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Background: Individuals who have had an anterior cruciate ligament (ACL) tear and reconstruction continue to experi-
ence substantial knee extensor strength loss despite months of physical therapy. Identification of the alterations in
muscle morphology and cellular composition are needed to understand potential mechanisms of muscle strength loss,
initially as the result of the injury and subsequently from surgery and rehabilitation.

Methods: We performed diffusion tensor imaging-magnetic resonance imaging and analyzed muscle biopsies from the
vastus lateralis of both the affected and unaffected limbs before surgery and again from the reconstructed limb following
the completion of rehabilitation. Immunohistochemistry was done to determine fiber type and size, Pax-7-positive (sat-
ellite) cells, and extracellular matrix (via wheat germ agglutinin straining). Using the diffusion tensor imaging data, the fiber
tract length, pennation angle, and muscle volume were determined, yielding the physiological cross-sectional area
(PCSA). Paired t tests were used to compare the effects of the injury between injured and uninjured limbs and the effects
of surgery and rehabilitation within the injured limb.

Results: We found significant reductions before surgery in type-IIA muscle cross-sectional area (CSA; p = 0.03), extracellular
matrix (p < 0.01), satellite cells per fiber (p < 0.01), pennation angle (p = 0.03), muscle volume (p = 0.02), and PCSA (p = 0.03) in
the injured limb comparedwith the uninjured limb. Following surgery, these alterations in the injured limb persisted and the frequency
of the IIA fiber type decreased significantly (p < 0.01) and that of the IIA/X hybrid fiber type increased significantly (p < 0.01).

Conclusions: Significant and prolonged differences in muscle quality and morphology occurred after ACL injury and
persisted despite reconstruction and extensive physical therapy.

Clinical Relevance: These results suggest the need to develop more effective early interventions following an ACL tear
to prevent deleterious alterations within the quadriceps.

E
very year, up to 200,000 anterior cruciate ligament (ACL)
tears occur in the United States1,2. Mounting evidence sug-
gests that substantial reductions in quadriceps strength,

>20% to 40%, occur at a critical timewhen the individual returns
to activities that involve greater muscular demands and joint
loads3-14. Alterations in both neurological control and muscle
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physiology have been proposed as mechanisms for this pro-
tracted loss in muscle strength12,15,16. Despite the considerable
attention devoted to this injury, little is still known regarding the
underlying alterations in muscle physiology after an ACL tear
and subsequent postoperative rehabilitation.

The results from several studies on quadriceps strength fol-
lowing ACL reconstruction suggest that the observed postoperative
strength differences may be due to changes within the muscle13,16-18.
However, the exact adaptations in muscle morphology are still not
well defined. Features such as volume, physiological cross-sectional
area (PCSA), muscle fiber pennation angle, and length influence
muscle force generation19-21. Recently, reductions in muscle thick-
ness but not pennation angle were reported after an ACL recon-
struction22. These morphological features have been used in other
populations, such as in patients with cerebral palsy and after in-
tramedullary nailing of a unilateral femoral diaphyseal fracture, to
better understand the mechanisms of strength loss23,24. Also, PCSA
is a strong predictor of maximal muscle force25. Diffusion tensor
imaging-magnetic resonance imaging (DTI-MRI) offers the op-
portunity to noninvasively evaluate these properties before and after
surgery over a large area of the muscle. The use of DTI-MRI could
help to improve our understanding of the muscular deficits after
an ACL reconstruction.

To our knowledge, adaptations in the cellular composi-
tion of muscle after an ACL tear and reconstruction have not
been fully assessed. Indirect techniques for measuring muscle

composition with electromyography after surgery have led to
the speculation that there is selective type-II muscle fiber at-
rophy6,16,26,27. Muscle stem cells (satellite cells) play a critical role
in muscle repair and regeneration, and they may also play a role
in muscle adaptation to injury and rehabilitation following an
injury such as an ACL tear, a hypothesis that is, to our knowledge,
unexplored28. In animal models, loss of satellite cells also pro-
motes an increase in the extracellular matrix29.

The purpose of this study was to assess the underlying
changes in muscle fiber tract length, pennation angle, volume,
and PCSAusingDTI-MRI, as well as changes inmuscle fiber type
and size, satellite cells, and extracellular matrix using muscle
biopsies of the vastus lateralis. We evaluated both the changes
occurring as the result of the injury and those observed within the
injured limb after the completion of surgery and rehabilitation.
We hypothesized that, following an ACL tear, there would be
significant reductions in PCSA, pennation angle, fiber tract
length, and satellite cells; increases in extracellular matrix; and
changes in fiber type. We further hypothesized that, following
surgery, these alterations would persist despite physical therapy.

Materials and Methods

Subjects provided written informed consent, and the protocol was approved
by the university institutional review board. To qualify, subjects could not

have had a previous ACL reconstruction or tear other than the current one.
Subjects were excluded if they had a knee dislocation or if the ACL tear had

TABLE I Muscle Structure as Assessed by DTI-MRI

Uninjured Limb*
Injured Limb

Before Surgery* P Value
Injured Limb
After Surgery* P Value†

Pennation angle (deg) 18.3 ± 2.7 16.0 ± 2.4 0.03 15.8 ± 3.0 0.87

Fiber tract length (cm) 4.3 ± 0.9 4.1 ± 1.0 0.57 4.1 ± 1.2 0.97

Volume (cm3) 503.6 ± 137.7 371.1 ± 111.0 0.02 308.7 ± 82.7 0.002

PCSA (cm2) 115.5 ± 40.0 92.0 ± 29.0 0.03 77.8 ± 24.8 0.25

*The values are given as the mean and standard deviation. †Injured limb after surgery compared with before surgery.

TABLE II Muscle Morphology in Biopsies as Assessed by Immunohistochemical Analyses

Uninjured Limb*
Injured Limb

Before Surgery* P Value
Injured Limb
After Surgery* P Value†

Type-I fibers/total fibers 0.44 ± 0.11 0.48 ± 0.18 0.53 0.40 ± 0.20 0.20

Type-I fiber CSA (mm2) 4,557 ± 1,402 4,344 ± 1,062 0.12 4,549 ± 1,405 0.35

Type-IIA fibers/total fibers 0.34 ± 0.10 0.35 ± 0.14 0.62 0.25 ± 0.10 <0.01

Type-IIA fiber CSA (mm2) 5,875 ± 1,613 4,769 ± 1,278 0.03 5,148 ± 1,795 0.36

Type-2IIA/X fibers/total fibers 0.21 ± 0.07 0.17 ± 0.08 0.12 0.34 ± 0.16 <0.01

Type-IIA/X fiber CSA (mm2) 5,056 ± 1,186 4,493 ± 1,136 0.33 4,437 ± 1,574 0.91

Extracellular matrix/CSA 0.10 ± 0.03 0.16 ± 0.05 <0.01 0.15 ± 0.04 0.42

Satellite cells/fiber 0.17 ± 0.05 0.10 ± 0.04 <0.01 0.11 ± 0.04 0.18

*The values are given as the mean and standard deviation. †Injured limb after surgery compared with before surgery.
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occurred more than 2 months prior to being diagnosed; however, subjects
undergoing a meniscal repair or meniscectomy were included. One of 2 or-
thopaedic surgeons performed the surgery. The rehabilitation protocol fol-
lowed published guidelines, emphasizing early return of full knee extension and
early quadriceps strength exercises

30
. At the time of the follow-up testing, pa-

tients were cleared by their physician to start return-to-sport drills and activ-
ities. The muscle biopsies and MRI were performed several days before surgery
on both limbs, and again on the reconstructed limb at the time of resumption
of sport-specific drills.

MRI
Subjects were imaged on a 3-T MAGNETOM Trio, a TIM System (Siemens)
MRI system. Two packets of 11 axial slices were acquired with a slice thickness
of 6 mm and no interslice gap. DTI-MRI data were acquired using a stimulated-
echo sequence with a repetition time/time to echo of 4,000/36.4 ms, 3 excita-
tions, mixing time of 173.0 ms, gradient separation of 185.8 ms, and gradient
duration of 5.4 ms. The sequence captured 27 gradient directions at a diffusion
weighting factor (b) of 500 s/mm2 and 4 repetitions at a b value of 0. The
sequence used parallel imaging with an acceleration factor of 2, field of view
of 192 · 192 mm2, and acquisition matrix of 96 · 96.

The tensor calculation, diagonalization, and fiber tracking were per-
formed with customMATLAB (R2013b; TheMathWorks) code. The pennation
angle and fiber tract length were then calculated from the tracked fibers using
previously described techniques

31
. Lastly, muscle volume was determined by

tracing the cross-sections from the anatomical images sequentially along the
length of the vastus lateralis using Slicer 3D (version 4.4; www.slicer.org)

32
.

Muscle Biopsies
Biopsy samples were taken from the vastus lateralis under local anesthetic (1%
xylocaine HCl) using a modification of the Bergstrom percutaneous biopsy
technique.

Muscle Immunohistochemistry
Sections were cut in a cryostat and allowed to dry for 1 hour at room tem-
perature. Fiber typing was performed on unfixed sections that were incubated
overnight at room temperature with antibodies against myosin heavy chain
(MyHC) isoforms type I (antibody BA.D5; immunoglobulin G2b [IgG2b]),
type IIA (SC.71; IgG1), and type IIX (6H1; IgM) from the University of Iowa
Developmental Studies Hybridoma Bank (DSHB). Fibers coexpressing type-IIA
and IIX MyHC were classified as IIA/X hybrid fibers. Sections were incubated
for 1 hour with Ig-specific secondary antibodies (Invitrogen): goat anti-mouse
IgG2b AF647 (#A21242) for type-I fibers, goat anti-mouse IgG1 AF488
(#A21121) for type-IIA fibers, and goat anti-mouse IgM biotin (#626840) for
type-IIX fibers. Sections were then incubated for 15 minutes in streptavidin-
Texas Red (#SA-5006; Vector Laboratories). Sections were postfixed using
methanol prior to mounting with fluorescent mounting media (#H-1000; Vec-
tor). Sections were also stained with wheat germ agglutinin (WGA) and Pax-7
according to standard immunohistochemical methods.

Image Acquisition and Analysis
Images were captured (magnification, ·10) using an upright microscope (Axio-
Imager M1; Zeiss). The fiber type distribution and the mean cross-sectional area
(CSA) of each fiber type were determined using AxioVision Rel software (version
4.8; Zeiss). Satellite cell frequency was determined by counting only the cells that
were positive for both Pax-7 and DAPI (4ʹ,6-diamidino-2-phenylindole), and was
expressed as Pax-7-positive cells/fiber. WGA staining was quantified using the
threshold intensity feature in the AxioVision image analysis software. Assessors
were not blinded to the clinical information.

Strength Assessment
Each subject’s peak isometric quadriceps strength was assessed in both limbs
following the completion of rehabilitation with the knee in 90� of flexion using

a Biodex 4 dynamometer. Subjects performed 1 practice trial, to familiarize
themselves with the task, followed by 4 test trials. Assessors were not blinded
to the side of injury.

Statistical Methods
To assess the effect of the injury on the muscle before surgery, paired t tests were
used to compare muscle biopsy and DTI-MRI data between the injured limb
and uninjured limb. To evaluate the effect of surgery and rehabilitation, paired
t tests were used to compare muscle biopsy and DTI-MRI data between the
injured limb before surgery and the same limb following surgery and the
completion of rehabilitation.

Results

Two subjects did not complete the study; 1 had an ACL
retear related to noncompliance with activity restriction,

and the other did not return for regularly scheduled physician
and physical therapy visits. A total of 8 male and 2 female
subjects (mean age [and standard deviation], 23.4 ± 5.0 yr;
weight, 78 ± 12.7 kg; height, 1.77 ± 0.08 m) who had sustained
an ACL injury that was surgically reconstructed completed the
study. Eight of the subjects had a bone-patellar tendon-bone

Fig. 1

Representative immunohistochemical images showing myosin heavy

chain (MyHC) fiber type identification in the injured limb (scale bar= 50mm).

Type-IIA fibers are green, type-IIX fibers are red, type-IIA/X fibers are

yellow/green, and type-I fibers are light pink. The distribution of fiber

types IIA and IIA/X after surgery differed from that before surgery. Fig. 1-A

Composite image (showing all stains) before surgery. Fig. 1-B Type-IIX

fibers (red) in the preceding image. Fig. 1-C Composite image after

surgery and rehabilitation. Fig. 1-D Type-IIX fibers in the preceding image.
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autograft and the remaining 2 had a hamstring autograft. The
mean time between injury and surgery was 82 ± 61 days. There
was no relationship between time to surgery and any of the
preoperative measured variables. One subject’s strength data
were excluded because of equipment recording failure. Despite
completing 6 months of rehabilitation, the injured limbs were
significantly weaker (1.7 ± 0.53 N/kg) than the uninjured limbs
(2.8 ± 0.47 N/kg, p < 0.0001).

Noninvasive Assessment of Muscle Structure and Function
MRI-DTI analyses of vastus lateralis muscle from the uninjured
limb and from the injured limb before and after surgical ACL
reconstruction and rehabilitation are presented in Table I.
Before surgery, the injured limb had a significantly smaller
pennation angle, volume, and PCSA compared with the un-
injured limb, but the fiber tract length did not differ significantly.
No significant improvement in any of the muscle structural
properties assessed by MRI-DTI was found after surgery and
rehabilitation, and muscle volume actually decreased further
(Table I).

Analysis of Muscle Morphology in Vastus Lateralis Biopsies
The results of histochemical and immunohistochemical anal-
yses of muscle cross-sections are summarized in Table II. As

shown in representative images in Figure 1, fiber size and fiber
type composition were quantified using a battery of isoform-
specific MyHC antibodies that recognize the slow-twitch type-I
MyHC and the fast-twitch type-II MyHCs, IIA and IIX. Type-II
muscle fibers were separated into 2 groups, those that expre-
ssed no type-IIX MyHC (i.e., purely type-IIA) and those that
coexpressed types IIX and IIA (type-IIA/X hybrids). We found
a significant reduction specifically in type-IIA fiber CSA in the
muscle from the injured limb compared with the uninjured
limb prior to surgery. However, we did not find any other
significant changes in either frequency or CSA of any of the
other muscle fiber types prior to surgery. Following surgery
and rehabilitation, we found that type-IIA fibers significantly
decreased in frequency and type-IIA/X hybrid fibers increased
in frequency in the injured limb after surgery and rehabilitation
(Fig. 1 and Table II).

Extracellular matrix (representative images shown in
Figure 2) was higher in the muscle from the injured limb (Fig.
2-B) compared with the uninjured limb before surgery (Fig.
2-A) (p < 0.01). Surgical reconstruction and rehabilitation did
not significantly reduce extracellular matrix (Table II). Satellite
cells (Fig. 3) were significantly reduced in injured (Fig. 3-B)
compared with uninjured muscle prior to surgery (Fig. 3-A)
and did not increase after surgery and rehabilitation (Table II).

Fig. 2

Representative immunohistochemical images showing WGA staining (yellow). There is greater extracellular matrix in the injured limb before surgery

(Fig. 2-B) compared with the uninjured limb (Fig. 2-A) (scale bar = 50 mm).

Fig. 3

Representative immunohistochemical composite images showing Pax-7 (pink) and DAPI (blue) staining in the uninjured limb (Fig. 3-A) and the injured

limb before surgery (Fig. 3-B) (scale bar = 50 mm). Arrows indicate representative positive staining for Pax-7 (which indicates satellite cells).
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Discussion

We performed a comprehensive assessment of muscle
alterations as a result of ACL injury and rehabilitation

through a combined approach involving muscle structural
quantification using DTI-MRI and muscle morphology anal-
ysis using biopsied tissue. Alterations occurred in the vastus
lateralis muscle of the injured limb compared with the control
limb, and the alterations did not improve following subsequent
surgery and rehabilitation. These results indicate that there are
several pathophysiological responses of the muscle to an ACL
tear as well as other alterations that become more apparent
following reconstruction and rehabilitation of the ACL.

There were several notable alterations in the vastus
lateralis muscle prior to surgery. One of the most important early
alterations was the significant reduction in the PCSA as a result
of ACL injury. Similar findings have been reported in research
assessing the effects of disuse33. We examined the 3 individual
components of the PCSA—volume, pennation angle, and fiber
length—to determine which were driving this change (Table I).
The fiber tract length did not change, which we speculate was
because subjects did not maintain the limb in a shortened
position. Previous work has shown that when subjects have
undergone casting, fiber length decreases only if the limb is
immobilized in a shortened position34. In contrast, we found
that the pennation angle was significantly different. Although
the pennation angle is not a major determinant of the PCSA, a
reduction in this angle will limit the number of fibers within a
given area and subsequently result in less force development.
The observed reduction in the PCSA is most likely primarily
attributable to a reduction in the volume of the vastus lateralis.
The reduction inmuscle volume is consistent with other studies,
although the magnitude of the reduction in the present study is
larger than in those studies35,36. Potential differences in subject
characteristics and in the methods used to determine volume
may explain some of the differences between studies.

There were several significant cellular alterations that oc-
curred following the injury but prior to surgery. Althoughwe did
not find significant changes in the distribution of muscle fiber
types before surgery, there was a significant reduction in the CSA
of type-IIA muscle fibers. The selective atrophy of the type-IIA
fibers confirms the speculations of previous authors6,16,26,27. Po-
tentially, the selective reduction of type-IIA fiber CSA is due to a
lack of input from the gamma motor neuron loop, which affects
high-threshold motor neurons activating type-IIA fibers37,38.
Additional work is needed to more directly test the link between
sensory alterations due to an ACL tear and adaptations within
the muscle.

Other cellular adaptations of the vastus lateralis muscle
due to the ACL injury included greater extracellular matrix and
fewer satellite cells prior to surgery. Little research has defined
fibrotic changes in muscle as a result of an orthopaedic injury.
For example, imaging studies in subjects who have had a ham-
string strain have shown an increase in nonactive contractile
components39,40. The end result of greater muscle extracellular
matrix is less area occupied by active contractile components,
effectively reducing force generation. Additionally, the reduction

in satellite cell content in the injured muscle before surgery
may impair the muscle’s ability to respond to subsequent re-
habilitation. Satellite cell content is strongly correlated with
strength gains in response to resistance training in the elderly,
with the satellite cells providing myonuclei by fusing to the
growing fibers41-43.

Muscle morphology did not improve significantly after
surgery and rehabilitation. For example, the PCSA did not
improve following reconstruction of the ACL and rehabilita-
tion. Previous reports have found a reduction in muscle vol-
ume following surgery and rehabilitation but have not reported
on PCSA35,36. We also found little change in muscle volume or
pennation angle. Our results are in contrast to another report
that used ultrasonography and found no difference in penna-
tion angle at 2 years of follow-up22. Differences in the time to
follow-up and in the technique used to assess pennation angle
make a direct comparison between these studies difficult. How-
ever, these data provide further evidence of the need for reha-
bilitation strategies focused on earlier intervention, such as
eccentric exercises, which are known to improve PCSA and the
components contributing to it44-48.

We also report several other adaptations that occur after
surgery and rehabilitation. There was a selective reduction in
type-IIA muscle fiber frequency and increased abundance of
type-IIA/X hybrid fibers. In addition, we found no significant
improvement in the CSA of specific muscle fiber types. In the
only previous study of fiber atrophy after ACL surgery that we
are aware of, type-II muscle fiber CSAwas reduced up to 1 year
after surgery relative to that in the nonoperative limb15. How-
ever, that study focused only on fiber CSA, did not consider
type-IIA/X hybrid fibers, and used outdated surgical and re-
habilitation techniques15. The shift from type-IIA to type-IIA/X
hybrid fibers has been shown in other populations to be in-
dicative of a detrained state49-51. By contrast, subjects in the pre-
sent study underwent a rehabilitation period, and at the time
of the second biopsy they had begun to return to their previous
activity levels. These results suggest that deficits in type-IIA
fiber CSA and deleterious alterations in fiber type composition
continue during current rehabilitation protocols.

The persistence of the increase in extracellular matrix
and decrease in satellite cell content despite surgical recon-
struction and rehabilitation demonstrate the need to intervene
early following an ACL tear to prevent changes at the cellular
level that may ultimately limit muscle adaptation during re-
habilitation. Additionally, whether thickening of the muscle
extracellular matrix can be reversed in humans through reha-
bilitation has yet to be determined. If irreversible, these altera-
tions may necessitate the need to develop strategies to optimize
the remaining muscle function. Emerging evidence suggests that
satellite cells may play an important role in the regulation of
extracellular matrix in muscle29. The lack of restoration of sat-
ellite cells following surgery may contribute to the protracted
weakness, greater extracellular matrix, and reduced ability of
muscle fibers to hypertrophy.

The between-limb differences in quadriceps strength
were larger than in some previous reports but similar to the
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differences in others3,12,52-54. Differences in the mode of testing
(isometric versus isokinetic), type of graft, timing of the testing,
and age are all factors that may potentially explain these differ-
ences. Future studies in larger cohorts comparing the morpho-
logical features of those with the least and greatest between-limb
differences are warranted given the observed differences.

The present study had several limitations. First, we were
unable to control the time window between injury and surgery,
although subjects had surgery within 2 months of the injury.
Second, the sample size is small and includes subjects with
either bone-patellar tendon-bone or hamstring grafts, but the
level of complexity of the study and time commitments from
subjects make large sample sizes for this work a challenge. Lastly,
we were not able to image or take a biopsy from the uninjured
limb following surgery, limiting our ability to identify contra-
lateral changes in the examined variables.

In conclusion, we have shown that there are pathophysi-
ological responses within muscle following an ACL injury, with
reductions inmuscle fiber volume and pennation angle resulting
in reduced PCSA as well as greater extracellular matrix and re-
duced satellite cell frequency. These measures do not improve
following surgery and rehabilitation. There was also a significant

shift to a greater frequency of type-IIA/Xmuscle fibers following
surgery and rehabilitation. Future strategies to address these
clinical issues must be developed. n
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