
Bayesian longitudinal segmentation of hippocampal 
substructures in brain MRI using subject-specific atlases

Juan Eugenio Iglesiasa,b,*, Koen Van Leemputc,d, Jean Augustinackc, Ricardo Insaustie, 
Bruce Fischlc,f, and Martin Reuterc,f for the Alzheimer’s Disease Neuroimaging Initiative1

aTranslational Imaging Group, University College London, United Kingdom

bBasque Center on Cognition, Brain and Language, Spain

cMartinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical 
School, USA

dDepartment of Applied Mathematics and Computer Science, Technical University of Denmark

eHuman Neuroanatomy Laboratory, University of Castilla-La Mancha, Spain

fMIT Computer Science and Artificial Intelligence Laboratory (CSAIL)

Abstract

The hippocampal formation is a complex, heterogeneous structure that consists of a number of 

distinct, interacting subregions. Atrophy of these subregions is implied in a variety of 

neurodegenerative diseases, most prominently in Alzheimer’s disease (AD). Thanks to the 

increasing resolution of MR images and computational atlases, automatic segmentation of 

hippocampal subregions is becoming feasible in MRI scans. Here we introduce a generative model 

for dedicated longitudinal segmentation that relies on subject-specific atlases. The segmentations 

of the scans at the different time points are jointly computed using Bayesian inference. All time 

points are treated the same to avoid processing bias. We evaluate this approach using over 4,700 

scans from two publicly available datasets (ADNI and MIRIAD). In test-retest reliability 

experiments, the proposed method yielded significantly lower volume differences and significantly 

higher Dice overlaps than the cross-sectional approach for nearly every subregion (average across 

subregions: 4.5% vs. 6.5%, Dice overlap: 81.8% vs. 75.4%). The longitudinal algorithm also 

demonstrated increased sensitivity to group differences: in MIRIAD (69 subjects: 46 with AD and 

23 controls), it found differences in atrophy rates between AD and controls that the cross sectional 

method could not detect in a number of subregions: right parasubiculum, left and right 
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presubiculum, right subiculum, left dentate gyrus, left CA4, left HATA and right tail. In ADNI 

(836 subjects: 369 with AD, 215 with early cognitive impairment – eMCI – and 252 controls), all 

methods found significant differences between AD and controls, but the proposed longitudinal 

algorithm detected differences between controls and eMCI and differences between eMCI and AD 

that the cross sectional method could not find: left presubiculum, right subiculum, left and right 

parasubiculum, left and right HATA. Moreover, many of the differences that the cross-sectional 

method already found were detected with higher significance. The presented algorithm will be 

made available as part of the open-source neuroimaging package FreeSurfer.
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1. Introduction

1.1. Background

The study of the human hippocampus has traditionally attracted considerable attention from 

the neuroscience and neuroimaging communities due to its connection with memory [1, 2] 

and an array or neurological disorders, especially Alzheimer’s disease (AD) [3, 4, 5]. Limits 

in MR acquisition have for many years forced in vivo studies to treat the hippocampus as a 

single structure. However, the hippocampus consists of a number of subregions that have 

been shown to have different memory functions using animal models [6, 7]. In humans, 

there is increasing evidence that hippocampal subregions play different roles in memory [8, 

9, 6, 10], and that they are differently affected by AD [11, 12]. Therefore, in vivo analysis of 

hippocampal subregions holds great promise to improve our understanding of normal aging 

and AD, as well as to deliver more sensitive biomarkers of AD and other neurological 

disorders.

Recent advances in MRI acquisition have made it possible to study the hippocampal 

subregions in vivo. Earlier studies had to rely on manual segmentations [13, 14], typically 

performed on T2 scans acquired coronally with high in-plane resolution and relatively thick 

slices. Automated methods have since been proposed to bypass the manual segmentation 

procedure, which requires extensive expertise, is extremely time consuming, and cannot be 

reproduced easily. Yushkevich et al. [15, 16] proposed a multi-atlas segmentation algorithm 

using a library of manually labeled T1 and T2 scans, whose output was refined by a machine 

learning bias correction strategy. Wang et al. [17, 18] employed a surface-based atlas 

approach. Our group, in previous work, used a probabilistic atlas to produce segmentations 

with a Bayesian inference algorithm within a generative framework. In a first version [19], 

the atlas was constructed using high-resolution in vivo MRI scans (coronal slices with .38 

mm in-plane resolution, .8 mm slice separation). More recently, we acquired ultrahigh 

resolution ex vivo MRI, which enabled us to produce very detailed manual segmentations 

and, in turn, a much more accurate atlas [20]. It is the use of generative techniques that 

enables the application of ex vivo atlases to the segmentation of in vivo scans, since they do 

not require the intensity characteristics of the training and test datasets to match – in contrast 

with registration-based algorithms such as Yushkevich’s and Wang’s.
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Many large scale studies, including the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), are now collecting longitudinal MRI data. Since they remove the confounding 

inter-subject variability, longitudinal studies enable us to accurately quantify within-subject 

neuroanatomical changes, and provide higher sensitivity than their cross-sectional 

counterparts [21]. However, until now, no dedicated method exists (to the best of our 

knowledge) for the longitudinal segmentation of hippocampal subregions.

In this paper, we introduce a novel Bayesian approach for the joint segmentation of 

hippocampal subregions across multiple time points. The method is based on a generative 

model of longitudinal MRI scans, extending our cross-sectional approach [20] to 

longitudinal datasets. Rather than by a population-wide atlas, the scans at the different time 

points are assumed to have been generated by a subject-specific atlas, which introduces a 

statistical dependence between the time points and ensures that the different images and 

corresponding segmentations are similar to each other. This subject-specific atlas is simply a 

deformed version of the population-wide atlas. Within this framework, the segmentations of 

all time points are computed simultaneously with a Bayesian inference algorithm; the 

subject-specific atlas is obtained as a by-product. Due to its generative nature and 

unsupervised intensity model, the algorithm is robust against changes in MRI contrast.

1.2. Further related work on longitudinal segmentation

Longitudinal segmentation algorithms exploit the prior knowledge that a set of images 

belongs to the same subject, in order to produce more accurate and consistent segmentations 

than when the images are processed independently. A crucial aspect of longitudinal methods 

is the need to keep them unbiased: algorithms that do not treat all time points the same way 

introduce processing bias due to the additional processing steps applied to selected images 

[22].

Many longitudinal segmentation approaches rely on a non-linear, group-wise registration 

that brings the images from the different time points into a common coordinate space. The 

registration should be computed in an intermediate space [23], in order to avoid biases due 

to image resampling in the space to a selected scan – typically the baseline [24, 25]. In some 

methods, the group-wise alignment is precomputed with a registration algorithm. For 

example, Gao et al. [26] used pre-aligned scans to optimize a cost function that included an 

intensity correction term matching the intensity profiles across time points. Other 

approaches integrate the registration into the segmentation framework. For instance, Shi et 

al. [27] used a multichannel (T1/T2) segmentation algorithm guided by prior tissue 

probability maps; the spatial mapping of the tissue maps across time points was estimated 

simultaneously with the segmentation using an expectation maximization algorithm. Xue et 

al. [28, 29] proposed a similar approach, which iteratively used the estimate of the 

segmentations to update the registrations and vice versa.

Some approaches do not require non-linear registration to produce the segmentations – 

though rigid registrations are still used to bring the images into rough alignment. In the 

context of whole hippocampus segmentation, Wolz et al. [30] built a 4D graph in which a 

voxel had 6 spatial neighbors and 2 temporal neighbors (from the preceding and following 

time points). In their model, unary terms included intensity and anatomical priors, whereas 
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pairwise terms were engineered to enforce spatial and temporal smoothness in the 

segmentation. The segmentation of all time points was then computed simultaneously with 

graph cuts. In a similar framework, Bauer et al. [31] used a random forest classifier in the 

unary term. Other papers have exploited expert knowledge to drive the segmentation. For 

example, Wang et al. [32] constrained the distance across the serial images to remain within 

a biologically plausible range, and used a similar strategy in a more recent paper [33] to 

segment the brain cortex (keeping the thickness within a reasonable range).

Finally, some longitudinal segmentation approaches have used a subject-specific atlas to 

produce consistent segmentations. In the context of neonate brain segmentation, Shi et al. 

[34] registered a population-wide atlas to the latest time point, which is normally the most 

reliable one in infants (least motion, and most contrast between gray and white matter), in 

order to produce subject-specific tissue probability maps. Rather than using a single time 

point as the target of the registration, Aubert-Broche et al. [35] built a subject-specific atlas 

by non-linearly coregistering the time points; then, they registered a population-wide atlas to 

the output to obtain subject-specific probability maps.

1.3. Contribution: an unbiased, longitudinal segmentation method for hippocampal 
subregions based on a subject-specific atlas

The contribution of this article is twofold. In first place, it presents the first available 

automated algorithm for longitudinal segmentation of the hippocampal subregions; prior 

works have only addressed the longitudinal segmentation of the hippocampus as a whole 

[30]. Additionally, it presents a novel generative model for longitudinal segmentation based 

on subject-specific atlases, which is unbiased and adaptive to changes in MRI contrast. The 

models assumes that the images are generated by a hidden subject-specific atlas, which is in 

turn generated by a population-wide atlas. Even though the idea of using subject-specific 

atlases is not original, our model is novel: as opposed to works like Aubert-Broche et al. 

[35], we estimate the subject-specific atlas along with the registrations and segmentations in 

a probabilistic framework, rather than precomputing it based solely on image intensities. 

This has the advantage that the segmentation and registration can iteratively improve each 

other.

The rest of this paper is organized as follows. Section 2 describes the generative framework 

that our method is based on, as well as the Bayesian inference algorithm that we used to 

obtain the segmentations. In Section 3, we describe a set of experiments that evaluated the 

test-retest reliability and sensitivity to group differences; since the hippocampal subregions 

cede to neurodegenerative pathology that worsens over time, we tested our approach on two 

public MRI datasets of AD patients (ADNI and MIRIAD). The experiments compared our 

algorithm with two competing methods; the results are discussed in Section 4, while Section 

5 concludes the article.

2. Methods

Our segmentation framework is based on a generative model of longitudinal MRI data. In 

this section, we first describe the forward generative model, in which longitudinal MRI 

scans are assumed to have been generated by a probabilistic atlas of anatomy. Then, we 
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present an inference algorithm that “inverts” the model with Bayes rule in order to estimate 

longitudinal segmentations from MRI data.

2.1. Forward generative model of longitudinal MRI scans

Let {y1, …, yT} be the image intensities of a set of T longitudinal MRI scans from the same 

subject. Each scan is represented by a vector of intensities corresponding to J voxels, i.e., yt 

= [yt1, …, ytJ]. Here we follow the literature of probabilistic atlases with unsupervised 

intensity models [36, 37, 38, 39], but modify the framework in order to adapt it to the 

longitudinal nature of the data. The image intensities are assumed to have been generated by 

the following process (the graphical model is displayed in Figure 1, and further illustrated in 

Figure 2):

a. We are given a probabilistic, population-wide atlas of anatomy, which is 

encoded as a tetrahedral mesh [39] that covers the region of interest (in our 

case, a cuboid containing the hippocampus). The mesh is defined by its 

position xref (a vector with the coordinates of its N nodes) and its 

connectivity. Each node n has a corresponding vector of label probabilities 

[αn = [αn1, …, αnL], where αnl is the frequency with which label l is 

expected at node n, and L is the number of neuroanatomical labels 

modeled by the atlas.

b. The mesh is deformed from its reference position xref to a new position x0, 

which is specific to the subject at hand, and yields the corresponding 

subject-specific atlas. The deformation is governed by a prior probability 

distribution that penalizes deformations and explicitly forbids collapsing 

tetrahedra, thereby preserving the topology of the mesh [40]:

(1)

where d loops over the tetrahedra in the mesh, K0 is the stiffness 

parameter, and  is the cost of deforming the dth tetrahedron 

(see further details in [40]).

c. The mesh in position x0 (i.e., the subject-specific atlas) is further deformed 

T times to positions {x1, …, xT} (corresponding to the T time points) – but 

this time using x0 as reference position:

(2)

for t = 1, …, T. Note that the deformed mesh positions {xt} are 

conditionally independent given the subject-specific atlas x0, which is the 

variable that creates the statistical dependence between the time points. A 
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consequence of this conditional independence is that no particular 

temporal trajectory (e.g., atrophy) is assumed. This choice increases the 

flexibility of the method, by enabling it to model trajectories that involve 

changes in trend over time (e.g., crossover studies, cyclic patterns).

d. Using the deformed mesh positions, label probabilities at each time point 

and voxel are computed by interpolating the values at the vertices of the 

tetrahedron enclosing the voxel. Let rj be the 3D coordinates of voxel j, 

and let  be a deformed interpolation basis function linked to node n at 

time point t. The interpolated label probabilities at voxel j of time point t 
are then given by2:

Segmentation images {l1, …, lT} are then created by independently 

sampling these categorical distributions at each voxel:

where ltj is the label of voxel j in time point t.

e. The intensities of the voxels are generated following three assumptions. 

First, that they are conditionally independent, given the segmentations. 

Second, that they follow a Gaussian distribution for each label and time 

point. And third, that labels describing structures of the same tissue type 

share their Gaussian parameters (means and variances) through G global 

classes. For example, gray matter structures such as the amygdala, the 

cerebral cortex, and many of the hippocampal subregions will belong to 

the same global class (see details in Section 2.2.5). Under these 

assumptions, the probability of observing the image at time point t is:

where  is the Gaussian distribution,  is the global 

class corresponding to label l,  are the Gaussian parameters for 

2Linear barycentric interpolation leads to simpler solutions and provides satisfactory results in our case, but more complex models 
could be used, e.g. [41, 42].
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time point t and global class g, and  represents all 

Gaussian parameters for time point t. Note that we allow the Gaussian 

parameters to be different for each time point, which removes the need to 

standardize the intensities across time points, and also models possible 

changes in contrast induced by disease. The parameters of each Gaussian 

 are assumed to be independent samples of normal-inverse 

gamma (NIG) distributions, which is the conjugate prior for a Gaussian 

distribution with unknown mean and variance:

where we have assumed that the variance-related parameters of the NIG 

are equal to zero (i.e., the prior on the variance is a uniform distribution), 

and the remaining hyperparameters  and νtg encode any prior 

knowledge that we might have on the image intensities of each time point: 

 represents the expected mean of class g at time point t, which is 

assumed to have been obtained as the sample mean of νtg prior 

observations. Details on how these hyperparameters are computed are 

given in Section 2.2.5 and Table 1.

2.2. Segmentation as Bayesian inference

Given the model described above, segmentation can be cast as a Bayesian inference 

problem:

Solving this problem exactly leads to an intractable integral over the model parameters, so 

we make the standard approximation that the posterior distribution of the parameters is 

heavily peaked. If we group all Gaussian parameters in θ = {θ1, …, θT}, and all 

deformations (subject-specific atlas and time points) in x = {x0, x1, …, xT}, we have:

where the point estimates of the model parameters are given by:
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Using Bayes’ rule, we can rewrite this problem as:

Finally, taking the logarithm of this expression, and expanding:

we obtain the following objective function of the variables x0, {xt}, and {θt}:

(3)

The optimization of this objective function solves a joint registration, segmentation and 

subject-specific atlas estimation problem. We use a coordinate ascent scheme, in which one 

variable is updated at a time in an iterative fashion. In the rest of this section, we first 

describe the optimization procedure for each of the variables; then, we describe how the 

final segmentation is obtained once the point estimates have been computed; next, we 

provide details on our implementation; and finally, we close the section with a description of 

our strategy to avoid biases in the longitudinal analysis.

2.2.1. Optimization of xt, t > 0—The deformations of the individual time points can be 

updated independently of each other. Dropping any terms that are independent of xt in Eq. 

(3), the problem reduces to:

(4)
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This is a registration problem, which includes a regularization term (the first) and a data 

term (the second). As in [20], we solve this problem directly with a conjugate gradient 

optimizer. The problem is actually identical to that of [20], with the only difference that the 

node positions of the population-wide atlas xref are replaced by those of the subject-specific 

atlas x0.

2.2.2. Optimization of θt—As with xt, the Gaussian parameters can be updated one time 

point at a time. The problem of Eq. (3) becomes:

(5)

which can be solved with an Expectation-Maximization (EM) algorithm [43]. The method 

iterates between an expectation (E) and a maximization (M) step until convergence. In the E 

step, a lower bound of the objective function in Eq. (5) that touches it at the current estimate 

of θt is built, which involves computing a soft classification of each voxel in the image 

corresponding to the time point t:

(6)

In the subsequent M step, this bound is optimized with respect to θt, thereby guaranteeing to 

improve the original objective function of Eq. (5) compared to the previous iteration [43]. 

Taking derivatives and setting them to zero, we obtain the following update equations:

(7)

(8)

where we have defined .

2.2.3. Optimization of x0—Considering only terms depending on x0, Eq. (3) becomes:
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which is independent of the image intensities. Since the function  in Eqs. (1) and 

(2) is symmetric [40], we can rewrite:

(9)

Eq. (9) can be seen as a weighted “average” of the mesh positions of the time points and that 

of the population-wide atlas xref. The atlas essentially plays the role of an additional time 

point, though with a different weight (K0, rather than K1). We solve this problem 

numerically with a conjugate gradient algorithm.

2.2.4. Computation of final segmentation—Once the point estimates of the model 

parameters have been computed, the conditional posterior label probabilities for each voxel 

are given by the soft classifications provided by the E step of the EM algorithm used to 

update the Gaussian parameters (Eq. (6)):

(10)

If we desire to compute discrete segmentations, the MAP (maximum-a-posteriori) estimate 

can be computed voxel by voxel as:

whereas if we are interested in the volumes of the structures, their expected value can be 

shown to be equal to:

where Vtl is the volume of the structure with label l in the image acquired at time point t.

2.2.5. Implementation details—Given a set of longitudinal scans, we first preprocess the 

data using the FreeSurfer [44, 45, 46, 47] longitudinal stream [48, 22]. The longitudinal 

stream creates an unbiased within-subject template space and image (“base”) [48] using an 

inverse consistent registration method [49]. This template is a robust representation of the 

average subject anatomy and is processed with a modified FreeSurfer pipeline. The original 

time point images are conformed and resampled to the template space via a single cubic b-

spline interpolation step. Several processing steps of the FreeSurfer pipeline are then 

initialized for each time point with common information from the subject template to 
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increase reliability and thus statistical power. The normalized, bias-field corrected, skull-

stripped images (“norm.mgz”) corresponding to the different time points are then used as 

input for the proposed longitudinal segmentation algorithm (i.e., {yt}).

To initialize the mesh positions, we first use an affine registration procedure to align the 

modeled image region with the cuboid in which the population-wide atlas is defined. As 

reference image, the registration uses a binary hippocampal mask extracted from the 

automated segmentation (FreeSurfer’s “aseg.mgz”) of the subject template. As moving 

image, the registration uses a soft segmentation of the hippocampus estimated from xref. 

After the affine registration, we further deform the mesh (non-linearly, using Eq. 1) to the 

same automated segmentation of the subject template. This mesh deformation is used to 

initialize the node positions of subject-specific atlas x0, as well as the deformations of the 

time points x1, …, xT.

The hyperparameters of the different time points and global tissue classes are computed 

from the corresponding norm and aseg images as follows: for each global class g, we extract 

the intensities of the voxels of norm labeled as any of the compatible labels by aseg (i.e., l, 

s.t. ). We set  to the median value of such intensities, and νtg to a conservative 

value equal to one half of the number of such voxels. The complete mapping of labels to 

global tissue classes is detailed in Table 1. Note that voxels from outside the hippocampus to 

estimate the intensity properties of the hippocampal subregions, which makes the algorithm 

more robust. For example: since they both consist of white matter, the intensity distribution 

of the fimbria can be more easily estimated from the cerebral white matter, which is much 

bigger and easier to segment.

We set the stiffness parameters to K0 = K1 = 0.05, which is the default value for the cross-

sectional method currently implemented in FreeSurfer [20]. We rasterize (i.e., interpolate) 

the mesh at 0.333 mm isotropic resolution, which is also the default value in the current 

Free-Surfer implementation. This resolution represents the voxel size at which the final 

segmentations are obtained.

Algorithm 1

Longitudinal segmentation

Compute , νtg, x0 with norm.mgz, aseg.mgz

, ∀t, g; , ∀t, g; xt ⇐ x0 ∀t > 0

for its = 1 to 10 do

  for t = 1 to T do

  LogPprev ⇐ −∞; LogPcurr ⇐ 0

  while LogPcurr – LogPprev > 10−5 do

   LogPprev ⇐ LogPcurr

   LogPcurr ⇐ Eq. 5
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   Wtjl ⇐ Eq. 6; μtg ⇐ Eq. 7;  ⇐ Eq. 8

  end while

  if its < 10 then

   itDef ⇐ 0; maxDef ⇐ ∞

   while itDef < 20 and maxDef > 10−5 do

    itDef ⇐ itDef + 1

    (xt, maxDef) ⇐ conjugate gradient on Eq. 4

   end while

  end if

 end for

 if its < 10 then

  itDef ⇐ 0; maxDef ⇐ ∞

  while itDef < 20 and maxDef > 10−5 do

   itDef ⇐ itDef + 1

   (x0, maxDef) ⇐ conjugate gradient on Eq. 9

  end while

 end if

end for

, ∀t, j

, ∀t, l

For the optimization, we use the following scheme: we first alternately update {θt} and {xt} 

10 times. Each up-date of θt iterates between the E and M steps until the change in the 

objective function is less than 10−5, whereas each update of xt takes at most 20 iterations of 

the conjugate gradient method (it stops early if the maximum shift across mesh nodes is less 

than 10−5). Next, x0 is updated with the conjugate gradient algorithm (maximum 100 steps; 

the early termination criterion is the same as for xt). The optimization then returns to the 

update of {θt}, starting a new external iteration. We set the maximum number of external 

iterations to 10. The complete segmentation algorithm is summarized in Algorithm 1.

2.2.6. Avoiding biases—As mentioned in the introduction, processing bias can be 

introduced if all the time points are not treated in exactly the same way. In our algorithm, the 

initialization is computed with the output from the FreeSurfer longitudinal pipeline, which is 

designed to avoid processing bias [49, 48]. The segmentation algorithm is also unbiased, 

since all images are treated identically. Moreover, subjects with a single time point are 

treated as if they were longitudinal, which makes the measures derived from them 

comparable with those obtained from subjects with multiple time points. More specifically, 

the FreeSurfer longitudinal pipeline includes a pose normalization step that introduces 

resampling artifacts and a subject template, and the hippocampal segmentation estimates the 

mesh position for a subject-specific atlas (rather than using the population-wide atlas 
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directly). This procedure makes it possible to include all subjects in analyses that support 

single time point data, such as linear mixed effects models [50].

3. Experiments and Results

3.1. MRI data

We used two publicly available datasets in the experiments in this study: MIRIAD and 

ADNI. The MIRIAD dataset consists of T1-weighted brain MRI scans of AD patients (n = 

46) and cognitively normal (CN) controls (n = 23) acquired at intervals from two weeks to 

two years. All 69 subjects were scanned at 0, 2, 6, 14, 26, 38 and 52 weeks from baseline; 39 

subjects were also scanned at 18 months; 22 of these 39 were further scanned at 24 months. 

At 0, 6 and 38 weeks, two back-to-back scans were conducted without removing the subject 

from the scanner in between. The mean age at baseline of the subjects was 69.6±6.9 years. 

All the scans were acquired on the same 1.5 T scanner (GE Signa) with an IR-FSPGR 

sequence (coronal slices with 0.9375×0.9375 mm resolution, 1.5 mm slice thickness, 

TR=15ms, TE=5.4ms, TI=650ms, flip angle 15°). Further information can be found at 

https://www.ucl.ac.uk/drc/research/miriad-scan-database.

The ADNI dataset consists of longitudinal T1-weighted scans from 836 subjects of the 

ADNI dataset. The subjects are divided into four classes: elderly controls (n = 252), early 

mild cognitive impairment (eMCI, n =215), late MCI (lMCI, n = 176), and AD (n = 193). 

The subjects were scanned on average 4.8 times (minimum: a single time; maximum: 11 

times; 4013 scans in total), with a mean interval between scans equal to 286 days (minimum: 

23 days, maximum: 1567 days). The mean age at baseline of the subjects was 75.1±6.6 

years. Since the ADNI project spans multiple sites, different scanners were used to acquire 

the images; further details on the acquisition can be found at http://www.adni-info.org.

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The main goal of ADNI is to test whether MRI, positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to analyze the progression of MCI and early AD. Markers of 

early AD progression can aid researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as decrease the time and cost of clinical trials. The 

Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and 

University of California - San Francisco. ADNI is a joint effort by co-investigators from 

industry and academia. Subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed 

by ADNI-GO and ADNI-2. These three protocols have recruited over 1,500 adults (ages 55–

90) to participate in the study, consisting of cognitively normal older individuals, people 

with early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the corresponding protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects 

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.
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3.2. Experimental setup

3.2.1. Competing methods—We compared the performance of our algorithm with that 

of two other approaches. The competing methods were:

1. Cross-sectional segmentation (henceforth “C-S”): the algorithm described 

in [20] was used to segment each time point independently of the others in 

a cross-sectional fashion (i.e., as if they were different subjects).

2. Cross-sectional segmentation with longitudinal initialization (henceforth 

“L-INIT”): same as C-S, but initializing the algorithm with the automated 

segmentation (aseg) from the longitudinal FreeSurfer stream (rather than 

the cross-sectional aseg).

3. Longitudinal segmentation (henceforth “LONG”): the algorithm described 

in this paper was used to segment all the time points corresponding to each 

subject simultaneously.

The motivation for testing L-INIT is twofold. First, it is currently the recommended setup 

for longitudinal hippocampal subfield segmentation in FreeSurfer. And second, it enables us 

to isolate the contribution of our proposed generative model to the results of LONG, 

separating it from the contribution of the longitudinal initialization.

In order to assess the segmentation accuracy of the methods, we would ideally use ground 

truth labels obtained from manual delineations of the hippocampal substructures made on 

the in vivo MRI scans. However, such manual annotations would have to be made with the 

protocol that we used to build the ultra-high resolution ex vivo, which is not possible. 

Instead, we validated the method indirectly through two sets of experiments: test-retest 

reliability, and group differentiation with linear mixed effect (LME) modeling.

3.2.2. Experiment 1: test-retest reliability—In order to evaluate the test-retest 

reliability of the methods, we used them to segment the scan-rescan data of the MIRIAD 

dataset. For each subject, we took the scan-rescan session corresponding to the first time 

point (therefore including both AD subjects and controls). After segmenting each of the n = 

69 pairs of scans with the three competing algorithms, we compared their performance with 

two different metrics. First, we measured the absolute difference in volume estimates for 

each of the segmented hippocampal subregions. The smaller this difference, the larger the 

agreement across the two scans. Second, we computed the Dice overlap between the MAP 

segmentations of each subregion in the two scans. The Dice coefficient between two binary 

masks X and Y is defined as:

and is bounded by 0 (no overlap) and 1 (perfect overlap). When the C-S method is used, 

computing the Dice overlap requires a rigid registration between the two scans, which was 

computed with the robust registration tool in FreeSurfer [49]. In order to mitigate the effect 

of image resampling on the Dice overlaps in this scenario, we used linear resampling to 
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warp the scans to the intermediate space (the base) and replaced the Dice coefficient by a 

soft counterpart:

where r represents spatial locations, and Xs(r), Ys(r) are resampled masks defined between 

zero and one3.

3.2.3. Experiment 2: group analysis with LME—The test-retest experiment described 

above only evaluated one aspect of the longitudinal algorithms: their ability to produce 

consistent segmentations. Additionally, it is necessary to test the performance when 

capturing the temporal evolution of the segmented structures. For example, an algorithm that 

always produces the same output yields perfect test-retest reliability, but also fails to capture 

any anatomical changes over time or differentiate groups based on such changes.

We carried out two experiments using group analyses: one with MIRIAD, and one with 

ADNI. The setup was identical in both cases, with the only difference that the datasets have 

different numbers of classes. For each hippocampal subregion, we built an LME model for 

the estimated volume in which subject intercept and slope were random effects, intracranial 

volume (ICV) and age at baseline were fixed effects, and each group had its own (fixed) bias 

and slope. The model fit and and computation of p values for F tests comparing the fixed 

slopes of the different groups was done with the LME toolbox in Free-Surfer [50]. We then 

took the ability of the measurements to separate the (fixed) slopes of the groups as a measure 

of the sensitivity of the longitudinal segmentation to detect anatomical change associated 

with disease.

For the ADNI dataset, we chose to merge the late MCI and AD classes into a single class 

(“lMCI/AD”). This choice was motivated by the fact that a pilot LME analysis using whole 

hippocampal volumes from FreeSurfer’s longitudinal stream did not reveal any differences 

in atrophy rates between the two classes. This is consistent with the results of other studies 

based on manual [51, 52] and automated segmentations [53]. This lack of differences 

between the late MCI and AD groups may be explained by the continuous nature of 

pathology; current in vivo imaging technology cannot identify the subtle differences in 

atrophy rates between the two groups. It is necessary to examine the patient serially to be 

sure of the clinical findings, and 10–20% of patients with MCI will worsen and convert to 

AD (in fact, many lMCI subjects are diagnosed as AD at other time points in ADNI). In 

addition, the presence of co-morbidities and other dementia etiologies (e.g., vascular 

dementia or dementia of the Lewy body disease [54]) makes it difficult to decipher the stage 

of the pathology at this point with in vivo imaging.

3Despite using soft Dice, some bias against the C-S method is still introduced; this is further discussed in Section 4.
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3.3. Results

3.3.1. Test-retest—Figure 3 displays the absolute differences (in %) between the volumes 

of the hippocampal subregions estimated from the scan-rescan data of the MIRIAD dataset. 

The average differences across structures are: 6.5% for C-S, 5.9% for L-INIT, and 4.5% for 

LONG. L-INIT provides a slight improvement over the purely cross-sectional (C-S) method, 

thanks to the implicit regularization introduced by the use of the FreeSurfer longitudinal 

stream in the initialization. Despite being quite consistent across subregions, this 

improvement is only significant (as measured with a two-tailed paired t-test) for one of 

them: the left granule cell layer of the dentate gyrus (DG). The proposed longitudinal 

method (LONG), which explicitly regularizes the segmentations, produces the lowest 

difference for all structures except for the right fimbria. The improvements over the C-S 

method are statistically significant for all structures except for the presubiculum and fimbria 

(both sides); left molecular layer; and left whole hippocampus. In absolute terms, the errors 

are below 5% for all structures except for the parasubiculum, hippocampus-amygdala 

transition area (HATA) and fimbria. These three subregions suffer from the highest 

variability in volume estimates: the parasubiculum because it represents the transition of the 

hippocampus with the entorhinal cortex, and its boundaries are not well defined; the HATA 

because it is a transitional region with the head of the hippocampus (dorsal subiculum) and 

amygdala; and the fimbria due to its occasional low contrast.

Figure 4 displays the Dice coefficient for the different hippocampal subregions and 

competing methods. The averages across subregions are: 0.754 for C-S, 0.775 for L-INIT, 

and 0.818 for LONG. L-INIT outperforms C-S for nearly all structures, in a statistically 

significant manner in most cases (once more, significance was assessed with a two-tailed 

paired t-test). LONG provides the highest Dice for all subregions except for the left tail, 

right tail and right fimbria. Moreover, it yields a statistically significant increase with respect 

to the other two methods in all hippocampal subregions except for the tail and fimbria. It is 

worth noting that the Dice scores for C-S are negatively affected (to a very small extent) by 

the resampling that is required to compute them.

Figure 5 shows a coronal slice of a test-retest scan illustrating the differences between the 

algorithms. In this sample subject, C-S undersegments the superior region of the 

hippocampus (pointed red arrow) only in the first scan, creating a large difference with the 

second scan. While this issue is fixed by L-INIT, some undersegmentation still occurs in the 

subicular region of the first scan (blue arrow), and some inconsistencies are observed in the 

presubiculum and molecular layer (green arrow). The proposed longitudinal framework 

(LONG), on the other hand, produces segmentations that are more consistent with each 

other.

3.3.2. Group analysis—Figures 6 and 7 show the atrophy rates for the MIRIAD dataset 

(computed for each group as the fixed slope divided by the fixed intercept) as estimated by 

the three competing methods. The cross sectional method (C-S) can detect the differences in 

some of the subregions and in the whole hippocampal volume, particularly in the right 

hemisphere (which is known to atrophy at a faster rate [55]). When L-INIT is used, effects 

that the C-S method could not detect are now found: moderate effects on the right tail and 
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subiculum, and mild effects on the left dentate gyrus and CA4, though a strong effect is lost 

for the left subiculum. Our new algorithm (LONG) improves group differentiation even 

further: in addition to all the effects that the other two approaches could detect combined, it 

also finds a strong effect on the left presubiculum, a moderate effect on the right 

presubiculum, and mild effects on the left HATA and right parasubiculum.

Figures 8 and 9 show the atrophy rates for the ADNI dataset. When comparing the controls 

with the lMCI/AD group, strong effects are found by all three methods for almost every 

hippocampal subregion (except for the highly variable fimbria). However, when comparing 

controls with eMCI and lMCI/AD with eMCI, the longitudinal methods reveal differences 

that the cross-sectional version could not find. Initializing with the longitudinal FreeSurfer 

segmentation (L-INIT) yields stronger signal for a number of subregions, such as the left 

CA3, left HATA, and right subiculum. The proposed longitudinal model (LONG) detects 

even more effects, such as slight differences in the left subiculum and presubiculum, and the 

right parasubiculum. LONG also detects stronger effects for many other subregions, such as 

the left DG, left CA4, or right CA1.

4. Discussion

The model we propose in this paper assumes that longitudinal scans of a certain individual 

have been generated by a hidden subject-specific atlas. This spatio-temporal approach allows 

a completely symmetric setup (all time points are treated identically), thus avoiding potential 

processing bias. The subject-specific atlas explicitly regularizes the segmentation across 

scans from different time points, which consistently increases the test-retest reliability while 

improving sensitivity. Perfect reliability can, of course, be enforced by reporting the same 

result across time independent of the image (over-constraining the method). However, this 

will prevent the detection of longitudinal changes and group differences. The presented 

approach aims at optimizing the trade-off between noise reduction and over-regularization 

by keeping the model flexible enough to follow temporal morphometric changes.

The proposed longitudinal segmentation method was evaluated against a purely cross-

sectional implementation (C-S) and a variant of it (L-INIT) that uses the FreeSurfer 

longitudinal stream in the initialization. The test-retest experiments revealed that taking 

advantage of the longitudinal stream already enabled L-INIT to consistently outperform C-S 

in terms of volume error and Dice coefficient. The generative model takes the performance 

one step further, and enables our proposed method (LONG) to outperform L-INIT for both 

metrics and nearly every hippocampal subregion. It is worth noting that the Dice coefficients 

computed for C-S are negatively affected by the registration it requires. However, given that 

all other metrics (including the sensitivity to differences in atrophy rates) support the 

superiority of L-INIT and LONG, and given that we used a soft version of the Dice 

coefficient to reduce the impact of resampling, there is no reason to believe that the observed 

differences can be attributed exclusively to interpolation artifacts.

When comparing atrophy rates across disease groups, we observed a similar trend as in the 

test-retest experiments. L-INIT revealed effects that C-S could not detect, and we also 

demonstrated that the regularization scheme in LONG increases the ability to separate 
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various groups in the two datasets (MIRIAD and ADNI) even further. This is essential as 

significance in group comparisons is affected both by the measurement noise and the effect 

size.

In absolute terms, the three competing methods yielded approximately the same annual rates 

of atrophy for the whole hippocampus in controls: 1% in MIRIAD, and 1.5% in ADNI. For 

early MCI (in ADNI), they all produced similar estimates as well (2%). In the AD group, 

however, the rates dropped from 3.75% to 3.35% in MIRIAD and from 4% to 3.6% in ADNI 

for the proposed method. This could indicate that the regularization scheme used by our 

method (i.e., the subject-specific atlas) might slightly over-smooth trajectories 

corresponding to larger atrophy rates (i.e., those corresponding to AD patients).

We also need to emphasize that higher atrophy rates do not necessarily correspond to more 

accurate segmentations. Ideally, one would evaluate such accuracy directly with the help of 

manual delineations, but this was not possible in this study because the 1 mm in vivo images 

cannot be manually annotated with our ex vivo delineation protocol. Nevertheless, the 

atrophy rates estimated by our method agree well with previously published data. In 

MIRIAD, our estimates are very similar to those reported by Cash et al. [56], who surveyed 

the output from 13 automated methods, and reported 0.7% for controls and 3.8% for AD. In 

ADNI, our estimates for late MCI/AD are also very close to those reported by [51] (3.5%) 

and [52](3.3%-3.6%) using manual segmentations, even though higher values have also been 

reported by other studies (e.g., Henneman et al. [57] reported 4.0%). A more thorough 

analysis of hippocampal atrophy rates estimated with neuroimaging can be found in [58].

5. Conclusion

In this article, we have proposed a novel Bayesian longitudinal segmentation algorithm for 

hippocampal subregions based on a hidden subject-specific atlas. The method is general and 

could in principle be applied to other brain regions, though such a setup would require 

further evaluation in future work. Also, the method does not make any assumptions on the 

shape or temporal smoothness of the trajectories, i.e., it treats all time points the same way. 

This design increases the flexibility of the proposed segmentation method. Further 

information on ordering and time spacing, as well as further assumptions on the shape of the 

trajectories (e.g., linear) can be exploited byy the statistical tools that are used to analyze the 

output of the segmentation. For example, in this study, we used a linear mixed effect model 

that accounted for the time spacing a correlations between repeated measures, while 

assuming linear trajectories (which approximately holds in atrophy studies).

Our approach builds on the literature of Bayesian segmentation with unsupervised intensity 

models, and inherits the robustness of such methods against changes in MRI contrast – 

which stems from the fact that intensity properties are inferred directly from the images to 

be segmented. This is actually a requirement if the atlas is constructed using ex vivo data 

(which enables ultra-high-resolution), since fixation and death radically change MRI 

contrast. Therefore, the algorithm does not require and intensity standardization across time 

points, and can handle changes in contrast induced by disease. That said, if the image 

intensities at all time points are know to be normalized and not affected by pathology, the 
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robustness of the algorithm could be enhanced by forcing the Gaussian parameters to be 

equal across time points, i.e., , ∀t. However, the potential gain would be minimal 

because there are sufficient voxels in each time point to estimate θt with high certainty [59].

Another advantage of Bayesian segmentation with probabilistic atlases that our algorithm 

also inherits is its computational efficiency. Our implementation runs in approximately 15T 
− 20T minutes on a modern desktop, where T is the number of time points4. The 

implementation will be publicly shared as part of the popular neuroimaging package 

FreeSurfer, and will be (to the best of our knowledge) the first available method to 

longitudinally segment the hippocampal subregions.

As in the original cross-sectional method [20], the volumetric results from individual 

subfields need to be interpreted with caution when segmenting 1 mm images; at that 

resolution, the molecular layer is not visible, and the fitting of the internal boundaries of the 

hippocampal atlas relies mostly on the prior. In that sense, the statistical dependence 

introduced by the subject-specific atlas helps increase the stability of the segmentation of 

such internal boundaries across time points. Nevertheless, we would only recommend 

complex analyses (e.g., shape analysis) of the segmentations if the proposed method is 

applied to longitudinal data acquired at a higher resolution (e.g., 0.4 × 0.4 × 2.0 mm scans as 

in [20].)

As a growing number of studies are beginning to collect longitudinal MRI data, the 

development of dedicated algorithms that exploit the relationship between scans of the same 

subject is paramount. Longitudinal methods that provide higher sensitivity than their cross-

sectional counterparts permit reduction of sample sizes in neuroimaging studies and the 

detection of much smaller effects. Moreover, longitudinal segmentation algorithms for the 

hippocampal subregions hold great promise to increase our understanding of AD 

progression and disease etiology; to provide powerful biomarkers for computer-aided 

diagnosis at presymptomatic stages; and to allow a highly accurate and localized 

quantification of treatment response in AD and other neurological disorders.
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Highlights

- A segmentation method for the hippocampal substructures in longitudinal 

MRI scans

- Increased test-retest reliability compared with cross-sectional analyisis

- Increased power to detect group differences in atrophy rates in LME 

framework

- Algorithm will be made publicly available as part of FreeSurfer
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Figure 1. 
Generative model for longitudinal MRI data. Random variables are in circles, parameters in 

squares. Shaded variables are observed. Plates indicate replication.
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Figure 2. 
Illustration of the generative process through which the longitudinal MRI data are assumed 

to be generated: the population-wide atlas is first deformed into a subject-specific atlas, 

which is subsequently deformed T times – once per time point. Segmentations are sampled 

from these deformed atlases, and image intensities are generated from the segmentations 

through a Gaussian mixture model.
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Figure 3. 
Absolute volumes differences (in % of total volume) for the hippocampal subregions in the 

back-to-back scans of the MIRIAD dataset: (a) left hippocampus, (b) right hippocampus. 

The bars represent the mean, and the error bars, one standard deviation. A two-tailed paired 

t-test was used to assess whether there were significant differences between the methods: 

one asterisk represents p < 0.05, two asterisks represent p < 0.01, and three asterisks 

represent p < 0.001. The abbreviations of the hippocampal subregions are: SUB = 

subiculum, PRE = presubiculum, PARA = parasubiculum, ML = molecular layer, DG = 

granule cell layer of the dentate gyrus, CA3 = CA2+CA3, FIM = fimbria, HATA = 

hippocampus-amygdala transition area, WHOLE = whole hippocampus. For anatomical and 

morphological definitions of these subregions, see [20].

Iglesias et al. Page 27

Neuroimage. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Dice overlaps for the different subregions in the back-to-back scans of the MIRIAD dataset: 

(a) left hippocampus, (b) right hippocampus. Please see the caption of Figure 3 for the 

abbreviations of the hippocampal subregions and the convention for representation of 

statistical significance.
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Figure 5. 
Registered coronal slices of back-to-back scans of a sample subject of the MIRIAD dataset. 

From left to right: input, cross-sectional segmentation, segmentation with FreeSurfer 

longitudinal initialization, and proposed longitudinal method. The top row corresponds to 

the first scan, and the bottom row to the second scan.
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Figure 6. 
MIRIAD dataset: atrophy rates (percentage of baseline, per year) for the hippocampal 

subregions of the left hemisphere as estimated by the three competing methods. The 

abbreviations for the subregions and the conventions for statistical significance can be found 

in Figure 3.
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Figure 7. 
MIRIAD dataset: atrophy rates for the hippocampal subregions of the right hemisphere. The 

abbreviations for the subregions and the conventions for statistical significance can be found 

in Figure 3.
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Figure 8. 
ADNI dataset: atrophy rates (percentage of baseline, per year) for the hippocampal 

subregions of the left hemisphere as estimated by the three competing methods. The 

abbreviations for the subregions and the conventions for statistical significance can be found 

in Figure 3.
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Figure 9. 
ADNI dataset: atrophy rates (percentage of baseline, per year) for the hippocampal 

subregions of the right hemisphere. See caption of Figure 8 for an explanation of this figure.
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Table 1

Global tissue classes grouping structures with similar image intensity properties. GC-DG stands for granule 

cell layer of the dentate gyrus, and HATA for hippocampus-amygdala transition area.

Global class Structures

Gray matter Cerebral cortex, amygdala, parasubiculum, presubiculum, subiculum, CA1, CA2/3, CA4, GC-DG, HATA

White matter Cerebral white matter, fimbria

Cerebrospinal fluid Ventricle, hippocampal fissure

Dicencephalon Diencephalon

Thalamus Thalamus

Pallidum Pallidum

Putamen Putamen

Choroid plexus Choroid plexus
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