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Estimating contemporary effective population size in
non-model species using linkage disequilibrium across
thousands of loci

RK Waples1,3, WA Larson1,4 and RS Waples2

Contemporary effective population size (Ne) can be estimated using linkage disequilibrium (LD) observed across pairs of loci
presumed to be selectively neutral and unlinked. This method has been commonly applied to data sets containing 10–100 loci
to inform conservation and study population demography. Performance of these Ne estimates could be improved by incorporating
data from thousands of loci. However, these thousands of loci exist on a limited number of chromosomes, ensuring that some
fraction will be physically linked. Linked loci have elevated LD due to limited recombination, which if not accounted for can
cause Ne estimates to be downwardly biased. Here, we present results from coalescent and forward simulations designed to
evaluate the bias of LD-based Ne estimates (N̂e). Contrary to common perceptions, increasing the number of loci does not
increase the magnitude of linkage. Although we show it is possible to identify some pairs of loci that produce unusually large r2

values, simply removing large r2 values is not a reliable way to eliminate bias. Fortunately, the magnitude of bias in N̂e is
strongly and negatively correlated with the process of recombination, including the number of chromosomes and their length,
and this relationship provides a general way to adjust for bias. Additionally, we show that with thousands of loci, precision of N̂e

is much lower than expected based on the assumption that each pair of loci provides completely independent information.
Heredity (2016) 117, 233–240; doi:10.1038/hdy.2016.60; published online 24 August 2016

INTRODUCTION

Effective population size (Ne) is a fundamental population genetics
concept (Wright, 1931), which determines the rate of evolutionary
change due to genetic drift and informs the equilibrium level of
genetic variation and the effectiveness of selection. Ne is often much
lower than census size (Frankham, 1995), demonstrating that simply
counting individuals is insufficient to predict rates of evolutionary
change. In addition to the number of mating individuals, Ne is affected
by sex ratio, variation in reproductive success, age structure, migration
and other demographic factors. It is an extremely relevant metric in
conservation biology, with low Ne leading to inbreeding and reduced
genetic diversity (Ellstrand and Elam, 1993). See Charlesworth (2009)
for a primer on Ne, and Wang (2005) for a review of estimation
methods.
Populations with smaller Ne undergo more genetic drift than larger

populations. This genetic drift randomly generates associations
between alleles at different loci, known as linkage (or gametic)
disequilibrium (LD) at a rate inversely proportional to Ne. As a result,
measures of LD between independently-segregating loci can be used to
provide an estimate of Ne (Sved, 1971; Hill, 1981; Waples, 1991). Over
the past decades, many studies have leveraged data sets consisting of a
few dozen loci for genetic estimates of Ne (Luikart et al., 2010). While
these studies continue to be useful, especially for long-running

projects, biologists now have access to genomic methods that generate
orders of magnitude more data. These technologies are growing
quickly and have made it feasible to genotype many thousands of
loci and improve inference of demographic parameters, provided that
the scale and particularities of these new data sets are managed well.
Here, we examine the benefits of applying the LD method to estimate
contemporary Ne with high-throughput genomic data, and address
implications for both bias and precision.
To estimate contemporary Ne with the LD method, it is necessary to

measure LD between loci that are inherited independently (that is,
recombination fraction (c) equal to 0.5). Estimates of past Ne are
available by measuring LD between physically-linked loci with
recombination fraction less than 0.5 (Hill, 1981); however, recombi-
nation fractions must be known with high precision to look more than
a few generations in the past. Recombination fractions are rarely
known for non-model species, so this effectively limits their applica-
tion to model species (for example, Tenesa et al., 2007; Hollenbeck
et al., 2016). For non-model species, a blanket assumption of no
linkage among loci is often made. This assumption can be reasonable,
as the chance that any two loci are physically linked is small, and
many analyses are robust to a minor degree of ‘background’ LD
(for example, Falush et al., 2003). However, with data sets spanning
thousands of loci, assuming a complete absence of physical linkage is
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no longer tenable for methods that are sensitive to linkage, such as
estimating relatedness (Thompson, 2013) and Ne.
Here, we empirically examine the bias of Ne estimation due to

physical linkage in a simulation study designed to evaluate the
common situation where a researcher has genomics-scale data sets
(for example, 1000s of loci) but limited other genomic resources. We
explore factors underlying bias in terms of genetic architecture and
relate this bias to the number and length of chromosomes. We focus
on the simple case of a single sample taken from a single population.
Simulated data are generated using a 'sideways' approach that
combines both coalescent and forward simulations. Coalescent
simulations ensure equilibrium and allow simple modeling of ascer-
tainment, while forward simulations provide precise control over
important parameters such as mating structure. This hybrid simula-
tion procedure allows us to explore and quantify the effect of these
aspects on bias in Ne estimates.
We show that the presence of physically-linked loci downwardly

biases estimates of contemporary Ne based on the LD method, and
that basic aspects of genomic architecture, such as the number of
chromosomes and genome size, influence the amount of physical
linkage. For example, bias created by physical linkage decreases as the
number of chromosomes increases, as larger genomes house more
independently assorting loci. Using these gross measures of genome
architecture and our simulated data, we develop approximate bias
corrections to account for the effects of linkage. We illustrate our
results by calculating biased and putatively unbiased estimates of
Ne from a published data set that includes 28 populations of Atlantic
salmon (Salmo Salar) sampled across their range in Europe and North
America (Bourret et al., 2013) and an Atlantic salmon linkage map.
We also show that, although high-throughput sequencing techniques
will increase precision of Ne estimates, the lack of independence of the
vast numbers of pairwise comparisons means that precision in N̂e

does not increase nearly as fast as naive expectation.

MATERIALS AND METHODS

Simulation procedure
Genetic data were generated in a two-step backward/forward procedure. First, a
coalescent simulation program, SIMCOAL2 (Laval and Excoffier, 2004) was
used to produce populations in approximate mutation-drift equilibrium. These
populations were then used to initialize the forward-time simulation program
SimuPop (Peng and Kimmel, 2005). In the forward simulation, populations
were held to a 1:1 sex ratio with random mating. In this scenario, the expected
Ne is equal to the census size (N), although the realized Ne varies each
generation due to random fluctuation in family sizes (Waples and Faulkner,
2009).
The simulation procedure involved four nested steps, each replicated

independently. (1) We created a genomic architecture, by randomly placing
loci on chromosomes. (2) Informed by the genomic architecture, we used
coalescent simulations to produce populations of constant size in mutation-
drift-recombination equilibrium. (3) We initialized forward-time simulations
with the coalescent results and progressed 10 generations forward in time,

without mutation. (4) In the final generation, we selected a subsample of
individuals for analysis. See Supplementary materials for detailed information
on the simulation procedure.
We were interested in evaluating bias and precision of estimates of Ne. To

investigate bias due to physical linkage, we created simulation scenarios that
varied the population size (50, 200, 800), number of loci (1024, 4096), number
of chromosomes (2–64) and sample sizes of individuals (50, 100), in a fully
factorial design (Table 1); see Supplementary materials for results for smaller
numbers of loci. Generally, two parents were randomly selected to produce
each offspring and simulated chromosomes were 100 centimorgans (cM) long,
except where noted below. To examine the effect of chromosomes length and
recombination rate on the bias, we re-ran a subset of scenarios (number of
chromosomes= 4, 8) with both shortened (50 cM) and lengthened (200 cM)
chromosomes. To examine precision of Ne estimates, we used a single
parameter set with population size= 200, 8 chromosomes, 4096 loci, sample
size= 100, and conducted 1000 forward simulations based on a single genomic
architecture started from the same coalescent initialization and held the realized
Ne constant each generation.
Notice that for a simulated population size of 50, no sample size of 100 is

possible and that all samples of 50 individuals will be identical. For each
genome created in step 1, steps 2, 3, and 4 were replicated 2, 10, and
4 times, respectively. This generally produced 80 replicates for each combina-
tion of parameters.

Estimation of Ne
Ne was estimated from the mean amount of LD present in the genome
remaining after accounting for sampling-induced LD. We used PLINK ver. 1.07
(Purcell et al., 2007) to calculate Pearson’s squared correlation coefficient (r2) of
the genotype vectors for each pair of loci as a measure of LD. Genotypes were
coded as the number of non-reference alleles, with possible values in [0, 1, 2].
With genotypes coded in this way, r2 is identical to Burrows’ composite
measure of linkage disequilibrium (rΔ) (Weir, 1996; Zaykin, 2004). To mirror
the approach implemented in the software LDNe (Waples and Do, 2008),
where a sample-size adjustment factor of [S/(S− 1)]2 was used (Weir, 1979), we
multiplied each r2 value by this term, subtracted the expected contribution
from sampling error to obtain the adjusted r2’, and then calculated N̂e as in
Waples (2006).
For each simulation, mean r2 was calculated as the mean across all pairs of

loci. Other methods have computed a weighted mean based on allele
frequencies, number of alleles and/or missing data (for example, Peel et al.,
2013; Sved et al., 2013), but here we simulate only bi-allelic loci without
missing data and did not compute a weighted mean. Alleles observed in low
numbers (⩽2) provide little information on LD and can upwardly bias
estimates of r2 (Waples and Do, 2010), so we excluded loci with an observed
minor allele frequency of o0.05 in each replicate. Using the LD method, after
correcting for sampling-induced LD, it is possible to produce estimates of
infinite Ne; to incorporate these values into summary statistics we replaced
infinite estimates with 10 000.
For each pair of loci, an expected value for r2 (E(r2)) was calculated as a

function of Ne and c, the recombination fraction of the two loci. We used a
hybrid of two different formulas for E(r2): equation 2 in Weir and Hill (1980)
and equation 3 in Sved and Feldman (1973). The Sved and Feldman formula is
incorrect for unlinked loci (c= 0.5) (Sved et al., 2013), while the Weir and Hill
(1980) formula produces non-sensical values (E(r2)41) for closely linked loci.

Table 1 Simulation parameters and replication, full factorial design, all possible combinations of parameters were simulated

Simulation type Simulation parameters Replication

# Loci # Chrs N Sample size Coalescent Forward Sampling Total replicates

Bias 1024, 4096 2, 4, 8, 16, 32, 64 50, 200, 800 50, 100a 2 10 4 80

Precision 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 8 200 100 1 1000 1 1000

aFor a simulated population size of 50, no sample size of 100 is possible, and replication across sample sizes of 50 is not meaningful. N is the number of simulated individuals.

Estimating contemporary Ne in the genomics era
RK Waples et al

234

Heredity



Accordingly, we used the minimum E(r2) across the two equations. See
supplementary Figure S1 for an illustration of the relationship between E(r2)
and c for each equation.
For pairs of bi-allelic loci observed within a population, the statistic (r2/mean

(r2)) follows a chi-squared distribution with one degree of freedom (Hill, 1981).
To form the E(r2) distribution for pairs of loci with a known recombination
fraction, we re-scaled the chi-squared distribution to have a mean equal to E(r2)
and bounded it at 1.0. This allowed us to evaluate the extent to which the
empirical distribution of r2 within our simulations departed from the expected
values. To form a distribution of E(r2) for many pairs of loci with different
values for c, we computed a weighted sum of their expected distributions. Using
this approach, we were able to closely approximate the empirical distribution of
pairwise r2 values, matching the E(r2) distribution for both unlinked loci and
across the full range of simulated recombination fractions (Supplementary
Figure S2).

Bias
LD between neutral and independently-segregating loci should provide a nearly
unbiased estimate of Ne (Hill, 1981; Waples and Do, 2010). Bias in Ne estimates
was assessed by comparing estimates with census sizes (N) of Wright–Fisher
ideal populations. We evaluated this bias before and after excluding within-
chromosome comparisons from LD measurements. This method leverages our
complete knowledge of the genomic architecture in the simulated data, and
allows an assessment of estimates of Ne based on r2 for all pairs of loci (biased
by physical linkage) to estimates derived from the mean r2 for pairs of loci on
different chromosomes (unbiased by physical linkage). Any increase in bias
based on the within-chromosome LD measures can be attributed to physical
linkage between loci.
In addition to characterizing the degree of bias, we evaluated two types of

bias correction methods: (1) set a cutoff r2 value and exclude all pairwise r2

values above it from the calculation of mean r2 and (2) adjust estimates of Ne

directly based on the number of chromosomes or their total genetic
length in cM.

Empirical example
While simulations are ideal at replicating simple scenarios, real populations
have many complexities not matched in simulated data. To investigate how the
above methods can be applied to real populations, genetic data from 28
populations of Atlantic salmon (Bourret et al., 2013) were used to estimate Ne.
From the published data set, we excluded populations with mean sample sizes
o30 and samples that combined individuals from multiple years, as these
issues can also bias estimates of Ne (Waples et al., 2014). We restricted our
analysis to loci present on the linkage map of Lien et al. (2011) and the linkage
groups of this map were treated as chromosomes. Any loci identified by
Bourret et al. (2013) as putatively under selection, or with minor allele
frequency o0.05, were excluded. We placed the r2 values for each pair of loci
into sets of ‘unlinked’ (loci on different chromosomes), and ‘linked’ (loci co-
located on a chromosome) following Larson et al. (2014). Mean r2 within the
‘unlinked’ set provides an unbiased estimate of contemporary Ne, while the
mean r2 across both sets represents a naive approach blind to the effects of the
physical linkage. This naive approach mirrors the lack of genomic resources,
such as a reference genome or linkage map, that is present in most non-model
species and in nearly all species of conservation concern. Ne estimates were
generated with a custom version of the LDNe program (Waples and Do, 2008)
available from the authors upon request. This estimation procedure closely
matches the calculations made in the analysis of the simulated data, except a
weighted mean r2 was calculated based on the sample size of each locus due to
some missing data.
Our simulations model simplified scenarios in which all chromosomes are

the same length in cM and have the same number of ascertained loci. In real
species, recombination (and thus chromosome length in cM) varies, thus we
applied bias corrections for the Atlantic salmon data that incorporate both the
size and number of linkage groups. These two bias corrections require different
degrees of knowledge about genome structure and reflect the range of
commonly-available information for non-model species.

Precision
Due to a limited number of recombination events each generation, loci do not
segregate independently. This lack of independence between loci, coupled with
the fact that each locus contributes to many pairwise r2 measurements, is not
accounted for when generating standard confidence intervals (CIs) around the
mean r2 or N̂e. To evaluate how much these effects reduce precision, we
conducted a separate round of simulations and compared two measures of
confidence: (1) nominal CIs around N̂e that assume all pairwise comparisons
of loci are independent (Waples, 2006) and (2) empirical 95% intervals
observed in the simulated data. Forward simulations of populations following a
random Wright–Fisher mating model produce random variation in realized Ne

as the variance in reproductive success varies each generation, even if census
size stays constant. This inflates the variance of N̂e among replicate forward
simulations (Waples and Faulkner, 2009). In most cases, this variation is
confounded with other sampling processes, making it difficult to independently
quantify them all. Therefore, for the simulations evaluating precision, we
departed from a fully-random Wright–Fisher mating model and instead
manually controlled mating to ensure that the realized variance in reproductive
success was equal to the binomial variance, so that realized effective size was
equal to the census size each generation. This excluded demographic fluctua-
tions in realized Ne and allowed us to attribute all the variance of mean r2

values among replicates to the processes of sampling individuals and loci. These
manually-controlled matings were specified by randomly permuting individuals
across a pedigree known to produce the desired Ne.

RESULTS

Bias
Within a chromosome, the distribution of locus pairs with a given
recombination fraction is independent of the number of loci
(Figure 1). Expected LD is a function of recombination fraction, so
increasing the number of loci does not change the expected pattern or
magnitude of LD. Because separate chromosomes segregate indepen-
dently, increasing the number of loci does not increase the expected
fraction of locus pairs that are physically linked. Although this result is
not necessarily intuitive, it follows directly from the fact that the
probability that any randomly-chosen pair of loci is linked is the same
regardless how many other loci exist. Consistent with this expectation,
the absolute number of loci measured was not found to have any
systematic effect on estimates of mean r2 or on estimates of Ne

(Supplementary Figure S3). See Supplementary Table S1 for a
summary of each simulation.
Although bias in N̂e depends to a limited extent on population

size and sample size (see Supplementary Figure S4), by far the

Figure 1 The distribution of recombination fractions among pairs of loci on a
simulated chromosome. Simulated chromosomes are 100 cM in length; loci
at opposite ends have c values near 0.5.
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strongest indicator of the N̂e/Ne ratio is the number of chromosomes
and their length in cM (Figures 2 and 3, Supplementary Table S2).
This bias is caused by physically-linked loci and can be substantial. For
example, with four chromosomes of 100 cM, the bias in N̂e is about
− 60% of true Ne, with slightly less bias associated with small
populations. With 32 chromosomes, however, the bias in N̂e is
reduced to about − 10–20%. We also see that the chromosome length
in cM (proportional to the expected number of recombination events
per generation) also has an effect, with eight 50 cM chromosomes
generating a similar degree of bias to four 100 cM chromosomes
(Figure 3). This suggests that the bias is a function of the total length
of the genome in cM.
We considered an initial approach to bias adjustment that is

analogous to the identification of 'outlier' loci that show levels of
genetic differentiation among populations that are not consistent with

neutral genetic drift (Beaumont and Nichols, 1996). With limited
information about genomic architecture, from the mean r2 across all
pairs of loci one can compute the expected distribution of r2 values for
individual pairs of loci, under the assumption that they all are
unlinked (see Materials and methods). This expected distribution
can be compared with the observed r2 values to identify r2 values
unlikely to occur for unlinked loci. Figure 4 shows the distribution of
r2 values for comparisons of 4096 loci on 4 chromosomes in a
population of size N= 200 and a sample size of 100 individuals.
Figure 4a shows the raw data with the r2 measurements from linked
and unlinked loci confounded, and the black dashed line shows the
expected distribution of r2 values under the assumption that all locus
pairs are unlinked and therefore come from a single distribution.
Figure 4b breaks down the data from (Figure 4a) into within- and
between-chromosome measurements. The distribution of r2 values for
co-located loci is right-shifted compared with unlinked loci, but there
is still significant overlap. The fit of the expected distribution to the
unlinked loci (Figure 4b) is very good. In contrast, when all locus pairs

Figure 2 Relationship between bias in N̂e and the number of haploid
chromosomes. The distribution of N̂e from all loci is shown in dark shading;
estimates using only unlinked loci are shown in light shading. The horizontal
dashed line shows the simulated population size.

Figure 3 Pattern of bias in N̂e for simulated data as a function of the
number haploid chromosomes. Results are based on mean r2 values
computed across all pairs of loci. Symbols are harmonic means of N̂e/Ne
across all replicates for each parameter set. The solid line is a linear
regression of N̂e/Ne on the natural log of the number of chromosomes (Chr):
y=0.098+0.219× ln(Chr). Plus symbols show results from simulations with
N=200 with longer chromosomes (200 cM) for the 4 and 8 chromosome
scenarios; minus symbols show the effects of shorter chromosomes (50 cM).
Dashed line is the relationship between the harmonic mean of N̂e and N for
an unbiased estimate.

Figure 4 (a) is a histogram of r2 values across all loci. The 'expected' line is
calculated from the overall mean r2. (b) is a stacked histogram and
separates the same data into within-chromosome (dark) and between-
chromosome (light) r2 measurements. The ‘expected’ line is calculated from
the mean r2 of all between-chromosome values. Data presented are from a
simulation with population size¼200, with 4096 loci on 8 chromosomes,
and a sample size of 100. Note the log-scaled y-axis.
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are used (Figure 4a), there is an excess of large r2 values compared
with the expectation.
We explored various criteria for defining a threshold for truncating

unusually large r2 values that presumably reflect linkage and hence will
downwardly bias estimates of Ne. Figure 5 shows results of applying a
threshold X to small bins of r2 values such that bins for which the ratio
of the number of observed to expected r2 values was larger than X
were removed. Using a more stringent threshold (X closer to 1) was
more effective in reducing bias, but we found a strong asymptotic
effect that limits effectiveness of the bias adjustment. Even using a
stringent X= 1.1 criterion, downward bias in N̂e/Ne was only reduced
from − 67% for no adjustment to − 40% for simulations with 4
chromosomes, and from − 25 to − 11% for simulations with 16
chromosomes. This one-pass truncation method is safe, in the sense
that it does not have an appreciable effect on data that have no linked
loci, but it is also conservative in that it only removes part of the bias
(Gruenthal et al., 2014; Candy et al., 2015; Stockwell et al., 2016). We
also evaluated iterative truncation methods, whereby mean r2 is
recalculated after removing the outlier pairs of loci and the new
expected distribution is used to identify more outliers. However, this
iterative approach is not conservative and is prone to overshooting the
bias reduction and excluding many r2 values that legitimately arise
from unlinked loci (data not shown).
Without information on the chromosome placement of loci, it is

not possible to fully determine whether two loci are co-located based
on LD. Figure 4 illustrates the impossibility of fully removing the bias
in N̂e from any truncation method based on the overall mean r2.
Ideally, we want to identify and exclude r2 values generated by linked
loci. However, because of the large overlap in the distribution of r2

values for linked and unlinked comparisons, any fixed truncation
threshold will either fail to remove many linked comparisons (many
false negatives) or will remove many valid comparisons of loci on
different chromosomes (many false positives).
A second, and more promising, approach is to take advantage of the

strong correlation between the magnitude of bias in N̂e/Ne and the
number of chromosomes and genome length in cM (Figures 2 and 3).

The relationship shown in Figure 3 can be used to generate a rough
estimate of the magnitude of downward bias in N̂e due to physical
linkage. In this figure, the symbols represent harmonic means of
N̂e/N across 80 replicate simulations for each parameter set, with N̂e

calculated from mean r2 across all pairs of loci. The solid line is the
least-squares regression of N̂e/N on the natural log of the number of
chromosomes (Chr):

N̂ e

Ne
¼ 0:098þ 0:219 ´ ln ðChrÞ ð1aÞ

which explains 97% of the variance in these harmonic mean estimates.
Accounting for sample size (S= 50 or 100) did not significantly
improve the fit. Adding a term for ln(Ne) led to a statistically
significant improvement (Po0.01) that, however, led to only a
negligible (o1%) increase in adjusted R2. This weak dependence of
the bias on true Ne is convenient because Ne is the quantity we are
trying to estimate. Thus, a simple, quantitative adjustment for bias in
an estimate of Ne can be achieved by inserting the haploid chromo-
some number into Equations (1a) and (1b) and dividing the naive N̂e

estimate by the regression result.
Alternatively, we can specify the total length of the genome in cM to

predict the bias.

N̂ e

Ne
¼ �0:910þ 0:219 ´ ln ðcMÞ ð1bÞ

Equation (1b) differs from Equation (1a) only in the constant term.
In our simulations, each chromosome was 100 cM in length, but real
species will have chromosomes of variable length.

Empirical example
We examine how the bias correction procedure developed above can
be applied to data from natural populations: 28 populations of Atlantic
salmon from across their range. Importantly, a linkage map in Atlantic
salmon (Lien et al., 2011) supplies chromosomal information for each
locus. Across the populations investigated, mean naive N̂e was 255,
range= 15–1801, s.d.= 406. Mean bias-corrected N̂e based on loci not
co-located on chromosomes was 834, range= 18–10 000, s.d.= 2016.
Figure 6 shows the effect of removing within-chromosome LD from
Ne estimates. For all populations, mean r2 was lower and N̂e was larger
after excluding co-located loci. The female linkage map has 29

Figure 5 Effectiveness of removing outlier r2 values to reduce bias. Results
are shown for simulations with 4 and 16 chromosomes and estimates based
on all loci (biased downwards) or only pairs of loci on different chromosomes
(‘unlinked’; little or no bias with respect to true Ne=200). For each
scenario, the expected distribution of pairwise r2 values was generated based
on the overall mean r2. Values on the x axis are different ratios of observed/
expected r2 values that were used to truncate the distribution, after which
mean r2 and N̂e were recalculated.

Figure 6 Effect of removing within-chromosome LD from Ne estimates in 28
Atlantic salmon populations. Values on x axis are the ratio of N̂e for naive
(all locus comparisons) and corrected comparisons (only among loci on
different chromosomes). Dashed line shows the predicted correction level
based on 29 chromosomes.
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(haploid) chromosomes and a total length of 2402 cM. Based on
Equation (1a), we expect that Ne estimates for a species with 29
haploid chromosomes should be approximately the fraction − 0.910
+0.219× ln(29)= 0.83 of true Ne, indicating an expected downward
bias of 17%. Alternatively, using the genome length in cM 2402,
Equation (1b) predicts a bias of − 0.910+0. 219× ln(2402)= 0.79 of
true Ne, indicating an expected downward bias of 21%. Using the
correction based on knowledge of genomic location of each locus, the
geometric mean of the downward bias in the Atlantic salmon data is
34.5% and the median is 9.8%. Our estimates are between these two
measures of the central tendency of the bias. Most of the populations
fell in the range of 0–20% downward bias (0.8–1.0, Figure 6,
Supplementary Table S3), consistent with a moderate amount of
downward bias. The populations with larger naive estimates of Ne in
general had larger corrections (Supplementary Figure S5), consistent
with Figure 3.

Precision
The precision of estimates of Ne is grossly overestimated when large
numbers of loci are observed (Figure 7). For example, with 4096 loci
and true Ne= 200, under the assumption that all comparisons are

independent (that is, mean r2 is the result of

�
4096
2

�
= 8 386 560

independent measures), the parametric 95% CI on the point estimate

of N̂e (202) is extremely small: (201–203, Supplementary Table S4). In
contrast, we show that in simulations of 4096 loci on 8 chromosomes

we achieve empirical 95% intervals for N̂e that are equivalent to those

produced by only 160 fully independent loci (that is,

�
160
2

�
= 12 720

independent measures). The empirical 95% interval is 20 times wider
(168–242) than this naive assumption, indicating that the effective
degrees of freedom associated with the point estimate are only a fraction
of the nominal degrees of freedom. This overly optimistic precision
implied by the naive CI is especially egregious as the parametric CI is so
narrow that it does not even include the true population size of 200,
even though the point estimate is off by only 1%.

DISCUSSION

Implications for genomic data sets
Observing more loci does not increase the probability that any
randomly-chosen pair of loci will be linked, nor increase the fraction
of loci that are physically linked. However, as the number of loci
increases, the fraction of pairs that are linked will converge on the
expected fraction, which means that results are easier to predict in a
statistical sense.
We showed how to compare the observed distribution of r2

estimates for pairs of loci with the expected distribution under the
assumption that all are neutral and unlinked. With this approach, it is
easy to identify outlier pairs of loci with r2 values that are unlikely to
be generated under the assumed model. We explored various criteria
for one-pass truncation of the r2 values and showed that this approach
can only be partially effective at reducing the downward bias in N̂e.
The problem with this approach is that physical linkage encompasses
the full range of recombination fractions from 0.5 to near zero. Only a
relatively small number of strongly-linked loci produce outlier r2

values above any given threshold, while vastly more pairs of loosely
linked loci create slightly elevated r2 values that cumulatively con-
tribute to bias but cannot be easily distinguished from unlinked pairs
that produce similar r2 values.
Here, we are cognizant of the benefits of simplicity and recognize

the lack of genomic resources for many species. In the simulated data,
the relationship between downward bias in N̂e and chromosome
length/number is nearly log-linear (Figure 3). For example, eight
200 cM chromosomes results in less bias than eight 50 cM chromo-
somes, but a similar amount of bias to 16 100 cM chromosomes.
The simplest adjustment based on the number of chromosomes
(Equation 1a) assumes an average of 100 cM per chromosome. With
more detailed information on recombination rates, it is possible to
incorporate relative lengths of chromosomes into the bias correction
as well (Equation 1b).
This method should improve estimates of downward bias in N̂e for

species with limited genomic resources. Realistically, the pattern of
bias in N̂e due to physical linkage is constrained to the range 0–1, so
the relationship depicted in Figure 3 must be sigmoidal as the bias
asymptotes near these boundaries. Therefore, we do not suggest using
Equations (1a) and (1b) to correct for bias outside the range of the
simulated data here, that is, 2–64 chromosomes, 200–6400 cM. Within
that range, however, the pattern of bias is nearly log-linear and hence
amenable to correction using this simple adjustment.
We see a very slight upward bias in N̂e when applying the LDNe

estimation method to sets of loci on different chromosomes. This effect
is larger with smaller sample sizes (S). This has been noted previously
(for example, Waples and Do, 2010) and is likely due to a slight bias
overcorrection in LDNe method relative to the original Hill method.
Our results thus allow the user to simultaneously correct for bias due to
linkage and the slight upward bias that occurs in LDNe. Besides drift
and physical linkage, other factors affecting LD include selection,
migration and admixture (Slatkin, 2008). The LD generated by these
other evolutionary forces also has the potential to bias estimates of Ne

(Waples and England, 2011; Gilbert and Whitlock, 2015). The simula-
tions conducted here, while extensive, were limited in many respects
and did not attempt to address these forces. Specifically, we simulated
isolated populations of constant size. The simulated genome architec-
ture was also greatly simplified; all chromosomes were the same size,
measured in recombination units and loci were distributed randomly
with respect to local recombination rate and were strictly neutral.
In this study, we simulated loci that are randomly placed on

chromosomes. However, both biological and methodological factors

Figure 7 Relationship between theoretical and empirical (light) precision for
estimates of Ne. Dark shaded area shows naive 95% CIs (which assume that
all pairwise comparisons are independent), light shaded area shows
empirical CIs from simulated data. True Ne was 200, sample size was 100
and number of chromosomes was 8. Notice both the x and y axes are log-
scaled.
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may conspire to produce loci that are non-randomly distributed with
respect to recombination. Many genotyping-by-sequencing methods,
such as those based on restriction enzymes, are likely to produce loci
that are closer together than random expectation. We note this may
contribute to excess LD and further downward bias in Ne estimates,
but we do not examine this further.
We evaluated our suggested approach with a published genetic data

set of 28 populations of Atlantic salmon. Given 29 haploid chromo-
somes, our simulations predict there should be a downward bias in
N̂ e of about 17% (Figure 3). Alternatively, using the total length of the
linkage map (2402 cM), our simulations predict a downward bias
N̂ e of about 21%. These corrections are conservative relative to the
correction we observed by excluding loci co-located on chromosomes
(geometric mean 34.5%). Although we do not know the true Ne of
these populations and therefore cannot determine the true bias, we
found that Ne always increased when comparisons of loci on the same
chromosome were excluded, which clearly demonstrates the potential
for bias. The populations with large corrections (450%) were mostly
for populations already estimated to be large, where precise estimation
of Ne is known to be difficult; furthermore, some of the samples could
be affected by admixture associated with artificial propagation or other
anthropogenic factors not considered here.
The number of possible LD measurements increases with the square

of the number of loci, so large genomics data sets vastly increase the
number of pairwise r2 values that are available to estimate Ne.
However, because these comparisons are not all independent, preci-
sion is greatly reduced from the theoretical value. Previously, this
problem of assessing precision for the LD method has been pointed
out and illustrated with small numbers of loci (Waples, 2006; Waples
and Do, 2010). We show that the magnitude of this problem increases
dramatically for genomics-scale data sets, to the extent that realized
precision will be much less than predicted from standard models that
assume complete independence among loci. This is an important topic
that merits a more detailed treatment than we can provide here. In the
meantime, users should be aware that precision is greatly over-
estimated for large numbers of loci if CIs are generated under the
assumption that all pairwise comparisons are independent.

Related approaches
We found a consistent increase in N̂ e when loci known to be physically
linked are excluded, in both simulated and wild populations. In
contrast, in the Queensland fruit fly (Bactrocera tryoni), Sved et al.
(2013) did not find a consistent change in N̂e across a set of ~ 30
microsatellite loci when co-located loci were excluded. This difference
may be due to increased number of loci in this study, and/or the
simplified nature of simulated data, both of which can tend to reduce
noise in estimates. Our results are consistent with those of Larson et al.
(2014), who showed a significant increase in N̂e in multiple popula-
tions of Chinook salmon (Oncorhynchus tshawytscha) when co-located
single-nucleotide polymorphism loci were removed from analyses, the
expected pattern if N̂ e was downwardly biased by linkage. Notably, in
all three studies of wild populations (B. tryoni, and two salmonids), the
degree of difference in unlinked vs all estimates was not consistent
across populations, suggesting population-specific factors that affect
within-chromosome LD, such as historic bottlenecks and recent
metapopulation dynamics (Slatkin, 2008), could have important
implications for estimating contemporary Ne.
There are other methods available to estimate recent effective

population size from genetic data. However, most of these methods
require data types not available in many species. When available, genetic
samples spaced in time can powerfully inform estimates of genetic drift

and thus Ne, for example, SPATPG (Gompert, 2016). With a detailed
recombination map, equations relating the recombination fraction to
expectations of LD can be used to estimate the recent history of Ne, for
example, SNeP (Barbato et al., 2015) and Hollenbeck et al. (2016).
Finally, with dense, phased genotype data, powerful new methods allow
inference of complex demographic histories, including Ne, for example,
the multiple sequentially markovian coalescent (Schiffels and Durbin,
2014) and diCal (Sheehan et al., 2013), but these data are not yet
available for most species.

Practical applications
Ne estimates are useful in planning conservation actions and assessing
genetic risk, and bias in Ne estimates can lead to inappropriate
conservation decisions (Schwartz et al., 2007). For conservation
applications, not correcting for the bias demonstrated here can be
seen as conservative, as it will result in the prediction of smaller Ne,
but it could lead to false alarms that waste scarce resources on
populations that are not actually at high genetic risk.
For species without many genomic resources, the most reliable

means of adjusting bias in N̂e related to linkage is to use a correction
factor based on the number of chromosomes or their total length in
cM. With knowledge of the chromosome location of each locus, either
from a linkage map or reference genome, it is possible to correct for
the downward bias in Ne estimates. Although reference genomes are
not available for most non-model species, a researcher will often know
the number of chromosomes. In cases where this chromosomal
information is lacking, the relationship given in Equations (1a) and
(1b) and shown in Figure 3 can be used to partially correct for this
bias. In both cases, we suggest practitioners exclude any loci expected
to be under selection from use as estimators of Ne. The results and
conclusions presented are relevant for studies that leverage LD to
estimate contemporary Ne with any number of loci.

DATA ACCESSIBILITY

This study contains no new empirical data. The scripts used in the
simulation analyses are available in Dryad (http://dx.doi.org/10.5061/
dryad.1ms70). Atlantic salmon data were accessed from Dryad
repository: doi:10.5061/dryad.gm367 (Bourret et al., 2012).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We would like to thank Chi Do for making available a beta version of LDNe
that facilitated computation of mean r2 across loci on different chromosomes.
RKW was supported by the Alaska Sustainable Salmon Fund under Projects
44714 and 44812 from the National Oceanic and Atmospheric Administration,
US Department of Commerce, administered by the Alaska Department of Fish
and Game. WAL was supported by the H Mason Keeler Endowment for
Excellence and a US National Science Foundation Graduate Research
Fellowship (grant # DGE-0718124).

AUTHOR CONTRIBUTIONS
RSW conceived the study, along with RKW and WAL. RKW conducted all
simulations. RKW, WAL and RSW analyzed data; writing and editing the
manuscript was conducted by RKW with help from WAL and RSW.

Barbato M, Orozco-terWengel PA, Tapio M, Bruford MW (2015). SNeP: a tool to estimate
trends in recent effective population size trajectories using genome-wide SNP data.
Front Genet 6: 109.

Estimating contemporary Ne in the genomics era
RK Waples et al

239

Heredity



Beaumont MA, Nichols RA (1996). Evaluating loci for use in the genetic analysis of
population structure. Proc R Soc B 263: 1619–1626.

Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K et al. (2013).
SNP-array reveals genome-wide patterns of geographical and potential adaptive
divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 22:
532–551.

Bourret V, Kent MP, Primmer CR Vasemägi A, Karlsson S, Hindar Ket al. (2012). Data
from: SNP-array reveals genome wide patterns of geographical and potential adaptive
divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 22:
532–551.

Candy JR, Campbell NR, Grinnell MH, Beacham TD, Larson WA, Narum SR (2015).
Population differentiation determined from putative neutral and divergent adaptive
genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous
Pacific smelt. Mol Ecol Resour 15: 1421–1434.

Charlesworth B (2009). Fundamental concepts in genetics: effective population size and
patterns of molecular evolution and variation. Nat Rev Genet 10: 195–205.

Ellstrand NC, Elam DR (1993). Population genetic consequences of small population-size -
implications for plant conservation. Annu Rev Ecol Syst 24: 217–242.

Falush D, Stephens M, Pritchard JK (2003). Inference of population structure using
multilocus genotype data: linked loci and correlated allele frequencies. Genetics
164: 1567–1587.

Frankham R (1995). Effective population-size adult-population size ratios in wildlife -
a review. Genet Res 66: 95–107.

Gilbert KJ, Whitlock MC (2015). Evaluating methods for estimating local effective
population size with and without migration. Evolution 69: 2154–2166.

Gompert Z (2016). Bayesian inference of selection in a heterogeneous environment from
genetic time-series data. Mol Ecol 25: 121–134.

Gruenthal KM, Witting DA, Ford T, Neuman MJ, Williams JP, Pondella II DJ et al. (2014).
Development and application of genomic tools to the restoration of green abalone in
southern California. Conserv Genet 15: 109–121.

Hill WG (1981). Estimation of effective population-size from data on linkage disequili-
brium. Genet Res 38: 209–216.

Hollenbeck CM, Portnoy DS, Gold JR (2016). A method for detecting recent changes in
contemporary effective population size from linkage disequilibrium at linked and
unlinked loci. Heredity; 117: 207–216.

Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014). Genotyping by
sequencing resolves shallow population structure to inform conservation of Chinook
salmon (Oncorhynchus tshawytscha). Evol Appl 7: 355–369.

Laval G, Excoffier L (2004). SIMCOAL 2.0: a program to simulate genomic diversity
over large recombining regions in a subdivided population with a complex history.
Bioinformatics 20: 2485–2487.

Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS et al. (2011). A dense
SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome
homeologies and striking differences in sex-specific recombination patterns. BMC
Genomics 12: 615.

Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010). Estimation of
census and effective population sizes: the increasing usefulness of DNA-based
approaches. Conserv Genet 11: 355–373.

Peel D, Waples RS, Macbeth GM, Do C, Ovenden JR (2013). Accounting for missing data
in the estimation of contemporary genetic effective population size (N(e) ). Mol Ecol
Resour 13: 243–253.

Peng B, Kimmel M (2005). simuPOP: a forward-time population genetics simulation
environment. Bioinformatics 21: 3686–3687.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. (2007). PLINK:
a tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet 81: 559–575.

Schiffels S, Durbin R (2014). Inferring human population size and separation history from
multiple genome sequences. Nat Genet 46: 919–925.

Schwartz MK, Luikart G, Waples RS (2007). Genetic monitoring as a promising tool for
conservation and management. Trends Ecol Evol 22: 25–33.

Sheehan S, Harris K, Song YS (2013). Estimating variable effective population sizes from
multiple genomes: a sequentially Markov conditional sampling distribution approach.
Genetics 194: 647–662.

Slatkin M (2008). Linkage disequilibrium–understanding the evolutionary past and
mapping the medical future. Nat Rev Genet 9: 477–485.

Stockwell BL, Larson WA, Waples RK, Abesamis RA, Seeb LW, Carpenter KE (2016).
The application of genomics to inform conservation of a functionally important reef fish
(Scarus niger) in the Philippines. Conserv Genet 1–11.

Sved JA (1971). Linkage disequilibrium and homozygosity of chromosome segments in
finite populations. Theor Popul Biol 2: 125–141.

Sved JA, Cameron EC, Gilchrist AS (2013). Estimating effective population size from
linkage disequilibrium between unlinked loci: theory and application to fruit fly outbreak
populations. PLoS One 8: e69078.

Sved JA, Feldman MW (1973). Correlation and probability methods for one and two loci.
Theor Popul Biol 4: 129–132.

Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME et al. (2007). Recent
human effective population size estimated from linkage disequilibrium. Genome Res
17: 520–526.

Thompson EA (2013). Identity by descent: variation in meiosis, across genomes, and in
populations. Genetics 194: 301–326.

Wang J (2005). Estimation of effective population sizes from data on genetic markers.
Philos Trans R Soc Lond B Biol Sci 360: 1395–1409.

Waples RS (1991). Genetic methods for estimating the effective size of cetacean
populations. Report - International Whaling Commission, Special Issue 13: 279–300.

Waples RS (2006). A bias correction for estimates of effective population size based on
linkage disequilibrium at unlinked gene loci. Conserv Genet 7: 167–184.

Waples RS, Antao T, Luikart G (2014). Effects of overlapping generations on linkage
disequilibrium estimates of effective population size. Genetics 197: 769–780.

Waples RS, Do C (2008). ldne: a program for estimating effective population size from data
on linkage disequilibrium. Mol Ecol Resour 8: 753–756.

Waples RS, Do C (2010). Linkage disequilibrium estimates of contemporary Ne using highly
variable genetic markers: a largely untapped resource for applied conservation and
evolution. Evol Appl 3: 244–262.

Waples RS, England PR (2011). Estimating contemporary effective population size
on the basis of linkage disequilibrium in the face of migration. Genetics 189:
633–644.

Waples RS, Faulkner JR (2009). Modelling evolutionary processes in small populations: not
as ideal as you think. Mol Ecol 18: 1834–1847.

Weir BS (1979). Inferences about linkage disequilibrium. Biometrics 35: 235–254.
Weir BS (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data.

Sinauer Associates: Sunderland, MA, USA.
Weir BS, Hill WG (1980). Effect of mating structure on variation in linkage disequilibrium.

Genetics 95: 477–488.
Wright S (1931). Evolution in Mendelian populations. Genetics 16: 97.
Zaykin DV (2004). Bounds and normalization of the composite linkage disequilibrium

coefficient. Genet Epidemiol 27: 252–257.

Supplementary Information accompanies this paper on Heredity website (http://www.nature.com/hdy)

Estimating contemporary Ne in the genomics era
RK Waples et al

240

Heredity


	Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of�loci
	Introduction
	Materials and methods
	Simulation procedure
	Estimation of Nnobreake

	Table 1 Simulation parameters and replication, full factorial design, all possible combinations of parameters were simulated
	Bias
	Empirical example
	Precision

	Results
	Bias

	Figure 1 The distribution of recombination fractions among pairs of loci on a simulated chromosome.
	Figure 2 Relationship between bias in Ncirce and the number of haploid chromosomes.
	Figure 3 Pattern of bias in Ncirce for simulated data as a function of the number haploid chromosomes.
	Figure 4 (a) is a histogram of r2 values across all loci.
	Empirical example

	Figure 5 Effectiveness of removing outlier r2 values to reduce bias.
	Figure 6 Effect of removing within-chromosome LD from Nnobreake estimates in 28 Atlantic salmon populations.
	Precision

	Discussion
	Implications for genomic data sets

	Figure 7 Relationship between theoretical and empirical (light) precision for estimates of Nnobreake.
	Related approaches
	Practical applications

	Data accessibility
	We would like to thank Chi Do for making available a beta version of LDNe that facilitated computation of mean r2 across loci on different chromosomes. RKW was supported by the Alaska Sustainable Salmon Fund under Projects 44714 and 44812 from the Nationa
	ACKNOWLEDGEMENTS
	Barbato M, Orozco-terWengel PA, Tapio M, Bruford MW (2015). SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP�data. Front Genet 6: 109.Beaumont MA, Nichols RA (1996). Evaluating loci for use in the gene




