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As “-omics” data technology advances and becomes more readily accessible to address complex biological questions, increasing
amount of cross “-omics” dataset is inspiring the use and development of integrative bioinformatics analysis. In the current review,
we discussmultiple options for integrating data across “-omes” for a range of study designs.We discuss establishedmethods for such
analysis and point the reader to in-depth discussions for the various topics. Additionally, we discuss challenges and new directions
in the area.

1. Introduction

The past decade has witnessed tremendous advancements
in biotechnology and computational performance that have
provided vast amounts of new data and accompanying
optimism for the burgeoning improvements to human health
and disease treatment. It is now possible, and increasingly
routine, for studies to test thousands to millions of molecular
endpoints. However, as the dimensionality of these data
increases, larger sample sizes are required, and studies are
now being conducted on an unprecedented scale.We are now
seeing an explosion of data in almost every area of disease
and clinical research. These technologies are commonly
referred to as “omics” technologies, related to the suffix “-
ome,” defined as “all constituents considered collectively” [1].
We now have vast amounts of data related to the genome,
transcriptome, epigenome, proteome, and metabolome. In
fact, many of these areas of research have spawned subfields
that are rapidly advancing our mechanistic understanding of
biology (e.g., pharmacogenomics,metagenomics, lipidomics,
kinomics, and secretomics). However, too often we as
researchers find small amounts of variation explained and
are left with “missing heritability” and unexplained variation,
reinforcing the seemingly exponential complexity of biology
[2]. It seems as Robert M. Persig said that “the number of
rational hypotheses that can explain any given phenomenon

is infinite” [3]. Although it is clear that no single “-omics”
technology can fully capture the intricacy of most complex
diseases or other clinically relevant traits, the collective infor-
mation from each of these technology platforms when com-
bined has the potential to offer incredible insight into the
mechanisms of complex disease and other important clinical
traits.

Although it is clear that data integration is required,
methods for achieving this are far from systematic. The
integrative genomics methodologies that are used to inter-
pret these data require expertise in multiple different dis-
ciplines, such as biology, medicine, mathematics, statis-
tics, and bioinformatics. Such interdisciplinary approaches
require diverse expertise, either through extensive interdis-
ciplinary training or through extensive collaborations. The
accumulation of enormous quantities of molecular data
has led to the emergence of “systems biology”—a branch
of science that discovers the principles that underlie the
basic functional properties of living organisms, starting from
interactions between macromolecules. Integrative genomics
is based on the fundamental principle that any biological
mechanism builds upon multiple molecular phenomena,
and only through the understanding of the interplay within
and between different layers of genomic structures can one
attempt to fully understand phenotypic traits. Therefore,
principles of integrative genomics are based on the study of
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molecular events at different levels and on the attempt to
integrate their effects in a functional or causal framework.

2. Tools for Integrative Analysis

2.1. Using Publically Available Databases. Commonly used
approaches involve linking all markers at the genomic,
proteomic, metabolomics, and other levels back to annotated
genes. In general, this approach works sufficiently because
well annotated and curated databases describing genes and
their known biological functions are readily available, though
the various sources of data can be a challenge for analysis.
Examples of these databases include NCBI’s gene database
(http://www.ncbi.nlm.nih.gov/gene/), gene ontology (GO)
(http://geneontology.org/), Ensembl (http://useast.ensembl
.org), KEGG (http://www.genome.jp/kegg/pathway.html),
HMDB (http://www.hmdb.ca/), MetaCyc (http://metacyc
.org/), WikiPathways (http://www.wikipathways.org/index
.php/WikiPathways), and DAVID (http://david.abcc.ncifcrf
.gov/), and many others are also available. For data that
is more granular than the “gene level” (e.g., SNPs, CpGs),
methods for combining dependent univariate test statistics
or 𝑝 values are now available (e.g., SKAT [4], Correlated
Lancaster Approach [5], and decorrelation tests [6]). As an
example, the Correlated Lancaster Approach is a modified
version of the Fisher method for combining multiple 𝑝
values; however, when 𝑝 values are correlated the Fisher
method for combining 𝑝 values will cause inflation of Type I
error rates [5]. The Correlated Lancaster Approach addresses
this by accounting for the underlying correlation structure of
𝑝 values to limit Type I error and allowing for 𝑝 values from
multiple tests to be aggregated appropriately [5]. Now that
resources such as 1000 genomes (http://www.1000genomes
.org/) are available, methods for genotype imputation [7, 8]
havemade it possible tomerge different genotyping platforms
therefore greatly enhancing the ability to integrate genomics
data and perform meta-analyses.

However, some data types are not readily mapped to
annotated genes and these annotation limitations are par-
ticularly noticeable for the newest “omics” technologies.
Metabolomics, for example, hasmajor gaps in annotation that
limit integration potential and limit the utility of pathway
based and integrativemethods approaches [9].Metabolomics
data is typically interpreted in the context of metabolic
pathways and KEGG is an example of a database that
contains metabolic pathways consisting of both metabolites
and enzymes organized into groups related to metabolism,
cellular processes, human diseases, and others. However, the
lack of annotated metabolites indicates that we still have
much to learn about the role of many metabolites in human
health. Improved understanding of how genetic variants
affect downstream molecular changes, such as metabolite
levels, will be critical to improving our ability to interpret and
integrate these types of data.

Once the results are mapped to annotations in a database,
various integrative analysis approaches can be taken. While
“integrative analysis” and “systems biology” can be vaguely
defined workflows, in the current discussion we will consider

the analysis of at least two different types of omics data as
integrative.

The analysis can be restricted to molecular data (such
as in expression quantitative trait loci (eQTL) studies, in
which the relation between germ line variation and gene
expression is investigated) or it can involve clinical outcomes
(e.g., disease status or treatment response) or intermediate
phenotypes and biomarkers.

2.2. Selecting the Appropriate Analysis Strategy. While it is
possible to design an analysis plan to ask a variety of interest-
ing biological and clinical questions, there are a few themes
that usually emerge. The first common objective of analysis
is to understand molecular behaviors, mechanisms, and rela-
tionships between andwithin the different types of molecular
structures, including associations between these and various
phenotypes, such as clinical outcomes and pathways. The
second objective is often to understand the taxonomy of
diseases or other clinical traits, thereby classifying individuals
into latent classes of disease subtype; and the third objective is
to predict an outcome or phenotype for prospective patients.
Some statistical methods are specialized to one type of
question, and others can be used for several. Some of the
tools, such as enrichment analysis, were originally designed
to reveal features of genes and pathways, whereas others,
such as integrative clustering, were designed to reveal features
of patient subgroups; however, most of the tools discussed
below can be applied to both. The statistical methods used
can be unsupervised or supervised (e.g., according towhether
one proceeds in an exploratory manner or applies clinical
labels to individual cases). Often these methods are used in
conjunction with cross-validation or other model selection
approaches to prevent overfitting.

2.3. Sequential Analysis. One of the most commonly used
approaches, because of its ready application and interpreta-
tion, is sequential analysis. In sequential analysis, evidences
(measures of association, etc.) from distinct omics levels are
used.This approach allows the confirmation or refinement of
findings based on one data type, with additional analyses of
further omics data obtained from the same set of samples. In
this case, at least two types of omics data are analyzed, for
example, copy-number variants (CNVs) and gene expression
level data.

Typically, in sequential approaches, an analysis of each
dataset is made independently of the others and produces
a list of interesting entities (omics level variables), which
are then linked to each other. For example, differentially
expressed genes in one list are compared with each other
and then with different CNVs that have been matched to the
closest gene in a second list. Usually, the lists are intersected
to find the genes that are confirmed in the analysis of each
data type. Comparing ranks of each gene in each list leads
to measures of concurrence. If each entity in each list has a
value of association with the outcome of interest (e.g., a 𝑡-
test statistic) then these values can be combined, though there
are challenges in how to create a combined 𝑝 value to this
intersection after proper controls for multiple comparison.
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Approaches for combining 𝑝 values and permutation testing
are suggested approaches.

Occasionally, the various analyses are not performed in
parallel but as a sequence of filtering steps, each functioning
on a single data type. This approach can simplify statistical
inference, but the results are highly dependent on ordering
of the steps in the sequence. Such differences can be difficult
to interpret and add a layer of complexity to ensuring repro-
ducibility of analysis. Because of this, details of methods,
including annotation details, must be shared at the level of
databases and code to ensure reproducibility.

2.4. Gene Set and Pathway Based Analyses. Another very
important area of integrative analysis is gene set/pathway
analysis. These approaches integrate biological knowledge
across omics levels through expert driven and computa-
tionally derived knowledge bases. This is a way to perform
integrative analysis even when only a single omics level
has been collected for a particular dataset. The knowledge
bases incorporate and integrate data from a variety of omics
levels to aid in systematic understanding. Pathway analysis
methods can test whether the effects observed are enriched
for various biological functions. These methods range in
both complexity of statistical methods and the level of
detail required to conduct the analysis. Relatively simple
approaches, such as overrepresentation analyses (ORA), only
require a set of statistically significant endpoints (e.g., genes,
metabolites, and proteins) that test for enrichment in a set
of endpoints known to be related to a biological process
[10]. Slightly more complex approaches, such as GSEA [11]
or the Correlated Lancaster Approach [5], use all of the data
as either ranks or test statistics to determine if enrichment
exists. These methods use all available data, addressing the
limitation of ORA approaches which rely on an arbitrary sig-
nificance threshold. Since many available databases contain
more information than just groups of endpoints (e.g., genes,
metabolites), incorporating information, such as pathway
topology, will ultimately be desirable. Although the best way
to incorporate these relationships is still an active research
area, somemethods (i.e., impact factor analysis) are currently
able to leverage this information [10]. A full discussion of
pathway and gene set analysis methods is beyond the scope
of the current paper; an excellent review of the methods
commonly used for this type of analysis can be found in [10].

2.5. Replication as a Form of Integration. Methods develop-
ment is an incredibly active area of research, and promising
new methods for integrating “-omics” data are on the hori-
zon. The simplest of these approaches use different “-omics”
technologies as “pseudo replication” across “-omes,” building
on the simple overlap approaches discussed above. Specif-
ically, sophisticated Bayesian approaches incorporate infor-
mation from one “ome” as prior information to perform
association analysis for other, distinct “omes.” Additionally,
there are a number of clustering and network based analysis
tools that do not rely on established knowledge bases and
have the potential to discover new biology. However, these
approaches have not been widely used due to the limited

number of datasets amenable to such analysis [12, 13]. An
excellent review of newer approaches for “omics” integration
is included in Ge et al. [14].

2.6. Constantly Evolving Methods. Although methods and
data integration techniques are continuously evolving, there
are several challenges that will need to be addressed in order
for an integrative approach to become standardized and
routine. From a statistical perspective, the most fundamental
challenge in integrative analyses is dimensionality: taking
more levels into account in the analysis tends to increase
the dimensionality of the problem. Adding more layers of
data or increasing the resolution of measurements increases
the dimension of unknown parameters, which are often
difficult to estimate, thereby making the overall inference
weaker.Thismight seemparadoxical, as the purpose of taking
multiple levels into account is precisely the opposite—to
use more observations to obtain a more accurate picture
of the biological system under study. In addition to the
challenges described above with high dimensional data, a
formidable quandary is how best to link data across omics
platforms and different levels of biology. These relationships
often produce “one-to-many” relationships, making causal
relationships difficult to define.

There are also a number of limitations in the data curation
and quality control. In addition, at every step, there will be
checkpoints of compatibility of the data, such as normaliza-
tion to the same scale, sample selection from representative
cohorts, adequate correction for technical batch effects, and
use of different platforms. Constantly evolving technologies
exacerbate this challenge.

Additionally, the variety of study designs underlying
individual “-omics” datasets poses a significant problem to
integrating data across multiple studies. Many studies are
cross-sectional and only capture a snapshot of what is actually
a highly dynamic system (e.g., transcriptomics). In addition,
cohort differences due to individual study goals or available
study populations may pose a significant barrier for inte-
grating data. Even if the study designs are similar, different
technology platforms have varying resolutions. Although
genotype imputation has reduced this barrier in genome-
wide association studies, a comparable tool does not exist for
most “-omics” platforms. Pathway databases are continuously
improving, but currently information related to tissue type,
cell type, developmental stage (young, old), and diseased state
is extremely sparse. We need methodological improvements
that can address pathway topologies and feedback loops and
methods to simulate data to benchmark pathway analysis
methods.

2.7. Comparative Approaches for Integrating Omics Data.
Another aspect of data integration and “omics” integration
can be seen in the growing reliance on in vitro model
systems and comparative genetics approaches with model
organisms of disease. To date, there have been many suc-
cessful examples of comparative genomics that implement a
multiomics strategy to validate or replicate signals. For exam-
ple, lymphoblastoid cell line models have shown success in
finding gene and gene expression results that support clinical
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genetic results [15]. Results across species, such as domestic
dogs, have also been shown to be excellent approaches for
omics integration [16, p. 1], [17]. Cancer research is an
example where a comparative approach using canines holds
particular promise [18]. Comparisons of DNA copy-number
aberrations in canines and human have provided valuable
insight into the mechanisms of osteosarcoma, lymphoma,
intracranial tumors, and other cancer types [17, 19, 20].

Although it will take a tremendous effort from the
research community to address many of these remaining
challenges to “-omics” integration, there are useful methods
currently available and no shortage of available “-omics”
data. With the massive amounts of data that we have and
are currently being generated, the challenge will now be to
integrate these technologies to form a cohesive biological
depiction of human disease, because only then can we claim
to have considered all constituents collectively.

An enormous challenge is also the functional validation
of the in silico findings in relevant living biological systems,
as well as the development of adequate in vitro functional
studies to keep up with the increasing throughput by which
candidates for validation are generated. It is still crucial to
explore functions of thousands of candidate genes, proteins,
and metabolomics to ascertain their value as risk factors, as
predictive factors for therapy response, and as therapeutic
targets.

3. Integrative Omics in Personalized Medicine

While integrative analyses are important in all areas of genet-
ics and genomics, they are especially important for mapping
and obtaining a better understanding for the biology of drug
response. There are a number of study design limitations
in pharmacogenomics, pharmacoproteomics, and pharma-
cometabolomics that force the use of integrative approaches
to make reliable discoveries. In most omics applications,
replication is considered the gold standard—where potential
associations are tested in one dataset and significant signals
are validated in independent data. Obtaining and properly
using these data are a particular challenge for drug response
studies due to limitations in study design; for example, such
studies are frequently nested within clinical trials, where
sample sizes are extremely limited or treatment strategies
are not completely comparable to the initial study. Because
of this, replication samples are not routinely available and
replication across omics levels is the only available option for
reinforcing the initial discoveries.

Other opportunities for integrative approaches to address
the needs in personalized medicine are in health monitoring.
An example can be found in Chen et al. [21], where the
authors develop an integrative personal omics profile (iPOP)
analysis tool that tracks individual genomic, transcriptomic,
proteomic, metabolomic, and autoantibody profiles [21].This
technology is successfully leveraged to identify healthy and
diseased states for a single individual [21]. These approaches
are in their infancy but provide great hope for the man-
agement and prevention of complex disease. Additional,
integrative approaches specific for personalized medicine are
thoroughly reviewed in Chen and Snyder [22].

4. Conclusions

Amore fundamental understanding of the biological dynam-
ics across omics datasets will enable us to better identify
risk factors, refine disease diagnosis, predict therapeutic
effects and prognosis, and identify new targets for therapy
in personalized medicine. While the biological intuition of
integrative “-omics” is clear, the real challenges are related
to data integration, curation, and analysis. As we are moving
towards an era in which the amount of data produced every
year is increasing exponentially, methods to develop a deeper
understanding of the biology of complex systems are crucial.
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