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Abstract

Objectives—To investigate Haralick texture analysis of prostate MRI for cancer detection and 

differentiating Gleason Scores (GS).

Methods—One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-

weighted prostate MRI. Cancers ≥0.5ml and non-cancerous peripheral (PZ) and transition zone 

(TZ) tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-

mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, 

Inertia) were extracted and analyzed using generalized estimating equations.

Results—PZ cancers (n=143) showed higher Entropy and Inertia and lower Energy, Correlation 

and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001–

0.008). In TZ cancers (n=43), we observed significant differences for all five texture features on 

the ADC map (all p-values: <.0001) and for Correlation (p=0.041) and Inertia (p=0.001) on T2WI. 

On ADC maps, GS was associated with higher Entropy (GS 6 vs 7: p=0.0225; 6 vs >7: p=0.0069) 

and lower Energy (GS 6 vs 7: p=0.0116, 6 vs >7: p=0.0039). ADC map Energy (p=0.0102) and 
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Entropy (p=0.0019) were significantly different in GS ≤3+4 vs. ≥4+3 cancers; ADC map Entropy 

remained significant after controlling for the median ADC (p=0.0291).

Conclusion—Several Haralick based texture features appear useful for prostate cancer detection 

and GS assessment.
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INTRODUCTION

There is increasing interest in the potential role of magnetic resonance imaging (MRI) for 

evaluating prostate cancer aggressiveness, capable of allowing a risk-adjusted management 

approach [1; 2]. Patients with low-volume low-grade (i.e. Gleason score 3+3=6) cancers 

may be offered conservative management with strategies such as active surveillance, while 

patients with high-risk of progression or death from prostate cancer are treated with more 

radical approaches such as surgery or radiation therapy [3–6]. This risk-based management 

paradigm is heavily dependent on adequate patient selection, and it is well known that 

standard risk-stratification methods based on physical exam, serum prostate-specific antigen 

(PSA) testing and transrectal prostate biopsy are far from optimal [7].

According to European Society of Urogenital Radiology prostate MRI guidelines [8], 

muliparametric (mp)-MRI combines anatomical T1- and T2-weighted sequences with at 

least two “functional” sequences such as diffusion-weighted (DW) MRI, dynamic contrast-

enhanced MRI and/or magnetic resonance spectroscopy. Significant associations between 

several quantitative parameters derived from mp-MRI and prostate tumour aggressiveness 

have been reported. Tumour-to-muscle signal intensity ratios on T2-weighted images 

(T2WI) and apparent diffusion coefficients (ADC) on DW-MRI have been found to be 

negatively correlated to tumor Gleason score on pathology [9–16]. The discriminatory 

abilities of these parameters are only moderate due to considerable overlaps between 

different Gleason scores. This, and technical variations in MRI acquisition (e.g. different 

scanner systems, different b-values) challenge the translation of these findings to clinical 

practice. Moreover, there is debate about the methodology and reproducibility of ADC 

measurements with the recent description of ADC ratios (normalized to non-tumorous 

tissues) [17], whole lesion measurement and histogram analysis including median and low 

percentile ADC values [18]. More advanced methods of image processing and analysis may 

be a next step to overcome this limitation.

Haralick texture analysis is a mathematical method that extracts features from an image that 

are not perceptible for the human eye [19]. In essence, it describes how often one grey tone 

will appear in a specified spatial relationship to another gray tone on the image [20]. By 

using a series of mathematical equations, it generates a range of quantitative parameters 

(‘texture features’) that characterize the spatial variation of gray levels throughout an image. 

Successful applications of this technique have been documented in a variety of fields [19; 

21; 22]. We therefore hypothesized that this image analysis technique could also be applied 
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in mp-MRI of the prostate and could potentially support diagnosis, risk stratification and 

management-decisions in prostate cancer.

The purpose of this proof of principle study was to investigate whether Haralick texture 

analysis of prostate MRI is useful for prostate cancer detection and differentiating cancers 

with different Gleason Scores (GS).

MATERIALS AND METHODS

The Institutional Review Board approved this retrospective study and waived written 

informed consent.

Study population

The following inclusion criteria were queried from our electronic hospital information 

system: (1) biopsy-proven prostate cancer; (2) radical prostatectomy performed in our 

institution between January-December 2011; (3) endorectal 3T prostate MRI performed 

within six months before prostatectomy and (4) whole-mount step-section pathologic 

tumour maps. Patients with (1) previous treatment for prostate cancer (i.e. radiation or 

hormonal therapy, n=7), (2) those who had imaging artefacts making the segmentation of 

cancer lesions impossible (n=8), (3) those where the size and/or the location of the cancer 

lesions precluded the segmentation of non-cancerous prostate tissue (n=4), and (4) those 

with a total tumour volume <0.5ml on histopathology (n=51), were excluded from the 

analysis. Figure 1 is a flow chart that details the patient selection.

MR Imaging Acquisition

All images were acquired on a 3.0-T MRI system (Signa, General Electric Medical Systems, 

Milwaukee, USA). A pelvic phased-array coil was used in combination with an endorectal 

coil (Medrad, Warrendale, USA) for signal reception. Transverse T1-weighted images were 

acquired as follows: repetition time/echo time (msec), 467–1349/6.6–10.2; section thickness, 

5mm; intersection gap, 1mm; field of view, 22–40cm; and matrix, 256×192 to 448×224. 

Transverse, coronal, and sagittal T2-weighted fast spin-echo images were acquired as 

follows: repetition time/echo time (msec) 2500–7700/83.3–143.5; section thickness, 3–

4mm; intersection gap, 0–1mm; field of view, 14–24cm; and matrix, 288×288 to 448×224. 

Transverse DW sequences were acquired with a single-shot spin-echo echo-planar imaging 

sequence with two b values (0 and 1000 sec/mm2) (3500–5675/70.3–105.6; section 

thickness, 3–4mm; no intersection gap; field of view, 14–24cm; matrix, 96×96 to 128×128) 

and with the same orientation and location used to acquire transverse T2-weighted images. 

ADC maps were calculated using a designated workstation (Advanced Workstation; General 

Electric Medical Systems).

Histopathologic Analysis and Pathologic Volume Measurement

All radical prostatectomy specimens were serially sectioned from apex to base at 3–5 mm 

intervals, and submitted as whole-mount sections for examination. After detailed 

microscopic revision, the tumour border was outlined on the coverslip of each slide, and the 

Gleason grade patterns present in each lesion were determined. Then radical prostatectomy 
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slides were scanned as 300-dpi resolution digitalized tumour maps. Tumour volume for each 

cancer focus was calculated by multiplying the tumour area by the slice thickness with 

computerized planimetry using image analysis and measurement software Photoshop CS6 

(Adobe Systems, San Jose, CA, USA).

Image Segmentation

Segmentation of prostate cancer foci and non-cancerous prostate tissue on the MR images 

was done in consensus by three readers: one genitourinary imaging research fellow (A.W.), 

one clinical urology research fellow (T.G.), and one pathology research fellow (K.M.), using 

a designated multi-platform, free and open source software package for visualization and 

medical image computing (3D slicer, version 4.2.2–1; available at: http://slicer.org/). 

Prostate cancer foci ≥0.5ml were first identified on the whole-mount step-section tumour 

maps. Then, using anatomical landmarks (e.g. urethra, ejaculatory ducts, well-delineated 

hyperplastic nodules, prostatic capsule) as a reference for visual co-registration, freehand 

regions of interest were drawn on the T2WI and ADC maps, matching the location of 

tumours on the whole-mount pathology maps (Figure 2). If a lesion extended into more than 

one histopathologic slice, the tumour was segmentated on every corresponding MR image 

creating a volume of interest (VOI). In every patient, one separate VOI was placed in a 

region of non-cancerous peripheral and transition zone prostate tissue according to 

histopathology, avoiding nodules of benign prostate hyperplasia.

Texture Analysis

Textural features were extracted from the MR images using Haralick texture descriptors. 

These features are computed from the grey level co-occurrence matrices (GLCM) computed 

at each voxel underlying the region of interest in the 3D volume [19]. The GLCM is 

essentially a two dimensional histogram that captures the frequency of co-occurrence of two 

pixel intensities at a certain offset with respect to each other over the region where the 

texture is computed (Figure 3). In the original work in [19], 28 different features were used. 

The work in [23] eliminated redundant features and reduced the number of required texture 

features to seven. These features are Energy, Entropy, Correlation, Difference Moment or 

Homogeneity, Inertia or Contrast, Cluster Shade, and Cluster Prominence. Each texture 

feature computes a specific relation of pixels with their local neighbourhood, as detailed in 

Table 1. Cluster Shade and Cluster Prominence were not calculated in this study because 

these features tend to over emphasize Energy, Entropy, Homogeneity and Contrast. The 

texture features were computed over the whole volume defined by the segmentation mask 

for a structure. The result of texture analysis on a structure is a set of scalar (single unit) 

values that summarize the texture in that region. It is important to highlight that Haralick 

analysis is only one of multiple techniques that can be used to generate “texture” data. 

Another such technique is fractal based texture analysis [24], which examines the difference 

between pixels at different scales (offset distances) and then estimates a stochastic model. 

Our preference for Haralick analysis is based on the following reasons. First, fractal based 

texture models are computationally intensive as the model is estimated during the texture 

extraction process. Second, these models lack orientation sensitivity and are not suitable for 

describing local image structures. We computed the texture features over the whole volume 

defined by the segmentation mask for a structure, as has been previously done in medical 
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studies for characterizing heterogeneity of tumours [25; 26], rather than spatially local 

textures. The main difference between these two methods is that in the volume-based 

approach a single value is returned for the entire volume for each texture feature as opposed 

to a separate texture feature value for each pixel. An advantage of the volume-based 

approach is that it is not impacted by the choice of spatial granularity or the radius over 

which a texture is computed. This measure is therefore more robust to the size of the tumour, 

albeit for very small tumour sizes, the measure can be adversely affected by noise in the 

same way as local textures. The texture analysis was performed separately on the T2WI and 

ADC images, wherein, the images were first normalized and rescaled to an intensity range of 

0–256 gray levels followed by texture analysis. The GLCM was computed by using 128 

bins, and employing image offsets in all the 24 directions (for 2D it is 8 directions as there 

are 8 neighbours for a voxel and 24 for 3D) followed by averaging of the offset values from 

all the directions. Using multiple offsets enabled the method to be rotationally invariant to 

the distribution of texture. The texture features were computed using an in-house software 

written in C++ together with the publicly available Insight ToolKit (ITK) software libraries 

for image analysis [27]. The ITK software libraries provide application interface (API) tools 

for reading DICOM images, performing various image preprocessing on radiological images 

as well as methods for computing texture features. The software was written and tested on a 

16-core Windows7 PC. The libraries needed to compile the software include Visual studio 

2012, Insight ToolKit Software Development Kit, and CMake [28].

Statistical methods

MRI texture parameters were summarized using descriptive statistics. Scatter plots were 

used to show texture parameter value of every cancer lesion by the value of non-cancerous 

tissue from the same patient. The difference of parameter values between cancer lesion and 

non-cancerous tissue was calculated and tested using the generalized estimating equations 

(GEE) method with a robust covariance matrix and independent correlation structure to take 

into account multiple tissue samples per patients. Box and whisker plots were used to plot 

each texture parameter in tumours by Gleason score.

Generalized linear regression and the GEE method was used to examine the association 

between texture parameters and tumour Gleason score. Custom hypothesis tests were created 

to test the difference between Gleason scores of 3+3=6 vs. (3+4=7 or 4+3=7), 3+3=6 vs. >7, 

and ≤3+4 vs. >3+4. Related to this, the logarithm link function was applied for parameters 

with skewed distribution. Both of these GEE methods were applied for the ADC median as 

well. To assess the added value of texture parameters to the ADC median in differentiating 

non-cancerous versus cancerous tissue and for differentiating between GS ≤3+4 vs. >3+4, 

bivariate GEE models were created for each texture feature with ADC median. Only those 

significant on univariate analyses were tested.

The Wald test p values from the regression model were reported. P-values ≤0.05 were 

considered statistically significant. All statistical analyses were performed using SAS 9.2 

(SAS Institute Inc., NC, USA).
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RESULTS

Of the 147 patients included in the analysis, 111 (75.5%) had one cancerous lesion ≥0.5ml 

on pathology, 33 patients (22.4%) had two and three patients (2.0%) had 3 cancerous lesions 

≥0.5ml on pathology. Table 2 details the clinical and demographical data of the study 

population. Further analysis was done on a per-lesion basis, including 186 cancerous lesions 

≥0.5ml on pathology, of which 143 (76.9%) were located in the PZ and 43 (23.1%) were in 

the TZ. The majority of the lesions were classified as Gleason score 3+4=7 (n=109, 58.6%), 

whereas 33 lesions (17.7%) had a Gleason score 6, 25 lesions (13.4%) had a Gleason score 

4+3=7, and 19 lesions (10.2%) had a Gleason score ≥8.

Texture Features

Differentiation of cancerous and non-cancerous tissue in the PZ—Table 3 

summarizes the means and standard deviations of the five texture features (Energy, Entropy, 

Correlation, Homogeneity, and Inertia) of 143 PZ cancers and non-cancerous PZ tissue on 

T2WI and the ADC maps. On both T2WI and ADC maps, Entropy and Inertia were 

significantly higher whereas Energy, Correlation, and Homogeneity were significantly lower 

in prostate cancer foci than in non-cancerous PZ tissue (p-values: <.0001–0.008).

Differentiation of cancerous and non-cancerous tissue in the TZ—Table 3 also 

summarizes the means and standard deviations of the five texture features of 43 TZ cancers 

and non-cancerous TZ tissue. On ADC maps, Entropy and Inertia were significantly higher 

in the cancer lesions whereas Energy, Correlation and Homogeneity were significantly lower 

than in non-cancerous TZ tissue (all p-values: <.0001). On T2-weigted images, Inertia was 

significantly higher in cancer lesions than in non-cancerous prostate tissue (p=0.001), 

whereas Correlation was significantly lower (p=0.041). There was no significant difference 

in Energy, Entropy and Homogeneity of cancer lesions and non-cancerous prostate tissue on 

T2WI.

Association between texture features and Prostate Cancer Gleason Score 
(GS)—Table 4 details the association of the GS of PZ prostate cancers (n=143) and the five 

texture parameters on T2WI and ADC maps. On the ADC maps, higher PZ GS was 

associated with higher Entropy (Figure 4A) and lower Energy (Figure 4B). None of the 

texture features of T2WI showed significant associations with GS for all three GS 

groupings. However, Homogeneity was found to significantly differentiate 3+3=6 vs. ≥8 and 

≤3+4 vs. >3+4. Due to the small numbers of TZ cancers in each GS category, MRI texture 

and GS associations in TZ cancers were not evaluated.

Added value of texture features to the median ADC—The median ADC values of 

cancer lesions were significantly lower than the median ADC values of non-cancerous 

prostate tissue in the PZ (1061±203 vs. 1511±274, p<0.0001) and the TZ (1014±190 vs. 

1407±208 10−6 mm2/s, p<.0001), respectively. In PZ cancer lesions, the median ADC was 

negatively correlated with the lesion’s GS (p<.0001, detailed numbers provided in Table 4). 

After adjusting for median ADC, Energy, Entropy, Correlation, and Homogeneity on the 

ADC map were independently associated with tumour presence (Table 5). For differentiating 
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GS ≤3+4 vs. ≥4+3, entropy measured on the ADC map remained significant even after 

controlling for the median ADC, (p=0.0291, Table 6).

DISCUSSION

In this study we found that Haralick texture features derived from T2-weighted images and 

ADC maps have the potential to differentiate between prostate cancer and non-cancerous 

prostate tissue. We also found that Entropy derived from the ADC map is significantly 

associated with prostate cancer Gleason score in the PZ, independently from the median 

ADC value. Haralick texture analysis may therefore contribute to prostate cancer detection 

and risk-stratification, without the need for acquiring additional MRI sequences. Although 

these findings are an encouraging initial step, additional efforts focusing on better 

understanding of the underlying biology that is being measured through texture analysis, as 

well as a better delineation of the incremental value of texture analysis compared to or in 

combination with other analytic approaches, are warranted.

Preliminary reports have hinted at the potential use of texture analysis in prostate cancer 

imaging. On transrectal ultrasound images, Huynen et al. found that with the combination of 

five Haralick texture features (among others Entropy and Inertia) they were able to 

prospectively discriminate non-cancerous from malignant prostate tissue in 30 patients with 

a sensitivity and specificity of 86% and 88%, respectively [29]. Another study evaluated a 

computer-assisted diagnosis system for peripheral zone prostate cancer detection in 20 

patients and found that the Entropy on T2WI was one of the most discriminant features 

between non-cancerous and malignant tissue [21]. Another group found that, out of 110 T2-

w MRI-derived variables, Haralick Entropy was one of the top 20 features to accurately 

identify peripheral zone prostate cancer in 22 patients [30]. There are no prior reports in the 

literature evaluating the use of Haralick texture parameters for assessing prostate cancer 

aggressiveness. Our study included data from a relatively large collective and both 

anatomical and functional MR imaging sequences. It provides the basis for the hypothesis 

that Haralick texture features of prostate MR images offer a possibility to retrieve additional 

information to that provided by the intrinsic parameters measured on each MR sequence 

(e.g. MR signal intensities on T2WI and ADC values on DW-MRI).

Our study has several limitations. First, it is a retrospective design as the MRI examinations 

were done as staging procedures for newly-diagnosed prostate cancer and were part of the 

patients’ diagnostic workup, whereas texture analysis was retrospectively applied to existing 

data. To reduce the possibility of confirmation bias, the image segmentation and the 

calculation of the texture features were performed by different teams of investigators, and 

the computational scientists who calculated the texture features were blinded to the patients’ 

clinical history and imaging and pathology findings. Second, only patients undergoing 

radical prostatectomy were included in the study in order to ensure the most accurate 

imaging to pathology correlation possible by using whole-mount step-section tumour maps 

as the standard of reference. This selection bias explains the relatively small number of 

Gleason Score 3+3 lesions in our cohort and may limit the generalizability of our results to 

patients in whom radical prostatectomy is not deemed a management option. Third, 

correlation between the MR images and the whole-mount step-section specimens may not 
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have been perfectly accurate as the use of an endorectal coil is known to potentially 

compress and deform the prostate gland and cancer lesions. We tried to minimize 

inaccuracies by a consensus approach of image segmentation but this issue remains a 

potential source of error. Fourth, MRI acquisition parameters were variable but textures, 

specifically the Haralick texture features, are computed using the relative values of pixel 

intensities between specific pixels. Differences in MR image acquisition will therefore not 

necessarily impact the texture computation. Fifth, this study was designed as a proof-of-

concept analysis. It showed that Haralick texture analysis of prostate MRI yields meaningful 

results and therefore justifies more detailed investigations. However, our data cannot 

determine the incremental clinical value of this technique and prospective comparative 

studies are needed.

In summary, several Haralick based texture features showed significant differences between 

non-cancerous and malignant prostate tissue and in tumours with different Gleason scores. 

Additional work is necessary to evaluate the incremental value of Haralick texture over other 

quantitative metrics derived from multiparametric prostate MRI and to understand the 

underlying biology evaluated by texture analysis.
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Key Points

1. Several Haralick texture features may differentiate non-cancerous and 

cancerous prostate tissue.

2. Tumour Energy and Entropy on ADC maps correlate with Gleason 

score.

3. T2w-images-derived texture features are not associated with the 

Gleason score.
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Figure 1. 
Flowchart of patient selection
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Figure 2. 
63-year-old man with Gleason 3+4 prostate cancer demonstrated on the whole-mount 

prostatectomy pathology map (a). Using this as reference, the tumour was identified and a 

region of interest placed (green line) on the T2-weighted images (b) and ADC map (c). An 

area of benign prostatic tissue was also outlined on the same sequences (yellow line).
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Figure 3. 
Explanation of the calculation of texture features from a grey-level co-occurrence matrix 

(GLCM). For simplicity, a 4 × 4 pixel grey-scale image with only three grey-levels (i.e. 

light-grey [≡1], dark-grey [≡2], and black [≡3]) was chosen. In Step 1, the grey-scale image 

is transcribed to a corresponding grid of numeric grey-levels. A GLCM is deducted from this 

grid by considering the relationship of every pixel to its neighbourhood. For this example, a 

‘neighbour pixel’ was defined as one that is located immediately to the right of each 

‘reference pixel’. We start with the light-grey [≡1] pixel in the left-upper corner. It’s 

‘neighbour’ is a black [≡3] pixel, meaning that a light-grey [≡1] and black [≡3] pixel ‘co-

occurred’, as indicated by the red circle in the diagram. There is one other co-occurrence of 

light-grey [≡1] and black [≡3] in the diagram (highlighted by a green circle). In Step 2, the 

count of all possible co-occurrences is recorded in a table, which - after its completion - is 

named the GLCM. In Step 3, the GLCM is normalized so that each cell doesn’t contain a 

count of every possible co-occurrence but its probability. These probabilities provide the 

basis for the calculation of the various texture features according to the equations shown 

(Step 4). In a ‘real-world’ application of this principle, ‘neighbourhood’ can be defined in 

various ways by changing the directions and distances between ‘reference pixels’ and 

‘neighbour pixels’.
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Figure 4. 
Box-and-Whisker plots displaying the distribution of Haralick Entropy (A) and Energy (B) 

of peripheral zone prostate cancer lesions (n=143) on ADC maps, stratified by the lesions’ 

Gleason scores (3+3=6, 3+4=7 or 4+3=7, and >7). The detailed numbers and p-values are 

provided in Table 4.
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Table 1

Description of the five Haralick texture features used in this study

Texture Feature Description

Energy Computed as the average of the gray level co-occurrences, it captures the extent of similarity of voxels in 
a given region.

Entropy Captures the amount of variation in the co-occurrence of the different voxels and is a measure of disorder 
in the distribution of signal intensities.

Correlation Captures how the pairs of voxels are correlated to other voxel pairs as positive, zero, or negative 
correlation.

Homogeneity (Difference Moment) Computes the homogeneity of the co-occurrence pairs.

Inertia (Contrast) Computes the amount of dissimilarity of the co-occurrence pairs and is a measure of variation in signal 
intensities.
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Table 2

Patient characteristics (n=147)

Mean ± SD, Median (Range)

Age at Prostatectomy (years) 59.0±7.5
58.9 (38.0–75.2)

Time from MRI to prostatectomy (days) 22.3±21.5
15 (1–100)

Serum PSA (ng/ml) 7.2±7.5
5.5 (1.1–60.9)

N (%)

Prostatectomy Gleason Score

3+3=6 33 (17.7)

3+4=7 109 (58.6)

4+3=7 25 (13.4)

≥8 19 (10.2)

Number of cancer lesions ≥0.5ml on histopathology

Number of patients with1 lesion 111 (75.5)

Number of patients with 2 lesions 33 (22.4)

Number of patients with 3 lesions 3 (2.0)

PSA: prostate-specific antigen; SD: standard deviation
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