Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Nov 1;89(21):9986–9990. doi: 10.1073/pnas.89.21.9986

Persistence of Ha-ras-induced metastatic potential of SP1 mouse mammary tumors despite loss of the Ha-ras shuttle vector.

B Schlatter 1, C G Waghorne 1
PMCID: PMC50262  PMID: 1438249

Abstract

Previous studies have shown that the SP1 mouse mammary adenocarcinoma cell line, which is tumorigenic but nonmetastatic, acquires metastatic potential when transfected with the activated human Ha-ras gene. In addition, the process of calcium phosphate-mediated DNA transfection, as well as treatment with the calcium ionophore A23187 or with phorbol 12-myristate 13-acetate, can also result in heritable changes in the malignant behavior of SP1 cells. It was of interest, therefore, to determine whether the metastatic consequences of Ha-ras oncogene expression in SP1 cells are a primary effect of the transfected gene or whether heritable secondary changes are induced by Ha-ras oncogene expression. In the latter case, continued expression of the Ha-ras oncogene would not be required to maintain the metastatic phenotype. To test this hypothesis we introduced the Ha-ras oncogene into SP1 cells on a shuttle vector in which maintenance of the vector was dependent on selection for resistance to the antibiotic G418. Subclones which had lost the transfected Ha-ras gene were subsequently isolated following growth in nonselective medium. The Ha-ras-transfected clones and the revertant subclones were found to be equally metastatic, indicating that transfection with the Ha-ras gene does induce stable secondary changes in the metastatic phenotype of SP1 cells.

Full text

PDF
9986

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allshire R. C., Bostock C. J. Structure of bovine papillomavirus type 1 DNA in a transformed mouse cell line. J Mol Biol. 1986 Mar 5;188(1):1–13. doi: 10.1016/0022-2836(86)90475-4. [DOI] [PubMed] [Google Scholar]
  2. Ashman C. R., Davidson R. L. High spontaneous mutation frequency of BPV shuttle vector. Somat Cell Mol Genet. 1985 Sep;11(5):499–504. doi: 10.1007/BF01534844. [DOI] [PubMed] [Google Scholar]
  3. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023. [DOI] [PubMed] [Google Scholar]
  4. Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
  5. Bradley M. O., Kraynak A. R., Storer R. D., Gibbs J. B. Experimental metastasis in nude mice of NIH 3T3 cells containing various ras genes. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5277–5281. doi: 10.1073/pnas.83.14.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlow D. A., Kerbel R. S., Feltis J. T., Elliott B. E. Enhanced expression of class I major histocompatibility complex gene (Dk) products on immunogenic variants of a spontaneous murine carcinoma. J Natl Cancer Inst. 1985 Aug;75(2):291–301. [PubMed] [Google Scholar]
  7. Egan S. E., McClarty G. A., Jarolim L., Wright J. A., Spiro I., Hager G., Greenberg A. H. Expression of H-ras correlates with metastatic potential: evidence for direct regulation of the metastatic phenotype in 10T1/2 and NIH 3T3 cells. Mol Cell Biol. 1987 Feb;7(2):830–837. doi: 10.1128/mcb.7.2.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fechheimer M., Boylan J. F., Parker S., Sisken J. E., Patel G. L., Zimmer S. G. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8463–8467. doi: 10.1073/pnas.84.23.8463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fidler I. J. Selection of successive tumour lines for metastasis. Nat New Biol. 1973 Apr 4;242(118):148–149. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
  10. Furth M. E., Davis L. J., Fleurdelys B., Scolnick E. M. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol. 1982 Jul;43(1):294–304. doi: 10.1128/jvi.43.1.294-304.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galloway D. A., McDougall J. K. The oncogenic potential of herpes simplex viruses: evidence for a 'hit-and-run' mechanism. Nature. 1983 Mar 3;302(5903):21–24. doi: 10.1038/302021a0. [DOI] [PubMed] [Google Scholar]
  12. Giulotto E., Knights C., Stark G. R. Hamster cells with increased rates of DNA amplification, a new phenotype. Cell. 1987 Mar 13;48(5):837–845. doi: 10.1016/0092-8674(87)90080-8. [DOI] [PubMed] [Google Scholar]
  13. Greig R. G., Koestler T. P., Trainer D. L., Corwin S. P., Miles L., Kline T., Sweet R., Yokoyama S., Poste G. Tumorigenic and metastatic properties of "normal" and ras-transfected NIH/3T3 cells. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3698–3701. doi: 10.1073/pnas.82.11.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hart I. R., Goode N. T., Wilson R. E. Molecular aspects of the metastatic cascade. Biochim Biophys Acta. 1989 Jul 28;989(1):65–84. doi: 10.1016/0304-419x(89)90035-8. [DOI] [PubMed] [Google Scholar]
  15. Hastie N. D., Dempster M., Dunlop M. G., Thompson A. M., Green D. K., Allshire R. C. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990 Aug 30;346(6287):866–868. doi: 10.1038/346866a0. [DOI] [PubMed] [Google Scholar]
  16. Hill S. A., Wilson S., Chambers A. F. Clonal heterogeneity, experimental metastatic ability, and p21 expression in H-ras-transformed NIH 3T3 cells. J Natl Cancer Inst. 1988 Jun 1;80(7):484–490. doi: 10.1093/jnci/80.7.484. [DOI] [PubMed] [Google Scholar]
  17. Kerbel R. S., Waghorne C., Man M. S., Elliott B., Breitman M. L. Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate-mediated DNA transfection. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1263–1267. doi: 10.1073/pnas.84.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korczak B., Whale C., Kerbel R. S. Possible involvement of Ca2+ mobilization and protein kinase C activation in the induction of spontaneous metastasis by mouse mammary adenocarcinoma cells. Cancer Res. 1989 May 15;49(10):2597–2602. [PubMed] [Google Scholar]
  19. Kuhlmann I., Achten S., Rudolph R., Doerfler W. Tumor induction by human adenovirus type 12 in hamsters: loss of the viral genome from adenovirus type 12-induced tumor cells is compatible with tumor formation. EMBO J. 1982;1(1):79–86. doi: 10.1002/j.1460-2075.1982.tb01128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kyprianou N., Isaacs J. T. Relationship between metastatic ability and H-ras oncogene expression in rat mammary cancer cells transfected with the v-H-ras oncogene. Cancer Res. 1990 Mar 1;50(5):1449–1454. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lancaster W. D. Apparent lack of integration of bovine papillomavirus DNA in virus-induced equine and bovine tumor cells and virus-transformed mouse cells. Virology. 1981 Jan 30;108(2):251–255. doi: 10.1016/0042-6822(81)90433-5. [DOI] [PubMed] [Google Scholar]
  23. Lau C. C., Gadi I. K., Kalvonjian S., Anisowicz A., Sager R. Plasmid-induced "hit-and-run" tumorigenesis in Chinese hamster embryo fibroblast (CHEF) cells. Proc Natl Acad Sci U S A. 1985 May;82(9):2839–2843. doi: 10.1073/pnas.82.9.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Law M. F., Lowy D. R., Dvoretzky I., Howley P. M. Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci U S A. 1981 May;78(5):2727–2731. doi: 10.1073/pnas.78.5.2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  26. Meuth M. The structure of mutation in mammalian cells. Biochim Biophys Acta. 1990 Jun 1;1032(1):1–17. doi: 10.1016/0304-419x(90)90009-p. [DOI] [PubMed] [Google Scholar]
  27. Mulcahy L. S., Smith M. R., Stacey D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature. 1985 Jan 17;313(5999):241–243. doi: 10.1038/313241a0. [DOI] [PubMed] [Google Scholar]
  28. Muschel R. J., Williams J. E., Lowy D. R., Liotta L. A. Harvey ras induction of metastatic potential depends upon oncogene activation and the type of recipient cell. Am J Pathol. 1985 Oct;121(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  29. Nicolson G. L., Gallick G. E., Dulski K. M., Spohn W. H., Lembo T. M., Tainsky M. A. Lack of correlation between intercellular junctional communication, p21rasEJ expression, and spontaneous metastatic properties of rat mammary cells after transfection with c-H-rasEJ or neo genes. Oncogene. 1990 May;5(5):747–753. [PubMed] [Google Scholar]
  30. Poste G., Fidler I. J. The pathogenesis of cancer metastasis. Nature. 1980 Jan 10;283(5743):139–146. doi: 10.1038/283139a0. [DOI] [PubMed] [Google Scholar]
  31. Pozzatti R., Muschel R., Williams J., Padmanabhan R., Howard B., Liotta L., Khoury G. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science. 1986 Apr 11;232(4747):223–227. doi: 10.1126/science.3456644. [DOI] [PubMed] [Google Scholar]
  32. Pulciani S., Santos E., Lauver A. V., Long L. K., Barbacid M. Transforming genes in human tumors. J Cell Biochem. 1982;20(1):51–61. doi: 10.1002/jcb.240200106. [DOI] [PubMed] [Google Scholar]
  33. Samiei M., Waghorne C. G. Clonal selection within metastatic SP1 mouse mammary tumors is independent of metastatic potential. Int J Cancer. 1991 Mar 12;47(5):771–775. doi: 10.1002/ijc.2910470525. [DOI] [PubMed] [Google Scholar]
  34. Sarver N., Byrne J. C., Howley P. M. Transformation and replication in mouse cells of a bovine papillomavirus--pML2 plasmid vector that can be rescued in bacteria. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7147–7151. doi: 10.1073/pnas.79.23.7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scrable H. J., Sapienza C., Cavenee W. K. Genetic and epigenetic losses of heterozygosity in cancer predisposition and progression. Adv Cancer Res. 1990;54:25–62. doi: 10.1016/s0065-230x(08)60807-6. [DOI] [PubMed] [Google Scholar]
  36. Seeburg P. H., Colby W. W., Capon D. J., Goeddel D. V., Levinson A. D. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature. 1984 Nov 1;312(5989):71–75. doi: 10.1038/312071a0. [DOI] [PubMed] [Google Scholar]
  37. Smith M. R., DeGudicibus S. J., Stacey D. W. Requirement for c-ras proteins during viral oncogene transformation. Nature. 1986 Apr 10;320(6062):540–543. doi: 10.1038/320540a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  39. Stacey D. W., DeGudicibus S. R., Smith M. R. Cellular ras activity and tumor cell proliferation. Exp Cell Res. 1987 Jul;171(1):232–242. doi: 10.1016/0014-4827(87)90266-7. [DOI] [PubMed] [Google Scholar]
  40. Stenman G., Delorme E. O., Lau C. C., Sager R. Transfection with plasmid pSV2gptEJ induces chromosome rearrangements in CHEF cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):184–188. doi: 10.1073/pnas.84.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stephens P. E., Hentschel C. C. The bovine papillomavirus genome and its uses as a eukaryotic vector. Biochem J. 1987 Nov 15;248(1):1–11. doi: 10.1042/bj2480001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Temin H. M. Malignant transformation of cells by viruses. Perspect Biol Med. 1970 Autumn;14(1):11–26. doi: 10.1353/pbm.1970.0006. [DOI] [PubMed] [Google Scholar]
  43. Theodorescu D., Cornil I., Fernandez B. J., Kerbel R. S. Overexpression of normal and mutated forms of HRAS induces orthotopic bladder invasion in a human transitional cell carcinoma. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9047–9051. doi: 10.1073/pnas.87.22.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thorgeirsson U. P., Turpeenniemi-Hujanen T., Williams J. E., Westin E. H., Heilman C. A., Talmadge J. E., Liotta L. A. NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol Cell Biol. 1985 Jan;5(1):259–262. doi: 10.1128/mcb.5.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  46. Vousden K. H., Eccles S. A., Purvies H., Marshall C. J. Enhanced spontaneous metastasis of mouse carcinoma cells transfected with an activated c-Ha-ras-1 gene. Int J Cancer. 1986 Mar 15;37(3):425–433. doi: 10.1002/ijc.2910370315. [DOI] [PubMed] [Google Scholar]
  47. Waghorne C., Kerbel R. S., Breitman M. L. Metastatic potential of SP1 mouse mammary adenocarcinoma cells is differentially induced by activated and normal forms of c-H-ras. Oncogene. 1987 May;1(2):149–155. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES