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Opinion statement

Stem cell therapy is a promising therapeutic option for severe cardiac diseases that are
resistant to conventional therapies. To overcome the unsatisfactory results of most clinical
researches on stem cell injections to an injured heart, we are developing bioengineered
cardiac tissue grafts using pluripotent stem cell-derived cardiomyocytes and vascular cells.
We have validated the functional benefits of mouse embryonic stem cell-derived and
human induced pluripotent stem cell-derived cardiac tissue sheets (CTSs) in a rat myocar-
dial infarction model. We further showed enhanced functional recovery and engraftment
efficiency leading to de novo myocardium upon transplanting thick multi-layered CTSs
that had gelatin hydrogel microspheres between the layers. We anticipate that the
combination of pluripotent stem cell biology and tissue engineering will contribute to

future stem cell therapies for severe heart diseases.

Introduction

Cardiovascular disease remains a major cause of death
with increasing medical costs worldwide despite great
advances in therapeutic modalities and risk-reduction
strategies [1]. Myocardial infarction (MI) is a major

cause of the mortality due to a massive loss of
cardiomyocytes (CMs) and other cardiac cell types,
which lead to scar formation and ventricular remodeling
[2]. Percutaneous angioplasty and coronary artery
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bypass surgery are common approaches for recovering
blood perfusion to the ischemic myocardium. However,
these therapies do not promote myocardial regeneration
in the injured heart and are less effective in patients with
severe ischemic cardiomyopathy. This problem has
prompted researchers to investigate new therapeutic
strategies such as regenerative therapy for severe cardiac
diseases that are resistant to conventional therapeutic
approaches [3, 4].

Stem cell-based therapy is one promising strategy for
myocardial restoration that ameliorates cardiac dysfunc-
tion through the secretion of paracrine factors and by
replenishing the lost myocardium as a de novo myocar-
dium [5]. The discovery of various stem cell populations
possessing cardiogenic potential and subsequent tech-
nologies to isolate and expand these stem cell popula-
tions has already led to a number of clinical trials
(Table 1) [26]. However, the direct injection of stem
cells or their derivatives into ischemic hearts has failed
to sufficiently improve cardiac function because the mi-
croenvironment of the ischemic heart does not ade-
quately support survival of the grafted cells. It is
reported that more than 70 % of cells will die during
the first 48 h after direct injection, and even the
surviving cells are progressively lost within the next
several days due to the hypoxic, inflammatory, and/

or fibrotic microenvironment [27]. Another report
found that only 5.4-8.8 % of microspheres directly
injected into a beating heart remain just after the
injection due to massive physical loss [28]. The poor
survival rates of the injected cells are one major
reason why numerous clinical studies on cardiac
stem cell therapies involving direct or catheter-
based injections demonstrate only modest improve-
ment [29]. The low survival percentage of the grafted
cells diminishes the potential of this approach as an
effective therapy.

Overall, results from basic and clinical research
studies concluded that stem cells may be beneficial
as heart therapy, but act primarily through paracrine
mechanisms, including angiogenesis, cell survival,
anti-fibrosis and/or cell homing rather than through
a direct contribution to the ventricular contractions
of a regenerated myocardium [30]. To obtain better
therapeutic outcome, new strategies that generate
stem cell-derived, 3-dimensional (3D) cardiac tissues
are desired. In this review, we introduce our strategy,
which combines cardiovascular cell differentiation
from human induced pluripotent stem (iPS) cells
and bioengineered 3D cardiac tissues based on cell
sheets, to effectively engraft transplants for stem cell-
based cardiac regenerative therapy.

Advantages of pluripotent stem cells in myocardial regeneration

Embryonic stem cells (ESCs) are pluripotent stem cells (PSCs) collected from
the inner cell mass of the blastocyst and expanded in vitro [31]. Induced
pluripotent stem cells (iPSCs) are another PSC population and were first
reported by Yamanaka and colleagues, who reprogrammed adult somatic cells
by activating four transcription factor genes to generate ESC-like cells [32, 33].
PSCs possess great capacity for cardiac regeneration due to several reasons
explained below.

The first reason is that PSCs can be indefinitely expanded in vitro while
retaining their pluripotency. In this regard, the regenerative capacity of PSCs is
theoretically limitless [34]. The advantage of PSCs is especially great in therapy
for heart diseases compared to other organs, such as endocrine or sensory
organs, because the heart requires a large assembly of different cell types,
including CMs and non-myocytes (e.g., vascular cells and cardiac fibroblasts).
In fact, over a billion heart cells are estimated for cell therapies that fully
compensate the damaged human heart tissue [35].

The second reason is their high capacity of differentiation toward any
required cell types, such as CMs or other cardiovascular cell types. The differ-
entiation of PSCs can be regulated by culture conditions such as monolayers or
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Table 1. Stem cell populations used for clinical trials on heart diseases

Stem cell type
Pluripotent stem cells
Embryonic stem cells (ESCs)

Induced pluripotent stem cells (iPSCs)

Bone-marrow derived stem cells

Hematopoietic stem cells (circulating

progenitor cells, bone marrow
mononuclear cells)

Mesenchymal stem cells

Skeletal myoblasts

Cardiac stem cells

Origin

Inner cell mass of the
preimplantation blastocyst

Most somatic cells (e.g., skin
fibroblasts, blood cells)

Bone marrow, peripheral blood

Bone marrow (adherent cells),
adipose tissue

Mature skeletal muscle (between
the sarcolemma and basement
membrane)

Niches in the myocardium

Clinical trial/transplantation method

ESCORT [6]/ESC-derived Isl-1" SSEA-1*
cardiac progenitors embedded into
a fibrin scaffold

None

BOOST [7, 8]/intracoronary injection
REPAIR-AMI [9]/intracoronary injection
TOPCARE-AMI [10, 11]/intracoronary injection
FOCUS-CCTRN [12]/transendocardial injection
TIME [13]/intracoronary injection

LateTIME [14]/intracoronary injection

BAMI [15]/intracoronary injection

TAC-HFT [16]/transendocardial injection
POSEIDON [17]/transendocardial injection
C-CURE [18]/transendocardial injection
MAGIC [19]/transepicardial injection
CAuSMIC [20]/transepicardial injection

A report from Japan [21]/cell sheet

SCIPIO [22, 23]/intracoronary injection;

under concern about the integrity of data
CADUCEUS [24]/intracoronary injection
ALCADIA [25]/transepicardial injection

embryoid bodies in various growth media with or without serum [36, 37, 38e,
39]. We previously developed a novel monolayer culture-based cardiovascular
cell differentiation system from mouse PSCs that recapitulates early cardiovas-
cular developmental processes by generating Flk1 (also known as vascular
endothelial cell growth factor [VEGF] receptor-2)-positive cells as a common
cardiovascular progenitor. Cardiovascular cell types such as CMs [37], endothe-
lial cells (ECs), and vascular mural cells (MCs, which describe cells that sur-
round EC layers to support the vascular structure) [36] can be systematically
induced and purified with this system. For human iPS cell differentiation
toward CMs, several reports have shown the effectiveness of Wnt antagonists
and inhibitors [40, 41]. In fact, of the various stem cell populations investigated
so far, PSCs have demonstrated the greatest capacity for cardiac cell differenti-
ation [42].

The third reason is the excellent potential of PSCs as models to elucidate
cardiac regenerative mechanisms. As mentioned above, it has been recognized
that transplanted adult stem cells work primarily through indirect paracrine
mechanisms such as angiogenesis, cell survival, and so on. Consequently, the
transplantation of somatic stem cells in basic and clinical studies has brought
into question which stem cell populations are best. This is a particularly relevant
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question since derivatives from somatic stem cells like cardiosphere-derived
cells might include heterogeneous cell populations in terms of cell lineage and
differentiation stage. In this context, defined cardiovascular cell populations
systematically induced from PSCs should be much more valuable than somatic
stem cell-derived populations for the elucidation of cardiac regenerative mech-
anisms. The combination of different cell types in the transplant should help us
elucidate the regenerative function of each cell type (for example, comparing
the transplantation outcome of cell populations with and without CMs is
helpful for elucidating the contribution of transplanted CMs to cardiac func-
tion) [43e].

The final reason is the discovery of iPSCs. iPSCs may resolve the ethical and
immunogenic issues associated with ESCs. Regarding cardiac therapy, we have
reported that cardiovascular cell types can be systematically differentiated from
mouse iPSCs in almost the same manner as from mouse ESCs [44], suggesting
iPSCs and ESCs hold similar cardiac regenerative capacities. Additionally, the
establishment of an iPS cell bank that provides human leucocyte antigen-type
matched and immunologically safe allogeneic iPSCs is expected to provide an
off-the-shelf product that can further expand the clinical utility of iPSCs [45].

Cell sheet technology using a temperature-responsive culture
surface

By combining cells with injectable biomaterials such as fibrin, collagen or
gelatin, investigators have demonstrated the use of biomaterials as scaffolds
for cell transplantation. In addition, the use of a mixed extracellular matrix
material (e.g., Matrigel® or similar material) provides a favorable environment
for cell retention and survival that is abundant in cytokines and growth factors.
In general, these early studies indicated improved survival of the transplanted
cells and improved cardiac function [46]. However, these approaches did not
assure sufficient cell retention or an adequate distribution of the transplanted
cells. The generation of cell sheets or patches as micro-tissues without a scaffold
support is now being investigated in order to achieve a more homogeneous and
organized distribution of the transplanted cells and efficient survival [47]. Using
this approach, inflammatory reactions against the biomaterials included in the
scaffold might be avoided. As an example, Stevens et al. reported the transplan-
tation of a scaffold-free, vascularized human cardiac tissue patch that consists of
human ESC-derived CMs and ECs generated from a rotating orbital shaker-
based culture method [438].

The generation of cell sheets based on two-dimensional cell culture is a more
promising approach because of the larger scalability and accessibility. This
method can be conducted with relative ease by utilizing a culture surface that
is covalently grafted with temperature-responsive polymer poly (N-
isopropylacrylamide) (PIPAAm), which allows us to collect cell sheets by
simply decreasing the temperature and without enzymatic digestion [49]. The
benefits of this method have been reported in many stem cell research studies,
such as the transplantation of monolayer adipose tissue-derived mesenchymal
stem cell sheets to an infarcted rat heart model [50], the transplantation of cell
sheets made by mouse iPSC-derived genetically purified CMs to an infarcted
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mouse heart model [51] and a phase II clinical study of the transplantation of
autologous skeletal myoblast sheets to patients with advanced heart failure due
to ischemic etiology [21].

Mouse ESC-derived cardiac tissue sheets

As mentioned above, we have established a novel cardiovascular cell differen-
tiation system from mouse ES cells in which we can respectively induce and
collect CMs and vascular cells in vitro [36, 37]. Utilizing the aforementioned
temperature-responsive culture surface, we generated a self-pulsating cell sheet
that consisted of mouse ESC-derived CMs, ECs and MCs, which we named
“cardiac tissue sheet (CTS)” [43¢]. We have transplanted three-layered CTSs
onto an infarcted rat heart model and demonstrated the amelioration of cardiac
dysfunction at 1 week after MI induction and confirmed that the mechanism of
this functional advantage was mainly due to indirect paracrine effects. The
accelerated neovascularization, mainly mediated by VEGF, was a key contribu-
tor to the attenuated ventricular remodeling. Furthermore, we introduced a cell
sheet-based method to prospectively elucidate the cellular mechanisms of the
cardiac functional restoration. Combinations of various cell types were
transplanted as cell sheets, and we confirmed the incorporation of CMs within
the transplanted cell population is indispensable for the functional improve-
ment, mainly through neovascularization. We also found that vascular cells
contribute to enhanced CTS function. Importantly, we can control the cellular
composition of the PSC-derived sheet structures. These results support the
future use of our mouse ESC-derived CTS system for elucidating cardiac regen-
erative mechanisms as well as for therapeutic purposes. Nevertheless, the effi-
ciency of the engraftment of mouse ESC-derived CTSs was very low 4 weeks
after transplantation, which encouraged us to investigate another cell source for
better cell survival and myocardial regeneration.

Human iPSC-derived cardiac tissue sheets

To realize the goal of PSC-mediated myocardial regeneration by supplying
exogenous tissue to an injured heart, a potent PSC differentiation system
toward CMs that has large scalability is required. Laflamme et al. reported a
novel method to efficiently induce CMs from human ESCs using a serum-free,
high-density monolayer culture that involved sequential treatment with TGFp
superfamily molecules such as Activin A (surrogating Nodal) and BMP4, which
are important factors in embryonic heart development (directed differentia-
tion) [52]. They successfully induced CMs from human ESCs with >50 times
higher efficiency compared to conventional methods using embryonic bodies
and medium including serum. We modified this protocol for human iPSC
differentiation toward CMs using Dickkopf-1 (Dkk1), an antagonist of canon-
ical Wnt signaling, which allowed us to establish a potent CM differentiation
system from human iPSCs that consistently leads to CMs constituting 30-70 %
of the total cell population [53].

As indicated in a cell-type controlled analysis using mouse ESCs [43e],
supplying vascular cells along with CMs to a damaged heart might be crucial
for cardiac functional restoration. We attempted to simultaneously induce ECs
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and MCs along with CMs by further modifying the CM induction method from
human iPSCs described above. According to our vascular cell differentiation
system from mouse ESCs, we induced vascular cells (ECs/MCs) by treating
purified Flk-1 positive mesoderm cells with VEGF [36]. We showed that the
proportion of mesoderm cells, which possess the potential to differentiate into
cardiovascular cell populations, peaks at differentiation day 5 in our CM
differentiation system from hiPSCs [53], and we added VEGF from day 5 and
to induce CMs and vascular cells simultaneously (CM 67-85 %, EC 8-13 % and
MC 3-19 % of total cells; 201B6 line) [38e].

Using the same manner as mouse ESCs and the temperature-
responsive culture surface, we successfully collected self-pulsating CTSs
from human iPSC-derived cardiovascular populations induced by the
differentiation method mentioned above, which mimics endogenous
human cardiac tissue. We also tried to generate cell sheets from purified
human iPSC-derived CMs, but failed to form the cell sheet structure,
indicating the significance of vascular cells. We transplanted a three-
layered CTS to a rat MI model and confirmed functional recovery, which
was sustained as long as 2 months after transplantation. A histological
evaluation revealed detectable engraftment of the transplanted human
cells on 44 % of all transplanted rats, with an average of 24.7 %
coverage of the MI area 4 weeks after transplantation [38e]. These results
indicate the excellent potential of human iPSC-derived CTSs toward
cardiac regeneration.

Human iPSC-derived cardiac tissue bioengineered with CTSs and
gelatin hydrogel microspheres

So far, we have introduced our strategy for cardiac regeneration using CTSs.
These transplanted CTSs mimic the cardiac tissue structure and exhibit excellent
potential for cardiac functional recovery and myocardial regeneration. To
achieve further engraftment efficiency as a de novo myocardium in an injured
heart and sustained functional recovery, we have also generated much thicker
human iPSC-derived cardiac tissue in vitro.

The simplest method to generate thick tissues based on the CTS
method would be to stack CTSs in vitro. However, it is reported that
a 3-sheet stack (less than 100 pm) is usually the upper limit of stacking
due to hypoxic cell damage and shortage of nutrient supply leading to
central necrosis [54, 55]. To overcome this stacking limit, we employed
gelatin hydrogel microspheres (GHMs), a novel biomaterial reported to
support oxygen and nutrient supply, and found they improved cell
survival [56]. We applied GHMs between every stacked layer of CTSs
to prepare a 15-layer structure of mouse ESC-derived CTSs with >1 mm
thickness and enough viability to be cultured in vitro for over 1 week.
Transplantation of a 5-layered CTS construct with GHMs to a rat MI
model showed potent and sustained functional recovery. The
transplanted grafts were engrafted as a multi-layered cardiovascular cell
structure and resulted in functional capillary networks and a de novo
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myocardium (0.8 mm thickness) 3 months after transplantation [57e].
These thick viable cardiac tissues from PSCs are a remarkable techno-
logical innovation, as they exhibited sustained functional benefits and
survival of the cell graft in injured heart.

Despite these gains, CTSs with GHMs still have several hurdles to
overcome before their clinical application. First, we need to verify con-
tractile synchrony between the transplanted cardiac tissue and the un-
derlying myocardium and also any arrhythmogenic potential. Although
we have demonstrated electric coupling between the graft and host rat
heart by simultaneously recording the extracellular field potential of the
cardiac tissue and rat electrocardiogram [57e], these observations should
be validated using animal models that have similar intrinsic beating
rates to human hearts. Second, it is desirable to improve the vascular
connectivity and perfusion of the cardiac tissue in the immediate post
transplantation setting considering that the lack of immediate vascular
connections and oxygen supply significantly limit the therapeutic effica-
cy. Bioengineering strategies that pre-vascularize the graft tissue might
enhance the vascular connection between the host and graft for better
long-term effect [58].

Conclusion

In this review, we have introduced our strategies for the engraftment of
transplanted cardiovascular cells as a de novo myocardium based on PSC-
engineered cardiac tissue generation. We anticipate that these innovations will
enhance the efficacy of cardiac stem cell therapy and contribute to future cardiac
regenerative medicine.
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