Skip to main content
. Author manuscript; available in PMC: 2019 Feb 1.
Published in final edited form as: Stat Methods Med Res. 2016 Mar 17;27(2):480–489. doi: 10.1177/0962280216632564

Table 2.

Comparison of theoretical and empirical power with the following design parameters held fixed: c = 2, S = 5 (or I = 10), p = 2, and σ2 = 1.

Δ b J K N=IJK ρ φHH φ0 φ(2)
φ
a
K~U(a, b)
φ
b
0.3 0 10   5   500 0.3 0.640 0.440 0.600 0.579 U(2, 8) 0.565
0.4 0.700 0.384 0.531 0.532 0.464
10 1000 0.3 0.900 0.505 0.676 0.675 U(3, 17) 0.642
0.4 0.937 0.424 0.582 0.582 0.552
2 12   5   600 0.3 0.699 0.589 0.697 0.696 U(2, 8) 0.653
0.4 0.761 0.520 0.625 0.626 0.623
10 1200 0.3 0.937 0.664 0.771 0.770 U(3, 17) 0.738
0.4 0.964 0.570 0.678 0.682 0.642
0.4 0 10   5   500 0.3 0.871 0.674 0.840 0.850 U(2, 8) 0.802
0.4 0.912 0.602 0.776 0.775 0.749
10 1000 0.3 0.991 0.749 0.896 0.901 U(3, 17) 0.879
0.4 0.996 0.655 0.824 0.838 0.793
2 12   5   600 0.3 0.911 0.830 0.910 0.911 U(2, 8) 0.893
0.4 0.945 0.764 0.859 0.850 0.835
10 1200 0.3 0.996 0.888 0.950 0.952 U(3, 17) 0.922
0.4 0.999 0.813 0.898 0.884 0.884
Mean 0.885 0.629 0.757 0.756 0.727
a

Empirical power under a fixed K.

b

Empirical power under a varying K ~ U(a,b) following a uniform distribution with mean equal to the corresponding fixed K.