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Monitoring Error Rates In Illumina Sequencing
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Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing
challenge. The introduction of the lllumina NextSeq 500 and the depreciation of specific metrics from lllumina’s
Sequencing Analysis Viewer (SAV; lllumina, San Diego, CA, USA) have made it more difficult to determine
directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have
created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the
lllumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500
instruments and provides an alternative to lllumina’s quality value (Q) scores for determining run quality. Whereas
Q scores are representative of run quality, they are often overestimated and are sourced from different look-up
tables for each platform. The PPR’s unique capabilities as a cross-instrument comparison device, as a
troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over
SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.
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INTRODUCTION

Given the context-specific character of sequencing errors,
sequencing data are often subject to reliability issues. Basecall
quality can vary significantly from cycle to cycle, as well as
within a single cycle." The reduction of the influence of such
instrument artifacts is essential for the acquisition of unbiased
genomic data. However, assessing the magnitude of this
influence in a context of rapidly evolving sequencing tech-
nologies has been inadequately addressed. Currently, the
standard measure for sequencing quality on Illumina plat-
forms is their Phred-like Q score,” which represents the
probability of a correct basecall. However, this metric is not
the ideal choice for an unbiased measurement, as it is itself
calibrated with instrument-dependent variables.” Illumina Q
scores are calculated by matching properties of clusters, such
as intensity and signal-to-noise ratios, to a table of empirically
acquired metrics.” These values differ for each instrument,
change with updates in the sequencing platform’s chemistry
or software, and are built under ideal circumstances.
[llumina SAV Q scores and PPR use different methods to
estimate basecall error rate. PPR used the alignment of a PhiX
spike-in as an external control to measure the percentage of
reads with 0—4 mismatches, providing a direct measurement
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of the intrinsic error rate. The graphic contains a cycle-by-cycle
representation of the percentage of reads with 0 mismatches,
percentage of reads with =1 mismatch, percentage of reads
with =2 mismatches, and so on. This metric was introduced
with the Genome Analyzer and was generated for all Illumina
sequencers until its retirement in November 2014. Asa simple
external test of data reliability on a cycle-by-cycle basis, this
metric is an unbiased udlity for quality measurement that
can flexibly handle the common variations that occur within
[llumina reads, including mismatch rate changes with in-
creasing read length or with changes in base composition
within the read. Whereas current versions of SAV still contain
information sourced from the PhiX alignment, this informa-
tion (“Error Rate”) condenses the 0—3 mismatch rates into a
single number (Illumina, written communication, June 2015)
that does not indicate how the errors are distributed among or
along the reads. Additionally, whereas Q scores are represented
graphically, they are not a direct measurement of the error rate,
as they rely on lookup tables derived in ideal circumstances.
Here, we present a program that generates PPR from Illumina
sequencing data, providing a sensitive, multidimensional
representation of read quality that is information rich, while
also being easy to interpret.

METHODS

Each sequencing run used a 150 or 300 cycle NextSeq 500 v1
or v2 High Output Sequencing Kit and corresponding High
Output Flow Cell. Illumina libraries were quantified using
real-time quantitative PCR, and loading concentrations varied
between 0.8 and 1.7 pM. The Illumina PhiX bacteriophage
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PPR output for HiSeq 2000 and NextSeq 500. (A) PPR summary. (B) PPR plots for a 150 + 150 NextSeq 500 v1 run that
clustered at a density of 1083 K/mm? and yielded 494 million reads passing filter. (C) PPR plots for a 150 + 150 NextSeq 500
v2 run that clustered at a density of 525 K/mm? and yielded 315 million reads passing filter. (D) PPR plot generated in lllumina
SAV v1.8.37 for aHiSeq 2000 lane with index read shaded yellow. (E) PPR plot generated by our program for the same 100 + 8 +
8 + 100 HiSeq 2000 lane that clustered at a density of 742 K/mm2 and yielded 192 million reads passing filter.

genome was spiked in at concentrations between 1 and 25%,
with 10% being the median. The PhiX bacteriophage genome
was chosen as the reference genome, as it is the genome used in
the previous PPR metric and current Error Rate metric in
[llumina SAV. The libraries were standard submissions to the
core facility from various research labs.

The PPR plot program is written in Perl and R, accepting
FASTQ files as input. The bacteriophage PhiX is used as the
reference genome for all studies in this manuscript. For HiSeq
2000/2500 lanes, the program reduces data quantity (down-
sampling) by randomly selecting a total of 1/10 of the data
from each lane from 10 evenly distributed vertical sections.
Down-sampling of NextSeq 500 data is accomplished by
using only asingle tile, Tile 7, from each camera swath. MiSeq
dataare not down-sampled. After down-sampling, PhiX reads
are identified by aligning the first 30 nucleotides to the PhiX
bacteriophage genome using Bowtie 2.* From those reads
identified as being derived from PhiX, the entire forward and
reverse reads are aligned and mismatches determined. The
mismatch count is then calculated, and the PPR plot is
created using R. The PPR software package™ © is available at
http://openwetware.org/wiki/BioMicroCenter:PPR_Program
(BioMicro Center, Massachusetts Institute of Technology,
Cambridge, MA, USA).

126

RESULTS AND DISCUSSION

To more accurately evaluate the performance of the Illumina
HiSeq 2000/2500, MiSeq, and NextSeq 500, the PPR
graphics that had once been a part of Illumina’s SAV were
reimplemented. The algorithm uses Bowtie 2* to map a subset
of PhiX spike-in reads rapidly to the PhiX reference genomic
sequence and counts the number of mismatches based on this
alignment (Fig. 1A). The alignment files allow determination
of the cycles at which errors occur. The software described here
is publicly available (Supplemental Material).

PPR was compared with Illumina’s % Perfect Reads and
other [llumina quality metrics to demonstrate the consistency
of our results (Fig. 1). Error rates measured by our program are
consistent with other Illumina metrics, although our program
measures higher error rates for runs with lower Clusters
Passing Filter rates and lower percent = Q30 scores, on
average, for all platforms (Fig. 1B and C and Supplemental
Table 1). HiSeq 2000 (Fig. 1C and D) and MiSeq (Sup-
plemental Fig. 1) data showed similar reproducibility between
plots. The observed deviation is likely a result of a harder
quality filter in the original algorithm, which threw away some
poor reads, whereas PPR’s more permissive filter allows the
program to function even on very low-quality reads (Supple-
mental Fig. 1). Additionally, for all Illumina sequencing
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FIGURE 2

PPR and lllumina Q30 for v1 and v2 NextSeq 500 runs. (A) V2 chemistry
data reveal a marked increase in error-free reads over v1 chemistry.
Average v1 and v2 0 mismatch percentages are 59% and 71%,
respectively. (B) V2 chemistry runs have higher average total percent =
Q30 scores and less drop-off in total percent = Q30 scores with higher
cluster densities. Average v1 and v2 Q scores are 80 and 87, respectively.

platforms, an increase in cluster density results in a higher
number of reads and after a certain increase, a lower number of
reads passing Illumina’s quality filter as a result of the density

of overlapping clusters. Given this trend, an increase in
mismatches as cluster density increases is expected and is
observed for both the Q score and PPR (Fig. 2).

A comparison between Q30 and PPR data shows that the
Q30 score consistently calculates a lower expected error rate
than the one observed using the 0 mismatch rate from the
PPR plots. For base calls with a Q30 quality score, 1 in 1000
basecalls is predicted to be incorrect.” Therefore, the reported
percent = Q30 rate should approximate the 0 mismatch rate.
However, PPR mismatch rates are consistently higher than
those represented by reported Q30 scores (Fig. 2 and Sup-
plemental Fig. 1), and Q score overestimation has been
previously noted.” ® Interestingly, reference mismatches (Fig.
2A) seem to show a more sensitive response to read count than
does Illumina Q30 (Fig. 2B).

A valuable application of the PPR program is for di-
agnosing the causes of run failures. The identification of the
cause of a run failure and the rectification of systematic errors
across runs are complicated by the number and diversity of
errors that can occur in Illumina sequencing, notall of which
are instrument related. In a normal PPR plot, a roughly linear
relationship is observed between read length and mismatches,
which does not dip far below 80% perfect (Fig. 3A). Failed
runs, in addition to having more mismatches, yield PPR
profiles unique to the failure type. For instance, in the case
where the insert to be sequenced is too short, the sequencing
read can run off the end of the molecule. The PPR graph
shows this error as a normal, linear error rate, followed by a
sharp error-rate increase after the polymerase has run off the
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FIGURE 3

PPR profiles for common sequencing failures. (A) A PPR plot for a normal run. (B) Adapter read-through failure mode.
(C) Bad reagent failure mode. (D) Short repeating sequence failure mode.
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PPR profiles showing decay of Camera 1 over time.

end of the amplicons (Fig. 3B). Likewise, issues with the
[llumina chemistry can cause reads to decay rapidly in quality,
resulting in sudden increases in error rate as individual reads
go bad. The PPR graph shows this as a dramatic increase in
the percentage of reads with >4 mismatches (Fig. 3C),
whereas the percentage of reads with 0 mismatches decreases
to below 20%. This suggests that once a single error occurs,
read quality declines precipitously.

The PPR program finds additional use in monitoring all 6
cameras separately for NextSeq 500 (Fig. 1B and C), insuring that
failure of a single camera or a single part of the flow cell does not
go unnoticed. This feature allowed quantification of the quality
disparity between cameras: data from our worst camera, Camera
2, has, on average, 13% more errors than our best, Camera 3 (Fig.
1B and C), in runs that meet Illumina specification.

With the PPR plot, the user can often determine the
source of sequencing error and possibly correct it. For example,
in the above failures, several different responses were suggested.
In Fig. 3B, the solution for the failure was to shorten the read
length to avoid adapter sequence run-off, whereas the failure in
Fig. 3C was determined to be tied to the quality of the
sequencing reagents. In many instances, such as in Fig. 3D, the
data are workable and should proceed to analysis. In this case, a
low-complexity region of a unique molecular identifier at the 5’
end of the read caused major errors in the PhiX alignment.
However, as those specific bases are not used in analysis (they
are the linker between the molecular identifier and the genomic
sequence), the errors at this position can be ignored, and the
data are amenable to further analysis. These additional details
could speed troubleshooting both for the user and for Illumina
technical support.

Unsurprisingly, a key feature of an instrument-related issue is
that it occurs across several runs, regardless of sample identity or
sequencing kit. By monitoring PPR quality across runs, a user can
identify gradual decreases in run quality that are tied to a
degradation in instrument performance. Such a decrease would be
observed across many different sequencing kits and with differing
sequencing libraries, eliminating the libraries and reagents as

possible causes. Figure 4 shows such a quality-drop progression in
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Camera 1 over the course of 6 runs, suggesting a technical issue
with the NextSeq 500 in question. This diagnosis was confirmed
by Illumina and led to a quick replacement of the cameras.

The program outlined above provides HiSeq 2000/2500,
NextSeq 500, and MiSeq users an alternative to Illumina Q
score for assessing sequencing error rate. This tool can be used
for comparing error rates between runs and between instru-
ments, for monitoring NextSeq 500 camera performance, and
for diagnosing run failures. Whereas imaging metrics contain
important information, this information does not always cor-
relate with data quality. A PhiX alignment is a quality metric
that is independent of imaging technology and therefore, can
provide a more objective comparison between platforms.
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