daily. ‘Salt Added to Food’ uses the encoding: 1, never/rarely;
2, sometimes; 3, usually; 4, always. We found no strong evidence for anything
beyond a linear association between log-BMI and the encoding of ‘Salt added to
food’. We refer to ‘Salt added to food” as ‘added salt’ for convenience.

For the remaining continuous intake variables, we excluded individuals who
had values above the 99th percentile of the distribution in each sample to prevent
being overly influenced by outliers.

We chose physical activity variables with near-complete observations: ‘Number
of days/week walk 10 min or more’, ‘Number of days/week of moderate physical
activity 10 + minutes’ and ‘Number of days/week of vigorous physical activity
10 + minutes’.

To prevent the loss of power, we selected the one alcohol intake variable with
near-complete data, ‘alcohol intake frequency’, which is encoded as: 0, never;

1, special occasions only; 2, one to three times a month; 3, once or twice a week;
4, three or more times a week; and 5, daily or almost daily. We compared the model
fit of the regression of log-BMI on the original encoding of alcohol with the model
fit when alcohol is encoded using the midpoint of implied monthly drinking
sessions in each category. We found the model with the original encoding fitted
better, so we retained the original encoding.

We used individuals’” answers to the question ‘About how much sleep do you
get in every 24 h? (please include naps)’, and we excluded individuals in the bottom
and top percentiles of the distribution to prevent being overly influenced by
outliers. We enabled the fitting of the observed ‘U’-shaped relationship between
BMI and sleep duration by also calculating the squared deviations from the mean
sleep duration for each individual.

Townsend deprivation index was calculated immediately before participants
joining UK Biobank based on the preceding national census output areas. Each
participant was assigned a score corresponding to the output area in which their
postcode is located.

Individuals’ current smoking status was summarized by UK Biobank as ‘Never’,
"Previous’ and ‘Current’. For simplicity, we created a binary variable reflecting
whether they answered ‘Current’ or not.

We took individuals” answers to the question ‘In a typical day, how many hours
do you spend watching TV? (put 0 if you do not spend any time doing it)’, and we
excluded those in the upper percentile of the distribution to avoid being overly
influenced by outliers. There was an option to put ‘Less than an hour a day’, which
for definiteness we encoded as 0.5h a day.

We used north and east co-ordinates (latitude and longitude) of place of birth in
the United Kingdom as covariates to control for population stratification in the
non-genotyped sample. In the genotyped sample, these were dropped in favour of
genetic measures, namely, principal components or a mixed model (see below).

Modelling. We log-transform BMI. This can be supported by the fact that BMI is
restricted to be positive and fits a log-normal distribution better than a normal
distribution (Supplementary Fig. 4). In addition, the effect of FTO on BMI can be
modelled slightly better on the log scale as can be seen by fitting models for BMI and
log-BMI in the British Sample with FTO, age, sex, age?, the confounding variables and
the top 20 principal components as covariates: the variance explained is 6.8% for BMI,
whereas for log-BMI it is 7.2%. In addition, the residuals of the fitted model are closer
to being normally distributed for log-BMI than when fitting BMI (Supplementary
Fig. 4). The s.e. of the regression coefficients from models on the log scale should
therefore be better calibrated than those from models on the original scale.

If a trait follows a log-normal distribution better than a normal distribution, this
may indicate that influences on the trait act multiplicatively rather than additively. This
could lead to inflation of test statistics for multiplicative interaction models when fitting
them on the original rather than log-transformed scale. Our analysis is therefore likely
to be more conservative than those on the original, untransformed scale.

We fit models with pairwise interactions between the number of copies of the
FTO risk allele and multiple environmental variables. We illustrate this with a
simple model where FTO interacts with a single environmental variable, x, on the
log scale. Formally, the model is

log(BMI) = m + a* FTO + b* x + cx FTO xx + ¢,

where m is the mean of log-BMI, FTO is the mean-centred number of copies
of the FTO risk allele, x is the mean-centred environmental variable and ¢
is an independent normal error term. Transformed back onto the original
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BMI scale this is:
BMI = emeh*xe(aJrc*x)*FTOez.

The effect of an interaction with an environmental variable x is to either
enhance or dampen the proportional change in BMI expected with each additional
copy of the FTO risk allele. For example, if x is a physical activity variable with a
negative interaction with FTO, then for those with above average levels of physical
activity, each copy of FTO may raise BMI by <1% on average, whereas for inactive
people it may raise BMI by over 1% on average. In the analysis, we generalize this
to FTO interacting with multiple environmental factors simultaneously, which
gives the model the ability to determine whether specific environmental factors are
interacting with FTO independently of their correlations with the other modelled
environmental variables. We give an example of the model for two lifestyle factors
x and y that have main effects b and ¢, and interaction effects brro and cpro with
FTO on BMI:

log(BMI) = m+bxx+cxy+ (a+ bpro* x + cpro *y)* FTO + e.

Model selection and score construction. We constructed diet and activity scores
from individuals in the United Kingdom currently without genotype data. We
selected 231,906 of these individuals who had self-declared British ancestry,
complete data on the relevant variables, and were known to be born in the United
Kingdom or Ireland.

We fitted a joint model for log-BMI with age, sex, age?, age>, the interactions of
sex with age and its square and cube, the north and east co-ordinates of birthplace,
and all of the variables listed above. We include interactions with age and sex for:
the activity variables, frequency of alcohol consumption, TV watching, sleep
duration, current smoking, and Townsend deprivation index. We did not include
interactions with age and sex for dietary variables for simplicity.

We calculated the t-statistic of the marginal regression coefficients in R, and we
used cross-validation to select a t-statistic magnitude threshold for inclusion of the
variables in the model. We used 10-fold cross-validation to select the model with
the highest estimated out-of-sample R?, which was 13.01% and corresponded to a
t-score threshold of 1.15 and a model with 42 variables. We call this model the
‘BMI’ model and list its variables in Table 2.

To estimate the coefficients of the scores, we refitted the ‘BMI’ model on the
sample comprised of all ten folds combined, in which it had an R? of 13.03%. We
then used the coefficients from this model fit to calculate diet and activity scores for
both the British and Diverse Samples. We used the calculated diet and activity
scores along with the other variables kept by cross-validation and genetic
information to assess evidence for interactions with FTO in the ‘Scores’, ‘Activity’
and ‘Diet’ Models (Table 2).

Genotype data. We used genotype data from the Interim Data Release of the UK
Biobank Project. Quality control is described in the UK Biobank genotyping QC
document??. We excluded individuals from the analysis that had been flagged as
problematic by the Biobank QC.

We split the genotyped sample comprising 119,132 individuals with complete
observations of the model variables into two subsamples. First, we split the sample
by a variable provided by UK Biobank, indicating that an individual is genetically
(very close to) British, as determined by a principal component analysis and
self-reported ethnicity??. This produced two samples: a genetically ‘British’ Sample
and a genetically ‘Diverse’ Sample. UK Biobank has determined genetic relatedness,
and labelled pairs as related if their kinship indicated third degree or closer
relatedness. UK Biobank pruned the ‘British’ individuals of relative pairs, with one
of each relative pair moved out of the ‘British’ group.

For our analysis, it is helpful if the two subsamples are approximately
independent. To achieve this, we further modified the UK Biobank groupings by
moving individuals who had any genotyped third degree or closer relatives from
the British Sample into the Diverse Sample. That is, while UK Biobank had
removed one member of each pair of close relatives from the ‘British’ Sample,
we additionally removed the other individual in each pair, so that all pairs of
related individuals fall in the ‘Diverse’ Sample in our analysis.

We obtained genotypes for SNP rs1421085. At this SNP, 0.20% of calls are
missing in the British Sample and 0.24% of calls are missing in the Diverse Sample.
We excluded samples with missing calls. The frequency of the minor allele is
40.03% in the European Sample and 39.93% in the Diverse Sample.

The final British Sample has 89,552 individuals with no close relatives
genotyped, and the final Diverse Sample has 29,580 individuals, containing close
relatives.

Individuals in the UK Biobank interim data release were genotyped on one of
two very similar genotyping chips, called the Axiom UKBIiLEVE or Axiom
UKBiobank array. As recommended in the UK Biobank QC documentation??, we
include the array on which the individual was genotyped as a covariate in all
analyses, and we also include the interaction of FTO with genotyping array as a
variable in all the models.

Control of population structure. Details of the population structure control
procedures are contained in the Supplementary Note. Both our tests of the efficacy
of population structure control (Supplementary Note) and the consistency of our
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estimates of the effects of FTO across the two samples (Fig. 1a) argue against our
analysis being overly contaminated by population structure. Many other genome-
wide association studies of samples taken from UK Caucasians have also shown
that population structure is not a major factor”"*2,

Nutrient analysis. We took the nutrient estimates calculated by UK Biobank
from the 24h dietary recall questionnaire*!. The variables are continuous and
non-negative, with many extreme upper outliers. We therefore removed the top 1%
of each variable’s distribution. We used the ‘Scores’ Model (Table 2) variables
without the FTO variables or the diet score as covariates in linear models for log-
BMI, the diet score, cooked vegetable intake and frequency of added salt. There
were 12,747 individuals in the British Sample and 4,413 individuals in the Diverse
Sample with complete observations of these variables. If effects were consistent
between the British and Diverse Samples, they were combined in a fixed effects
meta-analysis.

Robustness of interaction effects. To investigate whether our results may have
been confounded by associations between BMI and either diabetes or depression, we
conducted a sensitivity analysis by removing 12,891 individuals who had reported
seeing a psychiatrist for depression and 5,888 individuals who reported having been
diagnosed as diabetic. Most estimated interaction effects were effectively unchanged.
The largest change was for the interaction with activity score, where the estimate
reduced from —0.19 to —0.15% per s.d. per copy of FTO.

If the observed interaction between FTO and frequency of alcohol consumption
is a result of reverse causation, we would expect the interaction effect to be stronger
in those who report having changed their alcohol consumption than in those that
report no change in alcohol consumption. We therefore repeated the analysis
separately in two subsets of the British Sample: those that answered that their
alcohol intake is ‘about the same’ (n =37,534) as it was 10 years ago and those that
did not (n=57,193). We found no significant difference in the estimated
interaction effects in the two groups (z= —0.02, P=0.49, one-sided test for
stronger interaction in the group reporting change in alcohol consumption).

We also found no evidence that FTO genotype affected the probability of reporting
a change in alcohol consumption (P = 0.87).

To assess whether the interaction between FTO and the diet score may reflect
reverse causality, we repeated the analysis separately in two subsets of the British
Sample: those that answered ‘no’ to the question ‘Have you made any major changes
to your diet in the last five years? (n=33,781) and those that did not (n = 55,675).
The observed difference in effect was in the opposite direction to that predicted by
reverse causation and was not significant (z= — 0.63, P=0.73, one-sided test).

The effect of FTO on a lifestyle variable can also suggest whether reverse
causation may be occurring: if FTO affects a lifestyle variable without control for
BMI, but FTO does not affect it when controlling for BMI, then this indicates that
FTO may be affecting the lifestyle variable through BMI, an instance of reverse
causation. We therefore tested whether FTO affected variables that it may interact
with: alcohol frequency, squared deviations from mean sleep duration, added salt,
and the activity and diet scores (Supplementary Table 2). To do this, we regressed
these variables onto FTO, the genotyping array and the top 20 principal components.

We found evidence that the FTO risk allele reduced the alcohol score
(P=9.3 x 10 ~3) without the control for BMI, but found no evidence for this
(P =0.68) with the control for BMI. This is consistent with the FTO risk allele
reducing alcohol consumption as a consequence of increasing BMI, an instance of
reverse causation. However, we did not find evidence that reverse causation
affected the estimate of the interaction with FTO (above).

In contrast, we did not find any strong evidence that FTO affects the activity
score, diet score, squared deviations from mean sleep duration or frequency of
adding salt to food when not controlling for BMI. When controlling for BMI,
however, there is some evidence that FTO affects all of these variables
(Supplementary Table 2) in the direction that would be expected to decrease BMI
according to the main effect of each lifestyle factor on BMI.

We used subjects’ answers to the question ‘In general how would you rate your
overall health?’ to see whether there was evidence that the interactions between
lifestyle factors and FTO were confounded with overall health. The answers were
encoded as: 1, excellent; 2, good; 3, fair; and 4, poor.

It is likely that an individual’s self-perception of their overall health is partially
determined by their BMI. The correlation between this encoding and log-BMI was
0.27. Regressing overall health on principal components, genotyping array and FTO
gives a statistically significant effect of FTO (P=2 x 10~ ). However, adding log-
BMI to the regression removes the evidence for the effect of FTO on overall health
(P=0.29), indicating that FTO likely effects self-reported overall health through its
effect on BMI. We therefore chose not to include self-reported overall health as a
covariate in our primary analyses. Doing so would in effect have focused the primary
analyses on the component of BMI remaining after regressing out any effect of BMI
on self-reported overall health. This would have complicated interpretation, and in
addition precluded comparison with other studies based directly on BMI.

By way of a sensitivity analysis and to assess the possibility that our results may
be driven by a latent variable related to overall health, we fitted the ‘Scores’ Model
(Table 2) in the British Sample along with overall health and its interaction with
FTO. We found no significant evidence that overall health interacts with FTO
(0.14% [ —0.01%, 0.30%], P=0.10). The other estimated interaction effects

| 7:12724 | DOI: 10.1038/ncomms12724 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

reduced slightly in magnitude: activity score (—0.19 to — 0.16%), alcohol
frequency (—0.28 to —0.25%), diet score (0.25 to 0.23%), squared deviations from
mean sleep duration (0.13 to 0.11%) and age (—0.16 to — 0.14%). We also note,
from fitting the ‘Diet’ Model (Table 2) with the overall health added, that the
estimated interaction with frequency of added salt did not change from 0.23%.

Data availability. All the data in this study come from the interim data release of
the UK Biobank Genetic data. Applications for access can be made on the UK
Biobank website: http://www.ukbiobank.ac.uk/register-apply/.
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