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Abstract

Stepped-wedge (SW) designs have been steadily implemented in a variety of trials. A SW design 

typically assumes a three-level hierarchical data structure where participants are nested within 

times or periods which are in turn nested within clusters. Therefore, statistical models for analysis 

of SW trial data need to consider two correlations, the first and second level correlations. Existing 

power functions and sample size determination formulas had been derived based on statistical 

models for two-level data structures. Consequently, the second-level correlation has not been 

incorporated in conventional power analyses. In this paper, we derived a closed-form explicit 

power function based on a statistical model for three-level continuous outcome data. The power 

function is based on a pooled overall estimate of stratified cluster-specific estimates of an 

intervention effect. The sampling distribution of the pooled estimate is derived by applying a 

fixed-effect meta-analytic approach. Simulation studies verified that the derived power function is 

unbiased and can be applicable to varying number of participants per period per cluster. In 

addition, when data structures are assumed to have two levels, we compare three types of power 

functions by conducting additional simulation studies under a two-level statistical model. In this 

case, the power function based on a sampling distribution of a marginal, as opposed to pooled, 

estimate of the intervention effect performed the best. Extensions of power functions to binary 

outcomes are also suggested.
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1 Introduction

Stepped-wedge (SW) clinical trial design is a variation of cluster randomized trials and is a 

type of crossover design at the cluster level as treatment assignments are designed to be 

progressively crossed over unilaterally from a control to an experimental arm until all 

clusters are completely crossed over.1 The random element of a SW design is the assignment 

of time points of the crossover to the clusters. The main advantage of the SW design is the 

relaxation of logistical constraints related to human or financial resources for conduct of 

classical cluster randomized trials,1 although there are challenges in implementing in real-

world settings.2,3 The SW design is also useful when clinical equipoise is not met and it is 

unethical to randomize participants to the control arm for the length of the study. Further 

detailed discussion on this issue can be found in Prost et al.4 Additional considerations that 

should be taken into account for conducting SW trials are suggested by Hargreaves et al.5 

The SW design has been steadily implemented in a variety of trials,6 and a systematic 

review concerning characteristics of published SW trials is conducted by Brown and Lilford,

7 and more recently and comprehensively by Beard et al.8

As is the case for all types of randomized clinical trials, sample size determination is an 

indispensible element of the SW design. Hussey and Hughes9 have proposed a widely used 

closed-form sample size determination formula for the SW design considering a random 

effects model. Woertman et al.10 converted Hussey and Hughes’ formula to a design effect 

of the SW design in comparison with a conventional two parallel arm design. Baio et al.11 

also suggested a design effect formula under a different setting and statistical model. 

Hemming et al.12 evaluated the impact of intra-cluster correlations on statistical power or 

sample size through design effects under various types of SW designs. In addition, 

simulation studies for power analysis without explicit formula have also been conducted by 

Biao et al.11 and Van den Heuvel et al.13

In all those derivations above, although the first level correlations (denoted below by ρ1) of 

outcomes among participants in the same times or periods within the same clusters were 

taken into account, the second level correlations (denoted below by ρ2) of outcomes among 

participants between times or periods within the same clusters were not explicitly considered 

for computing power or determining sample sizes. The latter correlations would need to be 

modeled in a statistical model for SW design trials because SW designs by definition 

naturally assume a three-level data hierarchy, as participants are nested within times or 

periods that are in turn nested within clusters in SW designs. The nomenclatures for units of 

levels should depend on the study context; for example, depending on research settings, the 

third level units can be physicians, clinics, hospitals, schools, communities, and districts to 

name a few. Hereafter, however, we refer to “cluster”, “period”, and “participant” as the 

third, the second, and the first level data units, respectively, in the SW design.

The primary aim of this paper is to derive explicit closed-form power functions which 

consider also the second level correlations by formulating a three-level model accounting for 

the two types of correlations. To this end, in section 2, we introduce a SW design with 

design parameter notations. In section 3, we specify the three-level model and formulate the 

two types of correlations. In section 4, we estimate an overall treatment effect by pooling 
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cluster-specific effect estimates since the number of periods exposed to the experimental 

condition is not identical across all clusters. A power function is derived based on a 

sampling distribution of the pooled estimate of the overall treatment effect. In section 5, as a 

secondary aim, we compare performances of three power functions including that of Hussey 

and Hughes9 under a two-level model when ρ2 is assumed to be 0 as has previously been 

implicitly assumed. In section 6, simulation studies compare validities of all power functions 

under both two- and three-level models. Discussion follows in section 7.

2 Stepped wedge design parameters

Here we consider the SW design depicted in Figure 1, similar to that which was considered 

in Woertman et al.,10 to illustrate design parameters. The total number of steps is represented 

by S (≥1); the number of clusters in each step is represented by c (≥1); the number of 

periods for each “depth” of a step under an experimental condition (gray areas) is 

represented by p (≥1); and each cluster has b (≥0) number of “baseline” periods under a 

control condition (blank areas). The clusters are indexed by i = 1, 2, …, I = cS, this being the 

total number of clusters. Let us further denote by S(i) the depths of steps for the ith cluster 

under the experimental condition: e.g., S(i) = 1 for i = 1, 2; S(i) = 2 for i = 3, 4; and so on. 

The periods nested within clusters are indexed by j = 1, 2, …, J = b + pS, this being the total 

number of periods per cluster. Study participants nested within each period are indexed by k 
= 1, 2, …, K, this being referred to as “cell” size or the number of participants for each cell 

in Figure 1. Let us assume that the participants belong to only one cell without cross-over to 

other clusters or periods. Then the total number of participants N will be N = IJK = cS(b + 

pS)K. The parameter values for the SW design depicted in Figure 1 can be found in its 

footnote. The sets of indices indicating observations from the experimental and control arms 

will be denoted by E and C, respectively.

3 Statistical model for three level data structure

A statistical model for testing an experimental intervention/treatment effect under a SW 

design can be formulated as follows.

(1)

The study outcome is denoted by Yijk (i = 1, 2, …, I; j = 1, 2, …, J; k = 1, 2…, K) and the 

experimental arm indicator is denoted by Xijk = 1 for experimental arm, and=0 otherwise. 

Likewise, the control arm indicator is denoted by Wijk=1 – Xijk=1 for control arm, and =0 

otherwise. Then, XijkWi′j′k′= 0 if i = i′, j = j′, and k = k′; otherwise, the product is either 0 

or 1 depending on the configurations of the indices. The two sets, E and C, are defined as E 
= {i, j, k | Xijk = 1} = {i, j, k | Wijk = 0} and C = {i, j, k | Wijk = 1} = {i, j, k | Xijk = 0}.

The fixed-effect overall intercept is denoted by β0, and the fixed experimental intervention 

effect by δ in model (1). The distribution of the cluster-level random intercepts ui is assumed 

to be normal as  and so is that of the period-level random intercepts uj(i) as. 

. The distribution of the errors eijk is also assumed to be normal as 
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. Among these random components, it is further assumed that ui⊥uj(i)⊥eijk, i.e., 

these three random components are mutually independent. In addition, conditional 
independence is assumed for all uj(i) and eijk, whereas the ui are unconditionally 
independent. That is, uj(i) are independent over j conditional on ui, and eijk are independent 

over k conditional on ui, and uj(i).

Under model (1), and the elements of the covariance matrix are

(2)

where 1(.) is an indicator function. It follows that Var(Yijk) = Cov(Yijk, Yijk) = σ2, where 

. Therefore, the correlations among the level two data (i.e., among outcomes 

from different periods but the same cluster) can be expressed for j ≠ j′ as follows:

(3)

The correlations among the level one data (i.e., among outcomes measured from different 

participants in the same period within the same cluster) can be expressed for k ≠ k′ as

(4)

As a result, ρ1 is greater than or equal to ρ2, that is, ρ1 ≥ ρ2.

4 Estimate of intervention effect and power function

To estimate the overall intervention effect δ, we consider each cluster as a stratum because 

outcome observations between periods within clusters are correlated and the numbers of 

periods exposed to control and experimental conditions are not necessarily identical across 

the clusters. This means that the variances of the cluster-specific effect estimates are not 

necessarily identical. In our approach, we first estimate an intervention effect for each 

cluster/stratum in a cluster-specific fashion, and then pool the cluster-specific estimates into 

an overall estimate of δ in model (1) by applying a fixed-effect meta-analytic approach14 as 

δ is assumed to be fixed and homogenous across clusters.

The intervention effect for the ith cluster is denoted by δi. A moment of estimate, , of δi 

can then be obtained as , where  and 

 are the means of outcome Y for the participants in the 

experimental and control arms in the ith cluster, respectively; Ni,E and Ni,C represent the 

number of participants in the experimental and control arms in the ith cluster, respectively. 

That is,  and , where Ji,E= #{j|Xajk 

=1, a= i} = pS(i) and Ji,C = #{j|Wajk = 1, a = i} = b + p(S − S(i)) are the numbers of periods 
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under the experimental and control conditions in the ith cluster; #{.} denotes the number of 

elements in the set {.}. It follows that Ji,E + Ji,C = J, Ni,E = pS(i)K and Ni,C = bK + p(S − 

S(i))K. Under this setting, the variances of  and  and the covariance between them can 

be derived as follows:

and . It follows that the variance of  can be expressed as below:

where

(5)

which is the design effect for three-level trials that randomly assign treatments at the second 

level within clusters.15,16 This design effect f is an increasing function of ρ1 and a 

decreasing function of ρ2.

An estimate  of overall intervention effect can now be obtained as a pooled estimate of  ‘s 

weighted by their corresponding inverse variances as follows:

(6)

where . This pooled estimate is a weighted mean of . It follows that

(7)

Under the setting depicted in Figure 1, the following equation is straightforward:

This equation enables a power function to be expressed in terms of design parameters as 

follows:
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(8)

where Φ (.) is the cumulative density function of a standard normal distribution, z1−α/2 = Φ
−1(1 − α/2), Φ−1(.) is the inverse of Φ(.), and Δ = δ/σ which is known as standardized effect 

size or Cohen’s d.17 The statistical power increases with increasing Δ, b, c, S (or I), p, K, α, 

and ρ2, all of which decrease the variance (7). However, the statistical power decreases with 

increasing ρ1 which increases f and thus increases the variance (7).

5 Power under model for two-level data

If (3) is assumed to be 0, then this assumption is equivalent to assuming , 

and reduces model (1) to a model

(9)

for a two-level data structure. Subsequently, Cov(Yijk, Yi′j′k′) in equation (2) reduces to

and likewise  and

(10)

The statistical power expressed in equation (7) in Hussey and Hughes,9 can be re-expressed, 

denoted here by φHH, utilizing the equations in the supplements of Woertman et al.10 as 

follows in terms of the design parameters depicted in Figure 1

(11)

This function is not a monotone increasing or decreasing function of ρ. Furthermore, φHH 

cannot be defined if ρ = 1 although this is unrealistic to occur.

In addition, the statistical power φ (8) for the three-level model can straightforwardly be 

reduced to

(12)
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where

(13)

which is the same as f (5) with ρ2 (3) and ρ1 (4) replaced by 0 and ρ (10), respectively; f0 

(13) is the design effect for level-two data structure.18 The statistical power φ0 is in fact 

based on pooling of cluster-specific effect estimates weighted by the inverses of the cluster-

specific variances of the estimates, and is a monotone decreasing function of ρ as is the case 

for φ (8) that decreases with ρ1.

We note that the clusters, however, became nominal without any influence on statistical 

inference, since  is assumed. That is to say that the periods are no longer assumed to be 

nested within clusters although individual observations Y are still assumed to be nested with 

periods. Therefore, statistical power φ(2) below can be based on a sampling distribution of a 

marginal estimate of δ in model (9) for two-level data as follows:

(14)

It follows that the power φ(2) can be obtained as follows19

(15)

where  and 

 are the numbers of total periods for the 

experimental and control arms, respectively (the numbers of gray-colored and blank “cells” 

in Figure 1, respectively). It can be seen that the power function φ(2) is also a monotone 

decreasing function of ρ (10).

6 Simulation study

We conducted simulations using the SAS v9.3 PROC MIXED routine with a restricted 

maximum likelihood fitting option to (1) validate the power function φ (8) derived under the 

three-level model (1); and (2) compare three power functions φHH (11), φ0 (12), and φ(2) (15) 

under the two-level model (9). We note that it is possible to theoretically derive closed-form 

power functions with varying Kij, the number of observations per period per cluster. 

However, it will be cumbersome not only to express exact formulas but also to compute 

power functions. Therefore, to assess applicability of the power functions under varying Kij, 

we randomly drew Kij from uniform distributions Kij ~ U(a, b) with a = K − floor(3 K/4) 
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and b = K + floor(3 K/4) so that a > 0 and E{U(a, b)} = (a + b)/2 = K, where floor(x) returns 

the greatest integer smaller than or equal to x.

The magnitudes of all of theoretical power functions are compared with those of empirical 

power estimated from the simulations. To compute simulation-based empirical power, which 

we consider as the “reference” power, we fit models (1) and (9) with unknown variances 

which are usually assumed in practice, although all the power functions are derived under 

known variance components. We generated 1000 simulated data sets for each combination 

of pre-specified design parameters and estimated the empirical power as follows:

(16)

where ps(δ) is the p value for the sth simulated data set (s = 1, 2, …, 1000). The p values 

were computed based on critical values of Wald t-distributions under the null hypotheses 

with degrees of freedom determined by the method of Kenward and Roger.20 SAS 

simulation codes are provided as Supplementary materials.

Three-level model

The pre-specified design parameters can be found in Table 1. The results show that the 

theoretical power φ (8) and the simulation-based empirical power  are very close to 

each other regardless of whether K is fixed or varying:  for 

fixed K and = 0.001 for varying Kij; and 

 respectively. The power function is 

proven to be an increasing function of all design parameters except ρ2 (3). The effects of ρ1 

and ρ2 on the statistical power under three-level model parameters are graphically depicted 

in Figure 2.

Two-level model

The pre-specified design parameters can be found in Table 2, in which ρ2 is considered 0. 

The results show that the performances of the three theoretical power functions φHH (11), φ0 

(12), and φ(2) (15) are quite different in comparison with the reference empirical power 

under both fixed K and varying Kij:  for fixed K and = 0.158 

for varying Kij;  and = −0.098, respectively; and 

 and = 0.030, respectively. With respect to the ranges of 

biases: range  for fixed K and = (0.018, 0.385) for varying Kij, 

, respectively; and 

, respectively. Overall, φ(2) is least 

biased and very close to the empirical power. In contrast, φHH and φ0 overestimated and 

underestimated the empirical power, respectively. Therefore, if a sample size were 

determined based on φHH or φ0, a study would be under-powered or over-powered, 

respectively. Furthermore, unlike the other two power functions, φHH is seen to be increasing 

with increasing ρ (10) for the values considered for the simulations. For this reason, φHH 
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could more severely overestimate true power and thus underestimate sample sizes for larger 

values of ρ. The effect of ρ on the statistical power under a two-level model parameters are 

graphically depicted in Figure 3.

7 Discussion

Our results suggest that the second level correlations ρ2 must be accounted for determining 

sample size when designing a SW assuming a three-level model. However, no SW trials 

have so far reported an estimate of ρ2, although a couple of SW trial studies21,22 reported 

only ρ1 based on the recent review of Davey et al.23 As observed in this paper (Figure 2), the 

effects of both ρ1 and ρ2 on the power are substantial when a three-level model is 

considered. Therefore, it would be valuable to report estimates of ρ2 from conducted SW 

trials for aiding designs of future SW trials. For two-level models, many studies addressed 

impacts of ρ (e.g. see literature12,18,24,25) as reflected in Figure 3. However, relationship 

between ρ and φHH is hardly predictable and mostly contradictory to that between ρ and φ0 

and that between ρ and φ(2) as well.

The derived power function φ (8) is proven to be unbiased and valid for that purpose of 

accounting for both the first and second level correlations. This finding suggests that the 

pooled estimate  may indeed be a maximum likelihood estimate of δ in model (1). 

Although it was derived under a special case depicted in Figure 1, the power function φ is 

also proven to be applicable to SW designs with varying Kij, the cell size. Therefore, the 

pooling estimation approach (6) based on the cluster-specific moment estimates can also be 

extended to the general cases where c varies over steps, and p or J varies over clusters. 

Nevertheless, even if it could be possible to derive, a closed-form expression of a power 

function under those situations would be much more complex and much less tractable for 

calculations.

When ρ2 does not need to be considered in a two-level model, the power function φ(2) (15) 

based on the marginal estimate  performs the best with the ignorable biases regardless 

of whether the cell sizes are fixed or varying. In contrast, the power function φ0 (12) that is 

reduced from φ (8) by plugging 0 into ρ2 in φ underestimates the reference power estimated 

by simulations. This may be because when stratification is unnecessary, pooled estimates 

can have an unduly inflated variance and thus lose efficiency compared to the marginal 

approach. On the contrary, the widely used power function φHH (11) overestimates the 

reference empirical power and thus underestimates sample sizes under the values of ρ in 

Table 2. We suspect that the Hussey and Hughes’ approach might unduly over or 

underestimate the variance of the estimate of δ depending heavily on the values of ρ (Figure 

3).

Both models (1) and (9) assume that participants are different across the periods within 

clusters, let alone between clusters. However, when participants are followed up 

longitudinally over the periods within the same clusters and crossed over from control to 

experimental arm, another level of data structure should be modeled by expanding the three-

level model (1) to a four-level model that additionally incorporates correlations of outcomes 

over periods within the same participants. In addition, the random intercepts could be 
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correlated each other violating the independence assumption we took in this paper. 

Derivations of power functions under these situations design would be a worthy contribution 

to power literature.

Although only continuous outcome is considered in this paper, categorical or non-normal 

outcomes such as proportions, incidence rates, ordinal, and survival outcomes are more often 

of interest in many SW trials.8 Extension of sample size determinations for such SW trials 

would be of great interest. The extension might be possible by modeling those outcomes 

with generalized estimating equations or non-linear mixed-effects models although 

derivations of closed forms could be intractable. For this reason, sample size determinations 

based on simulation approaches might be preferable as attempted by Baio et al.11 

Nonetheless, we suspect that simulation of non-normal data with multi-level data hierarchy 

for a specified correlation structure would be challenging particularly because correlations 

may well vary with means on which variances depend unlike normal distributions. 

Therefore, it would also be interesting to examine if extensions based on normal 

approximations would be comparable. For example, although it has not been verified by 

simulation studies for a binary outcome, a simple replacement of Δ by 

 in φ or φ(2) might be a good approximation owing to a central 

limit theorem, where p0 and p1 are the “success” probabilities under the null and the 

alternative hypotheses, respectively, and .

In conclusion, the power functions φ (8) and φ(2) (15) should be used for sample size 

determinations for designing SW trials depending on whether the second level correlations 

ρ2 is assumed to be 0 or not. Both are applicable when cell sizes vary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A stepped wedge design with design parameters. Note: Gray areas represent periods under 

an experimental condition whereas blanks areas represent those under a control condition; S 
= total number of steps (=5); c = number of clusters per step (=2); p = number of periods per 

step (=3); b = number of periods at baseline (=2); I = cS = total number of clusters (= 10); J 
= b + pS = total number of periods per cluster (=17); N = IJK = cS(b + pS)K total number of 

periods per cluster (=17); N = IJK =cS(b + pS)K =total number of participants (=850) if K = 

5, the number of participants per period per cluster.
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Figure 2. 
Relationship of ρ1 and ρ2 with statistical power φ (8) for a three-level model: Δ = 0.3, b = 2, 

c = 2, p = 2, S = 5, K = 5, and α = 0.05. Note: rho_1 = ρ1 and rho_2 = ρ2.
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Figure 3. 
Relationship of ρ with statistical power φHH (11), φ0 (12), and φ(2) (15) for a two-level 

model: Δ = 0.3, b = 2, c = 2, p = 2, S = 5, K = 5, and α = 0.05. Note: power_HH = φHH, 

power_0 = φ0, and power̂(2) = φ(2).
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