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Abstract

The evolutionary dynamics of transposable elements (TEs) are still poorly understood. One reason is that TE abundance
needs to be studied at the population level, but sequencing individuals on a population scale is still too expensive to
characterize TE abundance in multiple populations. Although sequencing pools of individuals dramatically reduces se-
quencing costs, a comparison of TE abundance between pooled samples has been difficult, if not impossible, due to various
biases. Here, we introduce a novel bioinformatic tool, PoPoolationTE2, which is specifically tailored for the comparison of
TE abundance among pooled population samples or different tissues. Using computer simulations, we demonstrate that
PoPoolationTE2 not only faithfully recovers TE insertion frequencies and positions but, by homogenizing the power to
identify TEs across samples, it provides an unbiased comparison of TE abundance between pooled population samples. We
anticipate that PoPoolationTE2 will greatly facilitate the analysis of TE insertion patterns in a broad range of applications.

Key words: transposable elements, comparative genomics, bioinformatics, next generation sequencing, Pool-Seq,
comparative population genomics.

Introduction
Transposable elements (TEs) are short stretches of DNA that
selfishly propagate within genomes and are thought to be
involved in diverse phenomena ranging from human diseases
(Kazazian, 1998) to genome evolution (Kazazian, 2004).

Many questions about the biology of TEs can be only ad-
dressed by comparing the TE abundance among different
samples, such as the activity of TEs in mutation accumulation
lines (e.g., base population vs. mutated lines), the dynamics of
TE invasions during experimental evolution (e.g., evolved
populations at different time points), the contribution of
TEs to local adaptation (e.g., populations from different areas),
the evolution of TE activity (e.g., populations from different
species), and the extend of somatic TE activity (e.g., different
tissues) (Gonz�alez et al. 2008; Perrat et al. 2013; Kofler et al.
2015b). Sequencing individuals (cells) separately is either too
costly or, as in the case of tissues, technically too challenging
(sequencing of single cells). Sequencing pools of individuals
(Pool-Seq) offers a viable alternative approach (Schlötterer
et al. 2014). However, a comparison of TE abundance be-
tween pooled samples is difficult as the read depth is usually
not high enough to identify all TEs within a pool. This leads to
an obvious bias, with more TEs being found in the sample
with more mapped reads. Although it is possible to standard-
ize the number of reads in the samples, small differences in
sequencing library preparation may introduce some addi-
tional biases: 1) insert sizes may vary between samples, with
longer insert sizes leading to a higher power to identify TEs, 2)
coverage heterogeneity may vary among samples (e.g., due to

different DNA polymerases), and 3) genome sizes may differ
between samples (e.g., due to different TE contents), where
larger genomes result in lower coverage and thus fewer de-
tected TEs. We address these problems by introducing a new
data format, the physical pileup track. Analogous to the
pileup track, which summarizes for every genomic site the
base calls, the physical pileup summarizes the structural states
(e.g., TE insert presence or absence) for every genomic site.
Based on the physical pileup, our new software tool
PoPoolationTE2 homogenizes the physical coverage across
samples and thus also the power to identify TEs.

PoPoolationTE2
PoPoolationTE2 is a fast and user friendly tool for analyzing TE
insertions in one or more samples, where samples could be
tissues, pooled individuals, or separately sequenced individ-
uals. PoPoolationTE2 does not rely on a set of annotated TE
insertions in the reference genome, thus both novel (inser-
tions not present/annotated in the reference genome) and
annotated TE insertions can be identified. Nested insertions
and insertions from uncharacterized TE families, however,
cannot be identified. In contrast to its predecessor
PoPoolationTE (Kofler et al. 2012), PoPoolationTE2 is de-
signed to compare TE abundance among multiple samples
in one joint analysis. PoPoolationTE2 is substantially faster
than its predecessor, as it is implemented in Java and uses
bam files as input. Although PoPoolationTE2 was primarily
designed for Pool-Seq data, it can also be used for sequenced
individuals where the population frequency may serve to
identify heterozygous insertions or to estimate the
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penetrance of somatic insertions. However, for identifying TE
insertions in sequenced individuals multiple dedicated tools
are available (T-Lex2 [Fiston-Lavier et al. 2015], RetroSeq
[Keane et al. 2013], Jitterbug [Hénaff et al. 2015], and TE-
Tracker [Gilly et al. 2014]). PoPoolationTE2 requires paired
end data for at least one sample, a reference genome and
either a set of TE sequences or a TE annotation. Although
PoPoolationTE2 accounts for heterogeneity in sequence cov-
erage, the number of chromosomes contributing to the pools
should be similar among samples or much larger than the
coverage in each sample (minimizing multiple sampling from
one individual at a given genomic position).

PoPoolationTE2 requires reads to be mapped to a modified
genome, consisting of a reference genome with masked TE
sequences and a set of TE sequences. Masking of TEs may be
done based on a TE annotation, RepeatMasker (Smit et al.
1996-2010) or, as RepatMasker sometimes misses TE insertions
(Rahman et al. 2015), iterative mapping of reads derived from
TE sequences (see Manual). When reads are mapped to such a
modified genome, TE insertions will result in groups of discor-
dantly mapped paired ends, where one read maps to the
reference chromosome and the other to a TE sequence (sig-
natures of TE insertions; fig. 1A), whereas properly mapped
paired ends indicate the absence of a TE insertion (fig. 1B).
Based on the position of mapped paired ends, a physical pileup
track is generated (fig. 1C). In contrast to base coverage, which
relies on the position of reads, physical coverage is based on
the sequence spanned by paired ends (fig. 1C; for the differ-
ence between base and physical coverage see also Meyerson
et al. 2010). Different types of physical coverage can be distin-
guished. Properly mapped pairs result in coverage supporting
the absence of a TE while discordantly mapped reads, with one
read mapping to a reference chromosome and the other to a
TE, result in coverage supporting the presence of a TE (fig. 1D).
Because the distance between discordantly mapped reads is
not known, we use the median of the distance between proper
pairs as approximation (inferred for each sample separately).
The power to identify TEs scales with the number of mapped
reads as well as the distance between the reads, a property that
is captured by physical coverage (fig. 1E). The physical coverage
of overlapping paired ends is summed up yielding a physical
coverage track with the height reflecting the number of paired
ends spanning a given position (fig. 1F). The power to identify
TEs can be homogenized across samples by randomly sam-
pling the physical coverage to equal levels between and within
samples (fig. 1G). Signatures of TE insertions are identified with
a sliding window approach scanning for peaks in physical
coverage supporting a TE insertion (fig. 1H). The population
frequency of TEs is estimated as the ratio of physical coverage
supporting a TE insertion to the total physical coverage
(fig. 1I). Finally, pairs of TE signatures (forward and reverse)
of the same family within a given distance are joined (fig. 1J).
PoPoolationTE2 reports the position, the family, the strand,
and the population frequency for every TE in all samples. A
more detailed explanation of the PoPooaltionTE2 algorithm
can be found in the manual (https://sourceforge.net/p/popoo
lation-te2/wiki/Home/, last accessed August 8, 2016).

Performance
First, we assessed the performance of PoPoolationTE2 under
optimal conditions such that in principle all TEs could be
detected. We simulated a population of size N ¼ 100 with
1,000 TE insertions, used a minimum distance of 990 bp be-
tween insertions and randomly picked the family, the strand,
and the population frequency (0:01 � f � 1:0) of the TEs
(total size of one genome�3:3 Mb). For this population, we
simulated paired end reads with an uniform genomic distri-
bution and a coverage sufficiently high to detect all TE inser-
tions (average physical coverage in the pool �200). The
mapping algorithm may have a substantial influence on the
identification of TEs. Evaluating the suitability of different
alignment algorithms, we found that local alignments, with
only a fraction of the read required to match, perform con-
sistently better than semiglobal algorithm, with the entire
read matching (supplementary table S1, Supplementary
Material online). All local alignment algorithm tested (bwa
bwasw, bwa mem, bowtie2–local [Li and Durbin, 2009, 2010;
Langmead and Salzberg, 2012]) allowed for a robust identifi-
cation of TEs even with sequencing error/polymorphism rates
up to 10–15% (supplementary table S1, Supplementary
Material online). The best results were obtained when we
aligned both reads of paired ends separately using bwa bwasw
and then restored the paired end information with
PoPoolationTE2 (supplementary table S1, Supplementary
Material online). We used this approach for the remaining
analyses. We reasoned that variation of the inner distance
(¼ fragment size–2 * read length) may cause problems with
mapping strategies relying on paired ends. Consistent with
this hypothesis, small variation in fragment sizes yields the
most accurate estimates of the population frequency and of
TE positions (supplementary table S2, Supplementary
Material online). The accuracy slightly decreases with increas-
ing variation of the inner distance (supplementary table S2,
Supplementary Material online). The physical coverage de-
rived from paired ends only depends on the mapping posi-
tion of the reads. Hence, we evaluated how the sequencing
strategy could be optimized to obtain the highest accuracy at
the lowest sequencing costs. As long as mapping positions are
not altered, the cost of sequencing may be reduced by shorter
reads. Optimal results were obtained with reads of 75–100 bp
length (supplementary table S3, Supplementary Material on-
line) but decreasing the read length further than 50–75 bp
misses many TEs (false negatives; supplementary table S3,
Supplementary Material online). Interestingly, increasing the
read length improves the accuracy of the TE position but
decreases the accuracy of the population frequency estimates
(supplementary table S3, Supplementary Material online).
The physical coverage, and thus the power to identify TEs,
scales with the number of reads and the inner distance. Thus,
the cost of sequencing may be reduced by sequencing fewer
reads with longer inner distances. When varying both param-
eters such that the physical coverage remains constant, we
found the highest accuracy with inner distances between 75
bp and 200 bp (supplementary table S4, Supplementary
Material online). Further increase of the inner distance may
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lead to inaccurate TE positions and to more false negative TEs
(supplementary table S4, Supplementary Material online). For
an overview of the performance of PoPoolationTE2 under
optimal conditions, see table 1.

Next, we evaluated the performance of PoPoolationTE2
with simulated Pool-Seq data. We again simulated a
population of size N ¼ 100 having 1,000 TE insertions
with random position, family, strand, and population
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FIG. 1. Overview of PoPoolationTE2. (A) TE insertions (black arrow) result in paired ends (yellow), with one read mapping to a reference
chromosome (X) and the other one to a TE (copia). One group of such discordantly mapped reads is located to the left of the insertion (forward
signature) and one to the right (reverse signature). (B) The absence of TE insertions results in proper pairs spanning a putative insertion site (green).
(C) Mapped paired end reads may be used to generate a base coverage track (gray) and a physical coverage track (green). For the base coverage, the
position of the reads is considered whereas for the physical coverage the region between the reads. (D) TE insertions result in paired ends that
support a TE insertion (yellow). This can be translated into an additional type of physical coverage (yellow track). The median distance of proper
pairs is used to estimate the distance between such discordant pairs. (E) Increasing the inner distance between paired ends compared with panel D
results in more reads supporting a TE insertion (copia) and a higher physical coverage. If paired ends are overlapping the physical coverage of
individual-paired ends is summed up, contributing to the total height of the physical coverage track. Physical coverage supporting the presence
(yellow) and absence (green) of a TE may overlap (central region). (F) Combining the information of all paired ends for each genomic position
results in a physical coverage track. (G) To homogenize the power to identify TEs, the physical coverage is randomly sampled to equal levels for each
genomic position. (H) The position of signatures of TE insertions is determined using a sliding window (black lines on top) approach and the
window with the maximal physical coverage supporting a TE (the red line indicates the window with the highest copia coverage) is used for further
analysis. (I) The population frequency of TE signatures is estimated from the ratio of average physical coverage supporting a TE to the total physical
coverage in a window (copia¼ 72=ð72þ 18Þ ¼ 0:8). (J) Matching pairs of TE signatures (forward and reverse) of the same TE family within a given
distance are joined, yielding a final set of TE insertions. Final population frequency and position estimates are obtained by averaging the estimates
for forward and reverse signature. (K) Accuracy of the population frequency estimates for 1,000 TEs in a simulated pooled population.
PoPoolationTE2 has a slight upward bias for intermediate frequency TEs and a slight downward bias for high frequency TEs. (L) Accuracy of
insertion position estimates for 1,000 TEs in a simulated pooled population.
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frequency (0:01 � f � 1:0). In contrast to optimal condi-
tions, we simulated randomly distributed paired ends (result-
ing in a heterogeneous coverage) and additionally, to reflect
properties of Illumina paired end data (Kofler et al. 2015a),
introduced 1% error rate of reads and 2% chimeric reads
(reads derived from unrelated genomic positions). Allele fre-
quencies are estimated with a precision of 62.5% and the
insertion position differs on average by 7.2 bp (table 2). The
population frequency of segregating insertions is slightly over-
estimated whereas the frequency of fixed insertions is slightly
underestimated (fig. 1E). About 80% of the estimated TE po-
sitions are within 10 bp of the true position (fig. 1F), with low
frequency insertions contributing most to the error in the
position estimate (supplementary table S5, Supplementary

Material online). The number of identified TEs decreases
with the physical coverage (supplementary table S2,
Supplementary Material online).

The performance of PoPoolationTE2 for Pool-Seq data
from a single population is similar to other tools dedicated
to TE analysis in pooled samples (TEMP [Zhuang et al. 2014],
PoPoolationTE [Kofler et al. 2012], table 2). PoPoolationTE2,
however, required the least computation time which
facilitates the analysis of multiple samples. Due to different
algorithm for identifying TEs PoPoolationTE2 and
PoPoolationTE have a slightly different sensitivity with a given
minimum count threshold (table 2; supplementary fig. S1,
Supplementary Material online). We made the benchmarking
data publicly available to facilitate testing other tools for TE

Table 1. Performance of PoPoolationTE2 under optimal conditions such that, in principle, all TEs could be identified. We evaluated the influence
of sequencing error rate, inner distance between paired ends (ID), standard deviations of the inner distance (rID), read length, and the product
between read numbers and inner distance (keeping the physical coverage constant). The performance was assessed by the number of identified
TEs, missed TEs, false positive TEs, TEs with correct strand (strand), TEs with both signatures identified (both sign.), and TEs with a single signature
identified (one sign.). Furthermore, we assessed the accuracy of the estimated insertion positions (mean: lDpos , standard deviation: rDpos) and of
the estimated population frequencies (mean: lDfreq , standard deviation: rDfreq). The resulting average coverage (lc) and average physical coverage
in the pool (lpc) were estimated from the data.

Error Rate Error Rate rID rID Read Length Read Length Reads* ID Reads* ID

Error rate 0% 10% 0% 0% 0% 0% 0% 0%
Reads [million] 6.58 6.58 6.58 6.58 6.58 6.58 13.16 3.29
ID 100 100 100 100 100 100 50 200
r ID 20 20 0 75 20 20 20 20
Read length 100 100 100 100 50 200 100 100

lc 394.8 317.1 395.1 395.1 198.0 780.5 790.3 197.6
lpc 193.0 109.2 199.9 187.8 188.0 191.8 191.1 196.1

Found 999 994 1,000 998 991 1,000 1,000 996
Missed 1 6 0 2 9 0 0 4
False positive 4 10 5 8 20 2 10 6
Strand 999 994 1,000 996 988 998 995 993
Both sign. 996 982 1,000 990 986 998 996 986
Single sign. 3 12 0 8 5 2 4 10
lDpos 4.0 5.5 2.0 5.2 3.0 2.3 1.8 4.8
rDpos 4.0 5.1 4.6 6.4 3.2 3.9 2.7 5.9
lDfreq 0.030 0.029 0.019 0.043 0.021 0.079 0.092 0.020
rDfreq 0.016 0.022 0.009 0.023 0.010 0.036 0.042 0.017

Table 2. Performance of different tools for identifying TEs with simulated Pool-Seq data. Randomly distributed paired end reads were simulated
(2�100bp; inner distance was drawn from a normal distribution with mean 100 and a standard deviation of 20) with an error rate of 1% and 2%
chimeric reads. We evaluated the performance of PoPoolationTE2 (Po.TE2), PoPoolationTE (Po.TE) (Kofler et al. 2012), and TEMP (Zhuang et al.
2014). For each tool, we used several minimum thresholds (either minimum count [mc] or minimum support [ms]). For an explanation of the
evaluated parameters see table 1.

Po.TE2 Po.TE2 Po.TE Po.TE TEMP TEMP TEMP

Threshold mc2 mc3 mc3 mc4 ms4 ms7 ms10
Found 999 994 999 995 994 992 983
Missed 1 6 1 5 6 8 17
False positive 49 5 41 4 407 193 148
Strand 998 993 0 0 980 978 969
Both sign. 993 985 993 986 991 990 981
Single sign. 6 9 6 9 3 2 2
lDpos 7.2 7.2 17.8 17.8 4.3 4.1 4.0
rDpos 7.6 7.6 13.1 13.0 14.0 13.0 13.0
lDfreq 0.025 0.025 0.021 0.021 0.018 0.019 0.019
rDfreq 0.019 0.019 0.016 0.016 0.032 0.032 0.033
Time (min) 4.0 3.9 15.5 15.6 228.4 228.4 228.4
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identification using Pool-Seq data (https://sourceforge.net/p/
popoolation-te2/wiki/TE-Benchmark/, last accessed August 8,
2016). The advantage of these simulated data is that the true
insertions and population frequencies are known which per-
mits to estimate the accuracy, sensitivity, and specificity of
tools. Alternatively, it has been suggested to compare the
performance of tools with real data using a standardized
data set (Ewing, 2015). A weakness of this approach is that
a good agreement between tools does not necessarily mean a
high performance as all evaluated tools may be biased.
Additionally in the case of discordant results between tools,
it is not possible to assess which one actually performs best.

Finally, we compared the performance of PoPoolationTE2
to its predecessor, PoPoolationTE, using real Pool-Seq data
from a natural Drosophila melanogaster population sampled
2008 in Northern Portugal (Kofler et al. 2012) and found that
the two tools yield very similar results (supplementary fig. S2,
Supplementary Material online).

Because PoPoolationTE2 was designed specifically for an
unbiased comparison of TE abundance among samples, we
tested its performance by simulating three populations with
variable numbers of low frequency (f ¼ 0.01) insertions (A
¼ 1000, B ¼ 750, C ¼ 500). For each of these three pop-
ulations we generated in silico different numbers of paired
end reads which varied in insert sizes (table 3). With typical
Pool-Seq studies only sampling a subset of the chromo-
somes in the sample (Schlötterer et al. 2014), it is not pos-
sible to identify all TE insertions. Nevertheless for an
unbiased comparison of different samples, it is sufficient
to determine the relative TE abundance. The example in
table 3 shows how the analysis of the complete data set
may lead to misleading results: in population A fewer TE
insertions (minimum count 2) are detected than in popu-
lation B, despite the opposite being true. Subsampling reads
in all samples to equal numbers (i.e., identical base coverage)
reduces the problem, but still causes misleading results, with
population B having more insertions (table 3). Subsampling
the physical coverage to equal levels in all populations con-
sistently resulted in the least biased comparison of TE abun-
dance between populations (table 3).

When the inner distance of the paired end reads is similar
between samples, subsampling reads to equal numbers has
the same effect as homogenizing the physical coverage (sup
plementary table S7, Supplementary Material online), but the
latter strategy identifies fewer TE insertions. PoPoolationTE2
supports both approaches.

Some applications, such as measuring TE activity in muta-
tion accumulation lines, may depend on a reliable identifica-
tion of sample specific insertions. This could be challenging as a
putative absence of a TE insertion in one sample may in fact be
an artefact of coverage heterogeneity. We show that coverage
heterogeneity among samples may result in a substantial frac-
tion of false sample specific insertions (supplementary table S8,
Supplementary Material online). We recommend to analyze
only regions with sufficient physical coverage in all samples
since this dramatically reduces the number of false positives
(supplementary table S8, Supplementary Material online).

We conclude that PoPoolationTE2 is a fast and user
friendly tool for an unbiased comparison of TE abundance
between samples, thus enabling to study TE dynamics in a
broad range of applications.

Availability
PoPoolationTE2 is implemented in Java and freely available at
https://sourceforge.net/projects/popoolation-te2/ (last accessed
August 8, 2016); For a detailed manual and a walkthrough using
a small sample data set see https://sourceforge.net/p/popoola
tion-te2/wiki/Home/ (last accessed August 8, 2016). A data set
for benchmarking tools for the identification of TE insertions
with Pool-Seq data is available at https://sourceforge.net/p/
popoolation-te2/wiki/TE-Benchmark/ (last accessed August 8,
2016).

Supplementary Material
Supplementary figures S1 and S2 and tables S1–S8 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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Table 3. Evaluating different strategies to compare TE abundance in Pool-Seq samples. We simulated three populations with different numbers of
low-frequency insertions (f ¼ 0.01) and paired ends with varying inner distances (ID). An unbiased comparison should result in a stable ratio
between observed and simulated TEs in the three populations (i.e., a low robs=sim). The best results were obtained when the physical coverage (p.c.)
was sampled to equal levels in all three populations. Results are shown for two different minimum count thresholds (mc). The average coverage
(lc) and the average physical coverage in the pool (lpc) were directly estimated from the data. a Coverage after sampling.

Sampling strategy Naive Naive Naive Equal reads Equal reads Equal reads Equal p.c. Equal p.c. Equal p.c.

Population A B C A B C A B C
Simulated TEs 1,000 750 500 1,000 750 500 1,000 750 500
ID 100 150 200 100 150 200 100 150 200
Reads (million) 1.045 1.379 2.045 1.045 1.045 1.045 1.045 1.379 2.045
lc 199.91 266.66 399.97 199.91 202.19 204.34 199.91 266.66 399.97
lpc 99.11 198.78 398.23 99.11 150.82 203.68 100.00a 100.00a 100.00a

Observed TEs (mc2) 396 676 495 396 580 455 147 64 19
Observed/simulated 0.396 0.901 0.990 0.396 0.773 0.910 0.147 0.085 0.038
robs=sim 0.320 0.266 0.054
Observed TEs (mc1) 784 745 496 784 742 499 469 375 251
Observed/simulated 0.784 0.993 0.992 0.784 0.989 0.998 0.469 0.500 0.502
robs=sim 0.120 0.121 0.018
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