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Abstract

Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the 

enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into 

and through the bowel during early stages of organogenesis before differentiating into a wide 

variety of neurons and glia. Although genetic factors critically underlie ENS development, it is 

now clear that many non-genetic factors may influence the number of enteric neurons, types of 

enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary 

nutrients and medicines that may impact ENS structure and function before or after birth. This 

review summarizes current data about gene-environment interactions that affect ENS development 

and suggests that these factors may contribute to human intestinal motility disorders like 

Hirschsprung disease or irritable bowel syndrome.

Introduction

The enteric nervous system (ENS) is an integrated network of neurons and glia within the 

bowel wall that controls most aspects of bowel function (Furness, 2012; Wood, 2008). The 

complex ENS circuitry permits the bowel to operate largely autonomously so we can eat and 

enjoy the finer things in life, without having to think about mixing food with digestive 

enzymes, facilitating contact with the epithelium to enhance nutrient uptake, coordinating 

motility to avoid excessive bowel dilation, moving luminal contents toward the end of the 

bowel for elimination, regulating epithelial secretion and proliferation, or altering regional 

blood flow in response to metabolic needs. To perform these tasks the bowel contains about 

as many neurons as the spinal cord and diverse neuron subtypes produce and respond to the 
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full spectrum of neurotransmitters found in the central nervous system. In addition to 

neurons, there are several types of enteric glia (Gulbransen and Sharkey, 2012; Sharkey et 

al., 2004) with diverse morphology and function. This beautiful nervous system needs to 

respond to a wide array of dietary patterns to facilitate nutrient intake and growth, and to 

avoid dehydration. Although significant accommodation to varied diets may occur without 

changing the fundamental structure of the ENS, if non-genetic factors impacted the types of 

neurons and glia produced or other aspects of ENS development and maintenance, it would 

permit broader adaptation to diverse nutrient and fluid intake. Indeed, recent data suggest 

that many non-genetic factors influence ENS development as well as mature structure and 

function. This has important implications for birth defects affecting the human enteric 

nervous system and for acquired intestinal motility disorders.

ENS development

The more complex the machine, the more ways it can go wrong!

The ENS forms from enteric neural crest-derived precursor cells (ENCDC) that originate 

primarily in the vagal region of the neural tube with minor contributions from sacral and 

upper thoracic ENCDC (Avetisyan et al., 2015a; Goldstein et al., 2013; Lake and 

Heuckeroth, 2013; Newgreen et al., 2013; Sasselli et al., 2012). Vagal ENCDC exit the 

neural tube at about embryonic day 8.5 (E8.5) in mice and at about week three of human 

gestation. These vagal ENCDC then migrate to the bowel and colonize the bowel in a rostral 

to caudal progression migrating through gut mesenchyme to reach the end of the bowel by 

E13.5 in mice and week eight of gestation in humans. During migration ENCDC proliferate 

vigorously, and then exit the cell cycle, differentiate into neurons or glia, cluster into 

ganglia, and form an extensive interconnected network that extends all the way along the 

bowel. This process is controlled by many known genetic factors discussed in more detail in 

other articles in this Special Issue of Developmental Biology. A few key molecules are 

briefly described in Table 1. This article highlights how non-genetic factors may affect the 

ENS before and after birth and explains links to human intestinal motility disorders.

Hirschsprung disease (HSCR)

HSCR is a disorder where the ENS is missing from the end of the bowel. The region without 

enteric neurons is called “aganglionic bowel”. In the absence of all enteric neurons, the 

bowel tonically contracts causing functional obstruction (Amiel et al., 2008; Heuckeroth, 

2013; Skinner, 1996). Symptoms of HSCR include abdominal distension, vomiting, severe 

constipation, growth failure, a predisposition to bowel inflammation (enterocolitis) and early 

death. HSCR occurs in about 1:5000 children as a result of the failure of bowel colonization 

by ENCDC during fetal development. Because vagal ENCDC have a very long migratory 

route and most children with HSCR (80%) have only a “short-segment” of bowel with 

missing enteric neurons (i.e., rectum an sigmoid colon aganglionosis), a marginal increase 

(e.g. 10%) in fetal bowel colonization by vagal ENCDC would have prevented HSCR from 

occurring in many of these children. This may explain why the male to female ratio for short 

segment human HSCR is 4:1 while the male to female ratio for long segment HSCR is 2:1 

(Badner et al., 1990). In long segment HSCR, small increases in bowel colonization by 
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ENCDC will shorten the aganglionic zone, but do not prevent HSCR. In short segment 

HSCR, a 10% increase in bowel colonization by ENCDC could have prevented HSCR. 

These data suggest that in human females, ENCDC colonize fetal bowel slightly more 

efficiently than in males, consistent with observations in mouse models (Bergeron et al., 

2015; Cantrell et al., 2004; McCallion et al., 2003; Vohra et al., 2007b). The minimal 

improvement in bowel colonization by ENCDC needed to prevent HSCR in most affected 

children also suggests that many genetic and non-genetic factors could influence HSCR risk 

even if they only marginally affect bowel colonization efficiency.

Bowel colonization by ENCDC is driven by cell proliferation

ENCDC must form a network of neurons and glia along the entire length of the bowel 

suggesting that the entire migratory route is hospitable for ENCDC. Full bowel colonization 

by ENCDC, however, appears to be driven by competition for available space and trophic 

factors as ENCDC proliferate, instead of by trophic factor gradients (Gianino et al., 2003; 

Landman et al., 2007; Newgreen et al., 2013; Wang et al., 2010). Although gradients of 

some trophic factors like glial cell line-derived neurotrophic factor (GDNF) exist in fetal 

bowel and might drive migration (Natarajan et al., 2002), individual ENCDC can actually 

migrate through the bowel in either direction (and do so during normal development) (Burns 

et al., 2002; Druckenbrod and Epstein, 2007; Young et al., 2014). Because proliferation 

drives bowel colonization, anything that reduces the number of ENCDC or the proliferation 

of these cells during development should predispose to HSCR. Consistent with this 

hypothesis, removing parts of the vagal neural tube to reduce neural crest-derived cells that 

enter the bowel can cause HSCR-like disease (Barlow et al., 2008). Reducing cell 

proliferation with mycophenolic acid, a drug that blocks the rate limiting step in de novo 
guanine nucleotide synthesis, also caused distal bowel aganglionosis in mice and reduced 

ENCDC colonization of distal bowel in fish (Lake et al., 2013). Consistent with this 

hypothesis, inactivating mutations in the GDNF receptor RET (a transmembrane tyrosine 

kinase) are the most commonly identified cause of human HSCR (Amiel et al., 2008), and 

RET signaling is needed for ENCDC survival and proliferation (Schuchardt et al., 1994). 

Inactivating mutations in the G-protein coupled receptor EDNRB also cause HSCR 

(Puffenberger et al., 1994) and may permit early differentiation of ENCDC within the colon 

(Barlow et al., 2003), reducing proliferation that normally drives bowel colonization by 

ENCDC.

One prediction from these observations is that reduced activity of any of the signaling 

molecules that are needed to drive ENCDC proliferation should increase HSCR risk, 

especially in the context of other genetic changes that predispose to HSCR. Furthermore, 

fetal malnutrition and other causes of intrauterine growth retardation might increase HSCR 

occurrence if they occurred during the period of ENCDC migration, but this hypothesis has 

not yet been tested. Importantly, formation of some structures during development (like the 

ENS) depends on cell proliferation, so a global reduction in fetal cell proliferation may 

result in not only a smaller baby, but also a higher risk of structural birth defects. This 

hypothesis is supported by higher rates of major congenital anomalies in children born after 

placental abruption (OR 3.81, 95% confidence interval (CI) 1.34-2.37 for gastrointestinal 

anomalies and 1.92, 95% CI 1.6-2.52 for all anomalies) (Riihimaki et al., 2013).
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HSCR genetics

HSCR is one of the best understood complex human genetic diseases (Alves et al., 2013; 

Amiel et al., 2008; Avetisyan et al., 2015a; Lake et al., 2013; McKeown et al., 2013; Panza 

et al., 2012). As might be predicted by the complex cellular mechanisms needed to form the 

ENS (i.e., proliferation, migration, controlled differentiation), many gene defects can 

increase HSCR risk. This includes mutations that reduce activity of cell surface receptors 

(RET, EDNRB), extracellular ligands (GDNF, NRTN, EDN3), and transcription factors 

(SOX10, PHOX2B, ZFHX1B), as well as specific chromosomal anomalies (Down 

syndrome). Work in model systems implicates many additional signaling molecules (Pik3, 

MEK, PLCγ, PKCζ, GSK3), enzymes (RALDH2, EDN3), extracellular matrix proteins 

(laminin, fibronectin, collagen VI), integrins (ITGB1), synaptic vesicle proteins 

(Synaptobrevin, SNAP25), morphogens (BMP2/BMP4, Shh, Ihh), and small molecules 

(retinoic acid, serotonin) influence ENS development. Undoubtedly there is more to learn 

since the known molecules are inadequate to explain how the ENS forms. Non-genetic 

factors may influence ENS development by modifying the expression levels or activity of 

these molecules already known to guide ENS development. This means that there are many 

targets through which non-genetic factors could affect the developing ENS.

Gene-environment interactions and the ENS

Human development is largely driven by genetics, but gene products do not work in isolation 

(Figure 1). Intrauterine growth requires energy, building blocks for protein, ions that act as 

enzyme cofactors or are essential for membrane electrical properties and vitamins that play 

diverse roles in intermediary metabolism. Oxygen is essential for efficient energy production 

from the electron transport chain in mitochondria, but reactive oxygen species reduce bowel 

colonization by ENCDC in some settings (e.g. TCOF1 mutation) (Barlow et al., 2012) and 

low intrauterine oxygen levels relative to post-natal levels appear to be optimal for ENS stem 

cell proliferation (Hegewald et al., 2011). Many of the signaling molecules needed for ENS 

development are also common drug targets and some vitamins (vitamin A, folate), nutrients 

and small metabolites (butyrate) can influence gene expression. Given the large number of 

potential targets and non-genetic factors that might impact proteins critical for ENS 

morphogenesis, it is not surprising that non-genetic factors impact ENS development. This is 

especially important since known genetic changes that predispose to HSCR are partially 

penetrant (Alves et al., 2013). This means that a child with HSCR typically has more than 

one predisposing genetic change or a combination of genetic and non-genetic risk factors led 

to the disease. If non-genetic factors can be identified and eliminated, some cases of HSCR 

might be prevented.

Non-HSCR motility disorders

In contrast to HSCR, the underlying problems that cause other types of bowel motility 

disorders are relatively poorly understood. These disorders include achalasia (Castell, 2013), 

gastroparesis (Camilleri et al., 2013), chronic intestinal pseudoobstruction syndrome (CIPO) 

(Di Lorenzo and Youssef, 2010; Schappi et al., 2013), slow transit constipation, and irritable 

Heuckeroth and Schäfer Page 4

Dev Biol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bowel syndrome (IBS) (Camilleri, 2013; Heuckeroth, 2014; Knowles et al., 2010; Panza et 

al., 2012; Wood, 2013) (Table 2).

Also, in contrast to HSCR where the ENS is completely missing from distal bowel, these 

disorders may be caused by altered numbers of enteric neurons and glia, by changes in the 

types of neurons present, by disruptions in neuronal circuitry or by altered neuronal 

function. Damage to the ENS may be induced by destructive effects of systemic illness (e.g. 

diabetic gastroparesis) (Thazhath et al., 2013), infection (achalasia and colon dysmotility in 

Chagas disease (Machado et al., 2012), varicella zoster (Chen et al., 2011; Holland-Cunz et 

al., 2006)), toxins (e.g., ethanol) (Krecsmarik et al., 2006), or local inflammation (causing 

inflammatory bowel disease associated dysmotility (Mawe, 2015; Mawe et al., 2009; Vasina 

et al., 2006) and post-infectious irritable bowel syndrome (Spiller and Garsed, 2009)). In 

part, post-inflammatory changes in the ENS may be mediated by cytokines that induce 

GDNF and NGF synthesis in enteric glia or alter glial phenotypes (von Boyen et al., 2006a; 

von Boyen et al., 2004, 2006b). Enteric glia modulate neuronal function to regulate motility, 

and can affect neuron survival and bowel epithelial barrier function, among other roles 

(Brown et al., 2016; Ochoa-Cortes et al., 2016; Sharkey, 2015). Furthermore, inflammation 

can destroy the ENS, change neurochemical content or alter enteric neuron and glial 

function through a variety of complex mechanisms (Brierley and Linden, 2014; MacEachern 

et al., 2015; Moynes et al., 2014; Poole et al., 2015). Remarkably, early life emotional 

distress (e.g., maternal separation model) and adult stress (e.g. water immersion in rodents) 

can also cause long-term changes in enteric glia and neurons, as well as changes in colon 

and gastric function in ways that may be relevant for gastroparesis and IBS (Bian et al., 

2011; Fujikawa et al., 2015; Li et al., 2015; Moloney et al., 2015; Tominaga et al., 2016). 

Non-genetic factors may also protect the ENS from injury. For example, quercetin, a 

flavonol antioxidant found in fruits, vegetables and grains, reduced enteric neuron and glia 

loss in a diabetic rat model (Lopes et al., 2012). Clearly we need to find additional non-

genetic factors that reduce ENS injury if we hope to prevent serious intestinal motility 

disorders.

Evidence in model systems that non-genetic factors affect HSCR risk

Although data that non-genetic factors cause human HSCR is limited, population based 

surveys are underpowered to uncover these links (i.e., even if you had good data about 

100,000 pregnancies, only about 20 children with HSCR would be expected) and little work 

has been done in this area. To find evidence that non-genetic factors alter HSCR risk, a 

dedicated case-control study focused on early pregnancy events, maternal health, nutrition 

and exposures would be needed. One epidemiologic study suggested that maternal coffee 

consumption and first trimester fever increased HSCR risk in children with Down syndrome 

(Torfs and Christianson, 1999), but this has not been replicated. The results are plausible, at 

least for coffee, since caffeine increases cAMP by blocking phosphodiesterase (Salzman et 

al., 1972) and reduced cAMP-dependent Protein kinase A (PKA) activity is an important 

aspect of EDNRB signaling (Barlow et al., 2003; Fuchs et al., 2001). Studies of first 

trimester maternal fever and HSCR have yielded inconsistent results (Larsson et al., 1989; 

Torfs and Christianson, 1999), but there is little data about the duration or intensity of fever 
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during pregnancy and the period of ENCDC migration lasts five weeks in humans (a long 

time for a febrile illness).

In the absence of robust human data, model systems powerfully support the hypothesis that 

non-genetic factors may alter HSCR risk. A drug screen in zebrafish using only a single drug 

concentration identified nine medicines that reduce ENCDC colonization of fish bowel 

including artesunate, lovastatin and mycophenolic acid (Lake et al., 2013). Artesunate is a 

commonly used antimalarial whose mechanisms is poorly understood (Haynes et al., 2013). 

Lovastatin blocks 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate limiting step 

in de novo cholesterol synthesis (Alberts, 1988). Mycophenolate reduces cellular GTP levels 

(and reduces other guanine nucleotides) as detailed above. The reason that lovastatin reduces 

ENCDC colonization of zebrafish bowel is not known, but hedgehog proteins are cholesterol 

modified morphogens that affect the ENS (Fu et al., 2004; Nagy et al., 2015; Porter et al., 

1996; Sukegawa et al., 2000), and lipid rafts are cholesterol rich membrane domains that 

appear to be important for efficient RET signaling (Pierchala et al., 2006; Tansey et al., 

2000). Since only a single drug concentration was used for the zebrafish screen described 

above, it is reasonable to expect that other medicines would be found to affect ENCDC 

colonization of developing bowel if additional drug concentrations were tested (i.e., since 

the concentration tested may not be near the active concentration for many tested drugs). In 

support of this hypothesis, when drugs used by >0.5% of U.S. women during early 

pregnancy were tested at a range of concentrations on zebrafish, ibuprofen was found to 

slow ENCDC migration by altering actin cytoskeletal dynamics (Schill et al., 2015). 

Interestingly, inactivation of the cyclooxygenase enzymes that make prostaglandins (the 

primary therapeutic targets of ibuprofen) did not slow ENCDC colonization of fetal bowel in 

mice, suggesting that “off target” effects of ibuprofen lead to ENCDC bowel colonization 

defects. The concentration of ibuprofen needed to slow ENCD migration and the magnitude 

the effect differs among species tested (zebrafish, chick and mouse), emphasizing the need 

for data in human populations about maternal medicine use and HSCR occurrence.

Maternal nutrition is also likely to influence HSCR risk. The most powerful data to support 

this hypothesis is that relatively mild vitamin A deficiency causes HSCR-like disease in 

mice (Fu et al., 2010). Vitamin A is the precursor for retinoic acid (RA), a small molecule 

that alters transcription by binding to and regulating the RAR and RXR transcription factors 

that control many aspects of development (D’Ambrosio et al., 2011; di Masi et al., 2015). 

Interestingly, RALDH1, RALDH2, and RALDH3, the retinaldehyde dehydrogenases that 

make RA, also appear to affect ENS development (Wright-Jin et al., 2013), with RALDH2 

activity absolutely essential for formation of the ENS (Niederreither et al., 2003). 

Furthermore, retinol binding protein 4 (RBP4) deficiency causes HSCR-like disease in mice 

that are also heterozygous for Ret, a major HSCR risk allele (Fu et al., 2010). The 

mechanism for RA-deficiency induced HSCR-like disease in mice is not completely 

understood since there appear to be retinoid effects on the abundance of multiple proteins at 

various stages. Early in development as ENCDC migrate from the neural tube to the bowel, 

RA signaling is essential to induce Ret expression within ENCDC (Simkin et al., 2013) and 

at later stages RA supports neuronal precursor proliferation and neuronal differentiation 

(Sato and Heuckeroth, 2008). In contrast, when the wavefront of migrating ENCDC has 

reached the mid-colon, RA reduces PTEN protein levels in ENCDC at the leading edge of 
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the migration wavefront (Fu et al., 2010). This is important because PTEN reverses the 

action of PI-3 kinase, a major RET regulated protein required for ENCDC survival, 

proliferation and migration. Indeed, a balance of PTEN/PI-3 kinase activity is likely to be 

important for ENS development since cell-autonomous PTEN deficiency within ENCDC 

causes bowel hyperganglionosis and a CIPO phenotype (i.e., intestinal distension and weight 

loss) that results in early death (Puig et al., 2009). This phenotype is reminiscent of the 

hyperganglionosis and dysmotility that occurs with mutations in a Sprouty2 (Taketomi et al., 

2005), a protein that reduces RET activity. These data suggest that vitamin A deficiency, one 

of the most common micronutrient deficiencies in many parts of the world (West, 2002), 

may be a preventable cause of HSCR. Unfortunately, even though large studies of maternal 

vitamin A supplementation have been performed (as summarized in a recent Cochran review 

of 153,500 women), there is no data about HSCR frequency as a function of vitamin A 

supplementation (McCauley et al., 2015). Furthermore, because HSCR is often not apparent 

at birth and diagnosis requires sophisticated medical tests, ascertainment of HSCR cases is 

unlikely to be good in nutrient poor populations. Based on known biochemistry, it seems 

likely that other micronutrient deficiencies also predispose to ENS defects. For example, 

mycophenolate causes HSCR-like aganglionosis in mice because it blocks de novo guanine 

nucleotide synthesis via IMPDH inhibition. De novo guanine synthesis also requires folate, 

niacin, vitamin B6 and vitamin B12 dependent enzymes. Recent data also suggest that biotin 

may enhance migration of ENS precursors (Fattahi et al., 2016). Biotin is a nutrient required 

by a family of carboxylases that have important roles in fatty acid metabolism, amino acid 

metabolism, carbohydrate metabolism, polyketide synthesis, and urea utilization among 

other cellular processes.

Evidence that non-genetic factors may alter ENS structure without causing 

HSCR

ENS function depends on a balance of specific neuron subtypes (e.g. excitatory motor 

neurons, inhibitory motor neurons, intrinsic primary afferent neurons (IPANs, sensory), 

interneurons, etc.). These neuronal subtypes differ in morphology, neurotransmitters 

produced, receptors, axon number, axon trajectory and function (Furness, 2012; Hao and 

Young, 2009). The factors that guide neuronal subtype identity in the ENS remain poorly 

understood, but the ratio of neuronal subtypes is influenced by the timing of cell cycle exit 

(Avetisyan et al., 2015a; Bergner et al., 2014; Chalazonitis et al., 2008; D’Autreaux et al., 

2011; Pham et al., 1991; Wang et al., 2010) and many factors impact the decision to exit the 

cell cycle (e.g., GDNF, EDN3, Shh, BMPs, RA) (Lake and Heuckeroth, 2013). One 

intriguing observation is that serotonin (5-HT) produced by early differentiating enteric 

neurons acts as a trophic factor for surrounding ENCDC and that altered serotonin levels 

influences neuron subtype ratios (Li et al., 2011). For this reasons, mice with a mutation in 

the 5-HT producing enzyme tryptophan hydroxylase 2 (TPH2) have fewer “late born” 

GABA and DAT (dopamine active transporter) immunoreactive neurons than WT animals. 

The norepinephrine reuptake transporter (NET) is also required for development of 

serotonergic neurons and reduced NET activity affects ENS development (Li et al., 2010). 

Interestingly, in postnatal bowel, serotonin also promotes new neurogenesis and ENS repair, 

at least partially via 5-HT4 receptor (Gershon, 2012; Matsuyoshi et al., 2010; Takaki et al., 
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2014). Consistent with these observations, human data based on 35,400 pregnancies suggest 

that first trimester exposure to tricyclic antidepressants (TCAs) and second or third trimester 

exposure to selective serotonin reuptake inhibitors (SSRIs) increases the use of laxatives in 

children after birth up to 10-fold for combined exposures (Nijenhuis et al., 2012). This 

epidemiologic observation may be explained by the ability of TCAs to block NET and of 

SSRIs to block serotonin reuptake from the synapse leading to increased norepinephrine and 

5-HT signaling respectively.

Neuronal subtype specification also appears to be influenced by neuronal activity. Blocking 

neural activity not only slows migration of ENCDC through fetal bowel (Vohra et al., 2006), 

but also selectively reduces the number of NO producing neurons (Hao et al., 2010). In 

contrast, ENS precursor depolarization increases tyrosine hydroxylase and vasoactive 

intestinal peptide (VIP) producing neurons in culture without increasing NO producing cells 

(Chevalier et al., 2008). While the precise mechanisms underlying these observations are not 

known, many neuromodulatory medicines (antidepressants, antipsychotics, anti-epileptics, 

anti-cholinergics, anti-hypertensives) cross the placenta and could therefore affect enteric 

neuron subtype specification by altering neuron activity, leading to changes in post-natal 

bowel motility.

After birth, diet has complex effects on the ENS that may be due direct effects on enteric 

neuron activity or to changes in gut microbes that secondarily affect the ENS. In support of 

direct effects on the ENS, many nutrients activate enteric neurons (e.g., glucose, fatty acids, 

amino acids) and may induce long term changes in neurotransmitter expression (Neunlist 

and Schemann, 2014). As an example, the short chain fatty acids butyrate can alter the ratio 

of myenteric choline acetyltransferase (ChAT) and nNOS immunoreactive neurons (Soret et 

al., 2010; Suply et al., 2012). This might result from changes in neuron activity that can 

affect cell fate since mucosally projecting myenteric neurons undergo transient 

depolarization and late hyperpolarization in response to butyrate. This occurs via calcium 

release from intracellular stores that then acts on calcium dependent potassium channels 

(Hamodeh et al., 2004; Haschke et al., 2002; Neunlist et al., 1999). Alternatively, butyrate 

could alter gene expression within developing enteric neurons by inhibiting histone 

deacetylases (Soret et al., 2010; Steliou et al., 2012). In addition to the short chain fatty acid 

butyrate, feeding long chain N-3 polyunsaturated fatty acids to pigs during gestation and 

while nursing also altered enteric neuron subtype ratios, increasing ChAT and decreasing 

VIP immunoreactive neurons in the jejunal submucosal plexus of their piglets (De Quelen et 

al., 2011). The mechanism underlying this observation is not understood, but N-3 

unsaturated fatty acids are known to compete with N-6 unsaturated fatty acids, inhibiting 

arachidonic acid metabolism and reducing inflammation (Yates et al., 2014). As noted 

above, inflammation can alter enteric neuron subtype ratios. Finally, calorie restriction 

reduced aging related neuron loss in the ileal ENS of rats (Thrasivoulou et al., 2006), while 

diet induced obesity reduced age associated antral nitrergic neuron loss (Baudry et al., 2012) 

possibly via altered trophic factor expression in the bowel wall that results from these 

dietary manipulations (Korsak et al., 2012; Saavedra et al., 2008). The impact of diet on the 

ENS is difficulty to separate from the role of gut microbes after birth. For example, butyrate 

may be ingested, or can be synthesized in the colon by anaerobic bacteria that ferment 

dietary fiber (Soret et al., 2010). Collectively these data suggest that neuron subtype ratios 
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and therefore cell fate in the ENS is regulated in part by dietary nutrients. This adaptation 

may facilitate the bowel’s ability to digest a wide range of nutrients.

Strong support for microbial effects on the ENS comes from studies in germ free mice, since 

these animals have altered motility and changes in ENS structure including fewer myenteric 

neurons, an increased proportion of NO neurons, and fewer calbindin+ myenteric neurons 

compared to specific pathogen free or conventionally colonized animals (Collins et al., 2014; 

Dey et al., 2015; McVey Neufeld et al., 2015). The mechanisms underlying these 

observations are likely to be complicated. In addition to bacterial metabolites, microbial 

structural components may affect the ENS directly and indirectly via Toll-like receptors, a 

subset of pattern recognition receptors that bind to and are activated by microbial molecules. 

TLR activation stimulates intracellular signaling cascades that may result in the release of 

cytokines, chemokines and neurotrophic factors (Frosali et al., 2015). For example, TLRs 

1-9 are expressed by intestinal smooth muscle, a prominent source of neurotrophic factors. 

Stimulation of TLR2, TLR4, TLR5 or TLR9 increased levels of GDNF, NGF, BDNF and 

LIF by intestinal muscle cells (Brun et al., 2015) and GDNF prominently supports the 

developing and mature ENS (Lake and Heuckeroth, 2013; Rodrigues et al., 2011). In 

contrast, TLR2−/− mice have reduced GDNF expression, altered intestinal motility, smaller 

ganglia and fewer neurons than wild type animals (Brun et al., 2013). NGF may also 

enhance neurite growth from enteric neurons (Dothel et al., 2015; Esteban et al., 1998) while 

BDNF supports enteric glia (Levanti et al., 2009). TLR2 can be activated by a wide range of 

bacterial, fungal and viral components and is expressed by enteric neurons and glia in 

addition to smooth muscle. Similarly, TLR3, TLR4, and TLR7 are expressed in the human 

ENS (Barajon et al., 2009). TLR4 recognizes lipopolysaccharide (LPS), a major gram 

negative bacteria cell wall component and TLR4−/− mice have reduced nitrergic neuron 

number in the colon myenteric plexus and delayed gastrointestinal motility (Anitha et al., 

2012). This fits well with the observation that LPS enhances proliferation of ENS neural 

progenitor cells in culture and delays precursor differentiation (Schuster et al., 2014). 

Bacteria also release diverse neurotransmitters (e.g., GAGA, serotonin, acetylcholine) (Wall 

et al., 2014) and changes in ENS structure may reflect altered neuronal activity as discussed 

above. Similar mechanistic observations may underlie the increased galanin and calcitionin 

gene-related peptide (CGRP) immunoreactive submucosal neurons observed in piglets fed 

the probiotic Pediococcus acidilactici (di Giancamillo et al., 2010) or the reduced calbindin+ 

myenteric neurons in pig jejunum after feeding with Saccharomyces boulardii (Kamm et al., 

2004).

Special mention should be made of breast milk, which provides not only a full spectrum of 

nutrients, but also many bioactive compound including neurotrophic factors (GDNF, BDNF, 

NT3, CNTF) and cytokines (tumor necrosis factor (TNF)-α, Interferon (IFN)-γ, RANTES, 

monocyte chemotactic protein (MCP)-1, MIP-1-a, IL-1, IL-6, IL-8, IL-10, ENA78, GRO-a, 

Leptin, IL-7 and IL-17) that could support enteric neurons and glia (Collado et al., 2015; 

Fichter et al., 2011). It is not clear if these compounds can get across the gut epithelium in 

the absence of injury, but at least during early postnatal stages the mucosal barrier partially 

permits transport of many macromolecules (Drozdowski et al., 2010). Interestingly, breast 

milk reduces occurrence of a deadly bowel disease of premature infants called necrotizing 

enterocolitis (NEC) (Good et al., 2014). Bowel injury during NEC should further increase 
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translocation of neurotrophic factors and many other breast milk components (e.g., nitrite, L-

arginine, glutamine, lactoferrin, or epithelial growth factors) across the epithelium where 

they may act in concert to prevent further injury and modulate bowel inflammation 

(Avetisyan et al., 2015b; Gershon, 2012; Savidge et al., 2007; Sigalet et al., 2007). The role 

of the ENS in NEC is under-investigated, but NEC clearly causes injury to the ENS and 

transplantation of enteric neural crest-derived stem cells prevents death in an experimental 

NEC model (Zhou et al., 2013).

Collectively these data show that dietary components may alter the ratio of neuron subtypes 

in the bowel, a plausible way to permit adaptation to varied diets and intestinal microbes. 

These changes may be mediated by altered neuronal activity, dietary nutrients, their 

metabolites, or microbial products that regulate transcription, modulate signal transduction, 

or regulate neurotrophic factor production. Much more work is needed to define mechanisms 

of subtype specification in the ENS, and to establish how neuromodulatory medicines, food 

and microbes affect ENS development.

Even “simple” observations have complex implications for ENS 

development when non-genetic factors impact protein abundance (“a tale 

of GDNF”)

GDNF is an essential trophic factor for ENCDC during fetal development because GDNF 

activates the RET transmembrane tyrosine kinase via the co-receptor GFRα1 (Cacalano et 

al., 1998; Durbec et al., 1996; Enomoto et al., 1998; Heuckeroth et al., 1998; Moore et al., 

1996; Pichel et al., 1996; Sanchez et al., 1996; Trupp et al., 1996). RET supports ENCDC 

survival, migration and proliferation during bowel colonization, but also enhances neuronal 

differentiation and neurite growth once cells stop dividing (Schafer and Mestres, 1999; 

Schuchardt et al., 1994; Vohra et al., 2007a). Because different enteric neuron subtypes exit 

the cell cycle at different stages of development (Bergner et al., 2014; Pham et al., 1991), the 

timing, location and intensity of GDNF production in the bowel affects enteric neuron 

subtype ratios. The location of GDNF production also affects patterning for NO producing 

neurites (Wang et al., 2010). Inactivating mutations in GDNF, RET or their co-receptor 

GFRα1 cause total intestinal aganglionosis (no neurons in the small bowel or colon) in 

mice. Furthermore, mice with GDNF heterozygosity have reduced enteric neuron number 

and abnormal bowel motility (Gianino et al., 2003). As might be expected, RET 

heterozygosity is a common cause of human HSCR (about 30% of all cases) producing 

about a 50% HSCR risk (i.e., partial penetrance) (Alves et al., 2013; Amiel et al., 2008), 

while homozygous RET inactivating mutations cause human total intestinal aganglionosis 

(Shimotake et al., 2001) similar to the murine phenotype. These observations powerfully 

suggest that altered RET activity as a result of changes in GDNF production should lead to 

changes in ENS structure and function during development and in adulthood, especially 

since GDNF appears to have a direct role in the peristaltic response (Grider et al., 2010).

Regulation of GDNF expression is remarkably complex (Figure 2) (Saavedra et al., 2008) 

suggesting that some changes in ENS structure and function before and after birth might be 

induced by changes in GDNF in response to non-genetic signals. Regulators of GDNF 
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expression in the bowel are incompletely understood, but in other tissues GDNF levels are 

influenced by many transcription factors (Six1, Six2, Pax3, Eya1, Sall1, Hox11, Foxc1, 

Foxc2, NF-κB, CREB), signaling proteins (MAPK, PKC, PKA, Ca++, PP2A, Sprouty1), 

neurotransmitters (glutamate, dopamine, adenosine, serotonin), extracellular ligands 

(GDF11, Slit2, BMP4, EDN1, FGF2), pro-inflammatory cytokines (IL-1β, IL-6, TNFα, 

TNFβ, IL-10,), bacterial products (LPS), lifestyle choices (calorie restriction, exercise), 

pharmacologic agents (dopamine receptor agonists, monoamine oxidase inhibitors, 

glutamate receptor antagonists, antidepressants, antipsychotics, mood stabilizers, anti-

epileptics, anti-dementia drugs, immunophilin ligands), hormones (melatonin, estrogen), 

vitamin D3, and by some traditional medicines (Rehmannia glutinosa, Ibogaine, royal jelly). 

These GDNF regulatory mechanisms coupled with GDNF effects on ENS structure and 

function suggest that many non-genetic factors may affect the ENS simply by modifying 

GDNF levels in fetal or post-natal bowel.

Summary

The ENS is an elegant nervous system in the bowel wall that controls most aspects of bowel 

function. Because the developmental pathways needed to form the ENS are complicated, it 

is not surprising that many molecular mechanisms critically influence ENS precursor 

colonization of fetal bowel and the differentiation of enteric neurons and glia. While the 

underlying genetics provides the infrastructure for successful fetal morphogenesis, maternal 

health, placental function, maternal nutrition, and maternal medicines impact development 

changing the risk of structural birth defects. Hirschsprung disease seems particularly likely 

to be impacted by gene-environment interactions because in most children with HSCR the 

bowel is almost fully colonized by ENCDC, and even a small increase in bowel colonization 

could mean the difference between health and life threatening disease. These observations 

provide new hope that some cases of HSCR may be preventable and that we can take 

advantage of observed non-genetic mediators to enhance bowel function in children and 

adults with a wide range of bowel motility disorders.
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Highlights

• The enteric nervous system (ENS) controls most aspects of gut 

function.

• The ENS forms from neural crest-derived precursors that colonize fetal 

bowel.

• Genetic mechanisms that control ENS development are complicated 

involving many genes.

• ENS development can be altered by diverse medicines, nutrients, and 

microbes.

• Some Hirschsprung disease cases may be preventable by optimizing 

non-genetic factors.

Heuckeroth and Schäfer Page 21

Dev Biol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
This schematic shows many of the non-genetic factors affect ENS development or the 

mature ENS. The mature ENS is an intricate structure as represented in the image that shows 

the adult mouse myenteric plexus stained with antibodies to calretinin (green) and substance 

P (red) (courtesy of Marina Avetisyan). Arrows indicate aspects of ENS development that 

are “modulated” (i.e., changed) by a specific factor, or indicate that the factor acts on the 

mature ENS. The symbol “—l” indicates that these factors inhibit a specific process or 

damage the mature ENS.
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Figure 2. 
GDNF/GFRα1/RET signaling impacts many aspects of ENS development and has important 

roles in the adult ENS. For this reason, the timing, location and intensity of GDNF signaling 

can profoundly alter ENS structure and function. Remarkably, many non-genetic factors 

impact GDNF abundance, although most of these effects have not been well studied in the 

fetal or adult bowel. Based primarily on work in other systems, green text indicates factor 

that increase GDNF mRNA or protein levels. Red text indicates that the factor reduces 

GDNF mRNA or protein levels.
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Table 1

Simplified list of genes that impact ENS development

Gene Role in ENS development Protein function/Comments

RET Supports ENS precursor survival, proliferation,
migration, neuronal differentiation, neurite
growth and axon patterning

-Transmembrane tyrosine kinase receptor
-Most commonly inactivated gene in people
with HSCR.

GDNF RET activating ligand -Neurotrophic factor
-Rarely mutated in people with HSCR

EDNRB Prevents premature differentiation of ENCDC
Facilitates colon colonization by ENCDC

-G-protein coupled receptor
-Mutated in 5% of people with HSCR
-Also causes hearing loss and pigmentation
defects (Waarderburg-Shah, WS4))

EDN3 EDNRB activating ligand -Peptide
-Rarely mutated in people with HSCR

SOX10 Required for bowel colonization by ENCDC
Activates RET expression

-Transcription factor
-Mutations cause HSCR plus hearing loss
and pigmentation defects (WS4)

PHOX2B Required for bowel colonization by ENCDC
Activates RET expression

Transcription factor
Mutations cause HSCR plus congenital
central hypoventilation (Haddad syndrome)

The complex cellular processes that occur during ENS development are supported by a wide array of cell surface proteins, extracellular ligands, 
intracellular signaling molecules, transcriptonal regulators, and non-genetic factors. These pathways have recently been reviewed in detail by our 
group and other investigators (Amiel et al., 2008; Avetisyan et al., 2015a; Goldstein et al., 2013; Lake and Heuckeroth, 2013; Newgreen et al., 
2013; Sasselli et al., 2012).
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Table 2

Human intestinal motility disorders where ENS defects my cause symptoms (simplified)

Hirschsprung disease (HSCR) Absence of enteric neurons in distal bowel causes tonic
contraction and functional obstruction leading to abdominal
distension, vomiting, constipation, growth failure and early death

Achalasia Defective esophageal peristalsis and poor relaxation of the lower
esophageal sphincter causes swallowing problems

Gastroparesis Defective stomach emptying or accommodation in association with
visceral hypersensitivity causes nausea, abdominal pain, vomiting
and weight loss

Chronic intestinal
pseudoobstruction (CIPO)

Abnormal intestinal contractility as a result of defects in the ENS,
intestinal smooth muscle or pacemaker cells (Interstitial cells of
Cajal) causes abdominal distension, vomiting, and the inability to
survive solely on enteral feeding

Slow transit constipation Constipation do to slow movement of luminal content through the
colon

Irritable bowel syndrome (IBS) Abnormal bowel motility and visceral hypersensitivity causes
diarrhea and/or constipation and abdominal pain. IBS affects
about 25% of the adult population and can be uncomfortable, but
does not affect nutrition or longevity
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