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Abstract

We propose a method for dietary assessment to automatically identify and locate food in a variety 

of images captured during controlled and natural eating events. Two concepts are combined to 

achieve this: a set of segmented objects can be partitioned into perceptually similar object classes 

based on global and local features; and perceptually similar object classes can be used to assess 

the accuracy of image segmentation. These ideas are implemented by generating multiple 

segmentations of an image to select stable segmentations based on the classifier’s confidence score 

assigned to each segmented image region. Automatic segmented regions are classified using a 

multichannel feature classification system. For each segmented region, multiple feature spaces are 

formed. Feature vectors in each of the feature spaces are individually classified. The final decision 

is obtained by combining class decisions from individual feature spaces using decision rules. We 

show improved accuracy of segmenting food images with classifier feedback.

Index Terms

Dietary assessment; image analysis; image features; image segmentation; object recognition

I. Introduction

We are interested in developing methods to locate and identify perceptually similar food 

objects in an image for dietary assessment applications. Accurate assessment of food and 

beverage intake is an open problem in the nutrition field [1]. Our research focuses on 

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

HHS Public Access
Author manuscript
IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 September 18.

Published in final edited form as:
IEEE J Biomed Health Inform. 2015 January ; 19(1): 377–388. doi:10.1109/JBHI.2014.2304925.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org


developing a food record method using a mobile device that will provide an accurate account 

of daily food and nutrient intake [2]. Our goal is to identify food items using a single image 

acquired from the mobile device (e.g., a mobile telephone). An example of this is shown in 

Fig. 1, where each food item is segmented and identified. Our proposed dietary assessment 

system consists of two main parts: a mobile application and a “backend” system consisting 

of a computation server and a database system. In our system, images captured by users 

“before” and “after” eating occasions are sent to the server for automatic image analysis. 

Results are sent back to the mobile device for confirmation and review. None of the image 

analysis/classification described in this paper is done on the mobile device. It is all done on 

the server. The overall system and its applications are described in more detail in our 

previous paper [2].

Assigning class labels to every pixel in an image is a highly unconstrained problem, yet the 

human vision system is able to group pixels of an image into meaningful object segments 

without knowing a priori what objects are present in the image. Designing systems capable 

of making more informed decisions based on increased spatial information is an open 

problem for image segmentation and classification. It is necessary to work at different 

spatial scales on segmented regions that can model either entire objects, or at least 

sufficiently distinct parts of them. In [3], a framework for generating and ranking plausible 

objects hypotheses by solving a sequence of constrained parametric min-cut problems and 

ranking the object hypotheses based on mid-level properties is presented. A multiple 

hypotheses framework is proposed in [4] for robust estimation of the scene structure from a 

single image and obtaining confidences for each geometric label. Sivic et al. [5] used a 

probability latent semantic analysis model to determine the object categories in a set of 

unlabeled images.

Schemes for object classification usually proceed in two stages. First, features of the object 

or segmented region are measured or “extracted” and then the features are classified to 

obtain a decision regarding which class label to assign to a particular object [6]. An essential 

step is to adequately represent the information of the object by the features. The goal is to 

find features that can efficiently distinguish between objects belonging to different classes 

(interclass discrimination), and also describe as much information as possible for one class 

so that two objects of the same class, with different properties, can be classified together 

(intraclass robustness). Once the features for each object are obtained, a classification 

system selects the most likely class label.

In our image analysis system, once a food image is acquired, we need to locate the object 

boundaries for the food items in the image. This is accomplished by an iterative image 

segmentation and classification system that uses multiple hypotheses for potential 

segmented regions and then chooses the stable segmented regions. The ideal segmentation is 

to group pixels in the image that share visual characteristics. Although segmentation is a 

difficult task, it is very important because good segmentation can help with recognition, 

registration, and image database retrieval. In our system, the results of the segmentation are 

used for food labeling/classification. The objective of classification is to use the image 

features to identify and label the food items in the scene. Features are grouped into feature 

vectors forming the feature space. These features can model properties for an entire 
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segmented region (global features), or local neighborhoods of the segmented region (local 
features) [7].

Recently, several works in automatic food segmentation and classification have been 

proposed. In [8], a multiview image system is proposed for food classification and volume 

estimation. A bootstrap procedure for selecting features from different feature channels is 

described. Voice annotation is used to constrain the number of candidate food classes 

(constrained set) from which the classifier has to choose. Three-dimensional (3-D) stereo 

reconstruction is proposed to estimate the amount of food. In [9], a method for food 

identification that exploits the spatial relationship among different ingredients (such as meat 

and bread in a sandwich) is described. The food items are represented by pairwise statistics 

between local features of the different ingredients of the food items. However, pairwise 

statistic consistency is not guarantee across different samples of the same food. In [10], 

automatic food identification is achieved by integrating three sets of features namely color, 

texture, and scale invariant feature transform (SIFT) descriptors. All three features are fused 

together forming one single-feature vector, and support vector machines (SVM) is applied 

for the final classification, they report around 60%–65% of classification accuracy for 

several Japanese food databases. In [11], an online food-logging system is presented, which 

distinguishes food images from other images, analyzes the food balance, and visualizes the 

log. More than 90% of correct food versus nonfood detection is achieved. Finally, in [12], 

color, Gabor filters, LBP, and SIFT features are encoded using sparse coding and classified 

using multiclass SVM. They achieve more than 68% of correct accuracy among 50 different 

Chinese foods. Depth information of the image is available as an input to aid in the location 

and 3-D reconstruction of food items.

In [2], [13]–[16], we have investigated various approaches to segment food items in an 

image such as connected component labeling, active contours, normalized cut, and 

semiautomatic methods. In [17], we proposed an earlier version of the multiple hypotheses 

segmentation system. In [18], we presented an earlier version of our classification system 

that used a subset of the features presented in this paper and a simple approach for 

combining class decisions. In this paper, we extend our previous work by exploring new 

features, comparing k-nearest neighbors (KNN) and SVM classifiers for various feature 

spaces, and describe decision rules for combining individual class decisions from several 

feature spaces which we call late decision fusion. We also present a quantitative evaluation 

of our proposed segmentation and classification system.

Fig. 2 is an overview of our approach, which we call the multiple hypotheses segmentation 

and classification (MHSC) system. Food images are acquired from a mobile device where a 

fiducial marker, currently a color checkerboard pattern, is placed in the scene to ensure color 

consistency due to changes in illumination and viewpoints. These images are sent to a server 

for the image analysis. A multiple hypotheses segmentation method (see Section II) is used 

to generate segmented regions, for which features are measured and classification is 

performed (see Sections III and IV). The classifier assigns to each segmented region a class 

label and a confidence score that indicates the “classifier’s confidence” that the label is 

correct. This information is evaluated based on a stability criteria (see Section V). If the 

stability condition is not satisfied, the segmentation step partitions the image again into a 
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new set of segmented regions and the classification process is repeated. When the stability 

condition is satisfied, the classifier is no longer changing its class label decisions, the 

proposed system achieves the best possible class label for every pixel in the image.

Automatic identification of food items in an image is not an easy problem since foods can 

dramatically vary in appearance. Such variations may arise not only from changes in 

illumination and viewpoint but also from nonrigid deformations, and intraclass variability in 

shape, texture, color, and other visual properties. We fully understand that we will not be 

able to recognize every food. Some food items look very similar, e.g., margarine and butter. 

In other cases, the packaging or the way the food is served will present problems for 

automatic recognition. For example, if the food is in an opaque container then we will not be 

able to identify it. In some cases, if a food is not correctly identified, it may not make much 

difference with respect to the energy or nutrients consumed. For example, if our system 

identifies a “brownie” as “chocolate cake,” there is not a significant difference in the energy 

or nutrient content [1], [19]. Our goal is to provide a tool for better assessment of dietary 

intake to professional dietitians and researchers that is currently available using existing 

methods.

II. Multiple Hypotheses Segmentation

Given an unlabeled collection of images, our goal is to assign a class label to every pixel in 

the image corresponding to the object containing that pixel or declare it as “background” if 

the pixel does not belong to any of the specified classes. The output of our system is a 

labeled image with each pixel label indicating the class (object). We exploit the fact that 

segmentation methods are not stable as one perturbs their parameters, thus obtaining a 

variety of different segmentations. Many segmentation methods, such as normalized cut 

[20], use the number of segments as one of the input parameters of the segmentation 

method. Since, the exact number of segmented regions in an image is not known a priori, a 

particular choice of the number of regions results in either an under segmented or over 

segmented image. Furthermore, for a particular choice of the number of segmented regions, 

some objects may be under segmented, while others may be over segmented. That is, some 

of the segmented regions may contain pixels from more than one class while more than one 

segmented region may correspond to a single class. In order to obtain accurate segmentation 

of the image, we propose a joint iterative segmentation and classification system, where the 

classifier’s feedback (i.e., class label and confidence score) is used to obtain a final “stable” 

segmentation. We describe details of this process in Section V after explaining our 

segmentation method (see Section II), feature selection (see Section III) and choice of 

classifiers (see Section IV).

A. Salient Region Detection

Our segmentation method includes an initial step to identify regions of interest or salient 

regions. Unique to our application, we are interested in regions of an image containing food 

objects. The region of interest detection is useful for the task of assigning a correct label to 

each pixel by rejecting nonfood objects such as tablecloth, utensils, napkins, and thus 

reducing the number of pixels to be processed.
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The first step is to remove the background pixels from our search space. We generate a 

foreground-background image by labeling the most frequently occurring color in the CIE 

L*a*b* color space as the background pixel color. We identify strong edges present in each 

RGB channel of the image. In particular, we use the Canny operator to estimate the edges 

[21]. Edge pixels are linked together into lists of sequential edge points, one list for each 

edge contour. These edge lists are transferred back into a 2-D image array [22]. We combine 

background and edge images and remove undesired noise, such as holes, gaps, and bulges 

with morphological operations. We then label connected components in the binary image. 

Since food items are generally located in a plate, bowl, or glass that have distinctive shapes, 

our goal is to detect these objects. We first remove known nonfood objects such as the 

fiducial marker, currently a color checkerboard pattern, used as both a geometric and color 

reference [23]. To determine which components contain potential food items, we use the 

Canny edge filter [21] on each component and obtain the normalized edge histogram. The 

criteria for identifying components that contain food objects is experimentally determined to 

be the uniformity of the edge histogram. We compute the Euclidean distance between the 

normalized edge histogram of each salient region and a uniform distribution. Based on this 

criteria, a threshold is selected to determine a salient region.

B. Multiscale Segmentation

Multiscale segmentation approaches have achieved promising results. In [24], an algebraic 

multigrid technique is used to find an appropriate solution to the normalized cut measures, 

and a process of recursive coarsening is used to produce an irregular pyramid encoding of 

region-based grouping cues. Another method, proposed in [25] constructs multiscale edges 

with pairwise pixel affinity at multiple grids. Simultaneous segmentation through all graph 

levels is evaluated based on the average cuts criterion. We adopted the approach proposed in 

[26], where multiple scales of the image are processed in parallel without iteration to capture 

both coarse- and fine-level details. This approach uses the normalized cut [20] graph 

partitioning framework.

In the normalized cut, an image is modeled as a weighted, undirected graph. Each pixel is a 

node in the graph with an edge formed between every pair of pixels. The weight of an edge 

is a measure of the similarity between the two pixels, denoted as WI (i, j). The image is 

partitioned into disjoint sets by removing the edges connecting the segments. The stable 

partitioning of the graph is the one that minimizes the weights of the edges that were 

removed (the cut). The method in [20] seeks to minimize the normalized cut, which is the 

ratio of the cut to sum of the weights of all of the edges in the set. Two simple yet effective 

local grouping cues are used to encode the pairwise pixel affinity graph. Since close-by 

pixels with similar intensity values are likely to belong to the same object, we can represent 

such affinity by

(1)
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where Ii and Xi denote pixel intensity and location. Image edges are also strong indicator of 

the potential object boundary. The affinity between two pixels can be measured by the 

magnitude of image edges between them,

(2)

where line(i, j) is the line joining pixels i and j, and Edge(x) is the edge strength at location 

x. We can combine these two grouping cues with tuning parameter α by

(3)

The graph affinity W(i, j) exhibits very different characteristics at different ranges of spatial 

separation. Therefore, we can separate the graph links into different scales according to their 

underlying spatial separation,

(4)

where Wi contains affinity between pixels with certain spatial separation range and can be 

compressed using a recursive sub-sampling of the image pixels such as the use of 

interpolation matrix C1,2 between two scales. This decomposition allows one to study 

behaviors of graph affinities at different spatial separations. The small number of short-range 

and long-range connections can have virtually the same effect as a large fully connected 

graph. This method is able to compress a large fully connected graph into a multiscale graph 

with O(N) total graph weights. The combined grouping cues are used with the CIE L*a*b* 

color space. Selections of normalized cut parameters to generate the “stable” segmentation 

based on classifier’s feedback as shown in Fig. 2 are discussed in Section V.

C. Fast Rejection

Having a large pool of segments makes our overall methods more reliable; however, many 

segments are redundant and poor. These segments are results of selecting inappropriate 

clustering number in the segmentation step reflecting accidental image grouping. We deal 

with these problems using a fast rejection step. We first remove small segments (up to 500 

pixels in area) in our implementation as these segments do not contain significant feature 

points to represent the object classes. We then assign background label to segments in each 

salient region detected previously. The number of segments that passes the fast rejection step 

is indicative of how rich or cluttered a salient region is.

III. Feature Description

An essential step in solving any object classification problem starts by determining the 

characteristics or features of the object that can be used to separate the object from other 
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objects in the image. As mentioned earlier, feature spaces are formed by different types of 

features. Feature spaces formed by averaging features for an entire segmented region are 

known as global features, while feature spaces formed by features in local neighborhoods 

around points of interest or keypoints in the segmented region are known as local features. 

Both global and local features are used in our system.

A. Global Features

Color, texture, and shape are the three object representations most widely used for 

describing global characteristics of an object. In general, the segmentation step does not 

preserve the global shape information of an object. Also, most foods have large variations in 

shape based on eating conditions. Therefore, we use only color and texture descriptions as 

global features and not explicit shape information.

1. Global Color Features: Color is an important discriminative property of 

foods allowing one to distinguish, for example, between mustard and 

mayonnaise, and in some cases it is the only way to distinguish between 

liquids (e.g., orange juice and milk). Food shows large variation of color. 

Fresh food may contain different color chromaticities according to their 

ripeness and whether they are raw or cooked. Hence, there is no unique 

feature or color description that can be used to characterize food. In order 

to address many of the color effects found in foods, we considered three 

types of color features namely global color statistics, entropy color 
statistics, and predominant color statistics. First proposed for visual food 

description in [18].

a. Global color statistics: consists of the first, and second 

moment statistics of the R, G, B, Cb, Cr, a*, b*, H, S, V 
color components corresponding to RGB, Y CbCr, L*a*b*, 

and HSV color spaces, respectively. One feature vector is 

obtained for the entire image segment; containing the two 

moments for each color component.

b. Entropy color statistics: this feature characterizes the 

distinctiveness and repeatability of color information for 

each color space component using entropy [27]. The 

feature vector is formed by estimating the first- and 

second-moment statistics of the entropy in RGB space 

components for the entire segmented region.

c. Predominant color statistics: our third color descriptor 

aims at capturing the distribution of the salient colors in 

the object by selecting the P most representative colors (in 

RGB space) for a segment. The feature vector for this 

color descriptor is defined as

(5)
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where ci represents the 3-D color vector from the RGB 

cube, pi is the percentage of color in the total object, and 

υi is the color variance inside the region described by the 

predominant color. The total dimension of the feature 

vector is (7 × P). A similar color descriptor is used in the 

MPEG-7 standard, known as the dominant color descriptor 

[28].

2. Global Texture Features: For many object categories, texture is a very 

descriptive feature. In our system, we used three texture descriptors for 

food classification [29]: Gradient Orientation Spatial-Dependence Matrix 
(GOSDM), Entropy-based categorization and Fractal Dimension 
estimation (EFD), and a Gabor-based image decomposition and Fractal 
Dimension estimation (GFD).

a. Gradient Orientation Spatial-Dependence Matrix: 
Describes the spatial relationship between gradient 

orientations by means of the occurrence of pairs of 

gradient orientation values at offsets d (length and 

orientation). For each magnitude of d (20, 22, 24, …), we 

determined four GOSDMs based on the following angular 

directions: 0°, 45°, 90°, 135°. As in the case of GLCM 

features, several statistics were used to compress the 

amount of information of each GOSDM [30]. These are 

Correlation (COR), Angular Second Moment (ASM), 
Entropy (ENT), Contrast (CON), and Homogeneity 
(HOM).

Once these measures are determined, the final step is to 

create the feature vector for the entire texture region. For 

an H × V texture region it is defined as [7], [29]:

(6)

where the vector fdi is defined as fdi = 

[COR0°ASM0°ENT0° 

CON0°HOM0°COR45°ASM45°ENT45° CON45° HOM45° 

COR90°ASM90°ENT90°CON90°HOM90°COR135°ASM135° 

ENT135°CON135°HOM135°]i.

b. Entropy categorization and fractal dimension estimation: 
Our second texture descriptor is based on multifractal 

analysis [31], [32]. We examined a multifractal analysis of 

textures using entropy [7], [29]. Given a pixel x and a local 

neighborhood Mp, we first estimate its entropy Hx. Once 

the entropy is estimated for all the pixels in the texture 
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image, we cluster regions where the entropy function 

exhibits similar values. For a given entropy value υ, ϒυ 
represents the set of pixels {x : x ∈ H × V and Hx ∈ (υ, υ 
+ δ)}, for some arbitrary δ. Once this pixel categorization 

is completed, we estimate FDϒυ, the fractal dimension 

(FD) for each ϒυ by following the approach presented in 

[33]. The final texture feature is formed by fusing all the 

FDϒυ into one single-feature vector.

c. Gabor-based image decomposition and fractal dimension 
estimation (GFD): Our third texture descriptor is also 

based on multifractal theory [31], [32], and it uses Gabor 

filterbanks [34]. For each scale (m = 0, 1, …, S − 1) and 

orientation (n = 0, 1, …, K − 1), we estimate the FD of the 

image filter response (Igm, n), FDIgm, n. The final descriptor 

becomes f = [FDIg 1, 1 FDIg 1, 2⋯FDIg S ,K].

B. Local Features

Low-level features based on multiscale or scale-space representation were also examined. 

The main difference with global features is the size of the region used to estimate the 

features. Local features are estimated around points located in regions of the image. These 

locations are often called points of interest or keypoints. They are described by the local 

appearance of the group of neighboring pixels surrounding the point location.

We have used a series of local feature spaces including SIFT [35] and SURF [36] 

descriptors. We also used steerable filters [37] which are a bank of randomly oriented filters. 

In this case, we used 2-D circularly symmetric Gaussian functions and obtain the first- and 

second-moment statistics of the response of the filtered local image neighborhood with the 

steerable filterbank. We used five orientations and up to fifth-order Gaussian derivative. 

Finally, we also used SIFT descriptors on the R,G,B color components separately since we 

were also interested on capturing local color information (Red-SIFT, Green-SIFT, and Blue-
SIFT).

Overall for each segmented object, we constructed 12 feature spaces (feature channels): 

three global color feature channels (Global color statistics, Entropy color statistics, and 

Predominant color statistics), three global texture channels (GOSDM, EFD, and GFD), and 

finally six local feature channels (SIFT descriptor, Red-SIFT descriptor, Green-SIFT 
descriptor, Blue-SIFT descriptor, SURF, and Steerable filters). Table I in Section VI shows 

all the features as well the feature space dimension.

IV. Classification

In Section III, we described the features we are using to form feature vectors f. Given an 

unlabeled collection of images, our goal is to assign a class label to every pixel in the image 

corresponding to the object containing that pixel or declare it as “background” if the pixel 
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does not belong to any of the specified classes. The output of our system is a labeled image 

with each pixel label indicating the class (object).

In this section, we describe our system for classifying objects, from segmented input images, 

given training segmented regions and their feature vectors (supervised learning) using 

several machine-learning strategies. Note that we distinguish between training segmented 

regions and testing segmented regions. Each class/label (food class) is composed of many 

training objects St, and their associated feature vectors, ft. Testing data refers to segmented 

regions Sq obtained from the input image Iq that the system has yet to classify after forming 

testing feature vectors fq at the feature extraction stage.

We have followed the works presented in [38] and [39] where authors have shown how 

decision-level fusion outperforms feature-level fusion for very different datasets, and in [40] 

where authors have shown how combination of individual classifiers improves significantly 

the contribution of individual classifiers. We propose a multichannel feature classification 

system, where each feature channel (feature type) is individually classified. We have 12 

feature channels that consists of three global color feature channels: Global color statistics, 
Entropy color statistics, and Predominant color statistics, three global texture feature 

channels, namely GOSDM, EFD, and GFD, and finally, six local feature channels SIFT 
descriptor, Red-SIFT descriptor, Green-SIFT descriptor, Blue-SIFT descriptor, SURF, and 

Steerable filters. As a result of this process, 12 class decisions are obtained for each 

segmentation region. The next step is to obtain the final classification based on the 12 

individual classifier decisions by fusing the results of the 12 classifiers. We call this late 

decision fusion. Fig. 3 shows the components of our classification system.

A. Individual Classification

We have examined two classifiers, KNN and SVM, to classify the feature channels. The 

KNN classifier consists of assigning a class label based on data proximity in a n-dimensional 

feature space. It estimates a distance measure (e.g., Euclidean distance), in the feature 

channel l between the testing feature vector , and each of the training feature vectors , 

and then, selects the class with at least K of the training feature vectors closest to the testing 

feature vector [41]. KNN bases its decision on data locality (only the K closest training 

feature vectors are considered). The goal of an SVM is to produce a classification model by 

constructing an N-dimensional hyperplane that optimally separates the training data (feature 

vectors) into classes or feature space partitions [42]. We used the publicly available SVM 

toolbox [43]. Before the supervised classification, KNN or SVM, there is a step known as 

vocabulary construction and signature formation. This is known as bag of features (BoF) 

[44], [45]. Local features are used to build visual vocabularies that are formed by using an 

unsupervised learning strategy such as clustering. Each cluster of local features represents a 

visual word. We use a hierarchical version of k-means, where each local feature space is 

recursively divided into clusters [46]. For each segmented region of the test image, local 

features are extracted and propagated down the tree. A signature is formed by estimating the 

distribution of the visual words in the segmented region (e.g., how many times each visual 

word in the vocabulary occurs in the segmented region Sq). This distribution is known as the 

signature of the object [45]. For each local feature channel one signature is obtained. We 
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used the signature as input to the individual local feature channel classifiers (i.e., KNN or 

SVM). For the experiments presented in Table I, the dimensionality of our signatures is 1110 

(the size of the visual vocabulary).

B. Combination of Local and Global Features

As a result of the individual multichannel classification, we obtain 12 class labels for each 

segmented region for an input image. A final decision needs to be obtained from these 

decisions [40]. We fuse the outputs of the individual feature channel classifiers for a final 

class decision [38]. Hence, we are individually classifying each feature type and combining 

classifier decisions along with distance-based confidence scores given the best β candidate 

classes for each feature channel. By candidate classes, we mean the most likely class labels 

that a classifier selects and ranks given an input segmented region Sq.

The confidence score indicates the likelihood that the identified class label is correct. It is 

estimated using only the feature vectors of the training samples from each class that 

contribute to the classification, e.g., in the KNN case only the K closest samples of an 

identified class are used to estimate the classifier’s confidence. The confidence score ψ(Sq, 

λ), of the KNN classifier for assigning segmented region Sq of an input image Iq to class λ 
in feature channel l is defined as

(7)

where  represents the distance between the normalized feature vector of the input 

segmented region Sq, fSq, and the normalized feature vector of the ith nearest neighbor 

training sample belonging to class λ,  represents the distance between the 

normalized feature vector of the input segmented region Sq, and the nearest neighbor 

(1−NN), we add ε to the denominator to avoid division by zero; this was set to machine 

epsilon (i.e., the relative error due to rounding in floating point arithmetic). Λ is the 

collection of class labels.

Similarly, when SVM is used, then the classifier’s confidence score is

(8)

where  represents the distance between the normalized feature vector of the 

input segmented region Sq, fSq, and the normalized average feature vector for class λ, . 

For the local features, the average class feature vector  is a feature vector containing the 

frequency that each visual word is observed in class λ on average. Average feature vectors 
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can be thought of as feature prototypes to represent each class. They have been shown to 

increase classification accuracies [47], [48].

Two strategies are considered for the final fusion decision given as follows:

1. Maximum confidence score: This consists of choosing the class label such 

that the confidence score from all the feature channel classifiers is the 

largest. That is, for each segment Sq select the class such that it satisfies 

, with L being the number 

of feature channels.

2. Majority vote: Here the majority vote on the set  is used. In 

the case of the same number of votes, the tie-breaker is the output of the 

individual classifier that achieves higher classification rate (most salient 

feature). Majority rule can be seen as a variation of the maximum 

confidence score for the case that all KNN are equal distance in the feature 

space from the input segment.

As a result of using multiple feature channels and combining them into one final class 

decision, we obtain a set of candidate classes for each segmented region in the input image 

Λm,C (Sq), which correspond to the top C most likely classes for a given input segmented 

region Sq and a segmentation hypothesis, m. A segmentation hypothesis is obtained by 

varying the number of segmented regions for each input image. Each final candidate class 

λ̂
m,c = λ̂(Sq) has a final confidence score associated with it defined as

(9)

where L = 12 is the total number of feature channels, and ψl (․, ․) represents the confidence 

score per feature channel, and Ψ(․, ․) the final confidence score of the classifier to label 

segment Sq with label λ̂m,c.

V. Stable Segmentation via Iteration

As we described earlier in Fig. 2, results from the classifier are used as feedback to select the 

“stable” parameters of the normalized cut segmentation method used in each salient region. 

This iterative approach generates the final “stable” segmentation based on the improved 

classifier’s confidence. Through iteration, each segmentation hypothesis generated by the 

normalized cut vary in the number of segments and class labels; thus, there are errors in 

different regions of the image. Our challenge is to determine which parts of the hypotheses 

are likely to be correct and combine the hypotheses to accurately locate the objects and 

determine their class labels. Since the “correct” number of segments Q that yield a “stable” 

segmentation is unknown a priori, we explore all possible parameter settings.

We propose an iterative stability framework for joint segmentation and classification. To 

produce multiple segmentations, we vary the number of segmented regions Q(the 
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“segmentation parameter” in the normalized cut method) in two ways depending on the size 

of the salient region. Q = 3 is used as the initial number of segmentations for salient regions 

less than 250-pixels in length or breadth of a bounding box, and Q = 7 for larger salient 

regions. Let Sq (i, j)m denote the segmented region containing pixel Iq (i, j), for the mth 

iteration of the segmentation and classification steps. Λm,C (Sq (i, j)) denotes the set of C 
candidate class labels for segmented region Sq (i, j) for the mth iteration. The set of C 

candidate class labels for pixel Iq (i, j), after M iterations is denoted by . The 

candidate class with highest confidence score  is estimated based on the 

cumulative confidence scores ΨM (Iq (i, j), λ) defined as 

 where

(10)

In each iteration, every pixel is assigned the class label that has the highest cumulative 

confidence scores up to the current iteration. Note that λ̂
m,c is a candidate class label 

generated from an input segmentation parameter for the current mth iteration.  is the 

best candidate class label based on the cumulative confidence scores after m iterations.

The pixel label becomes stable when the cumulative confidence scores does not show 

improvement. The iteration process stops when the percentage of pixel labels being updated 

is less than 5% for each segment. This means the image region has been segmented properly 

(“stable” segmentation) based on the stability of the classifier’s confidence scores. In 

general, we achieve the “stable” results after four iterations. Fig. 4 shows multiple 

segmentations generated from each iteration of the joint segmentation and classification 

approach for every salient region detected from the input image shown in Fig. 1. The 

number of segmented regions Q is increased for each iteration. Some regions may require 

fewer iterations to reach the “stable” segmentation than others. For example, region 

containing ketchup requires only two iterations, while other salient regions require four 

iterations for this meal image.

The output is a labeled map with each pixel assigned to the best class label. The iterative 

stability measure depends on the classifier’s confidence of the assigned label for each 

segment being correct; thus, the performance of the classification plays an important role. 

The correct class label of the segment requires accurate detection of the object boundary so 

that features extracted from the segment can be closely matched to features of objects in the 

training images. Therefore, a high confidence score of the classifier not only implies strong 

visual similarity between the identified object and its training data, but also accurate 

boundary detection from the segmentation. It is unlikely that the classifier will have 100% 

accuracy even with perfect segmentation because some foods are inherently difficult to 
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classify due to their similarity in the feature space. Examples of these are illustrated in 

Section VI.

VI. Experimental Results

The proposed system was tested on a collection of food images acquired by participants 

during nutritional studies conducted by the Department of Nutrition Science at Purdue 

University. We also have ground-truth information, done manually, for the images including 

the segmentation regions for each food item and the corresponding class label. This will be 

used for system performance evaluation. In our dietary assessment system, the image 

segmentation and classification part are performed on the server. In a typical scenario, the 

server takes less than 30 s to analyze a 3-MP image.

A. Quantitative Evaluation of Segmentation Performance

We are interested in evaluating our proposed methods based on quantitative measures of 

segmentation quality. In particular, the disparity between an actually segmented image and 

the ideal segmented image (ground-truth) can be used to assess performance. We used the 

method proposed by Estrada et al. [49] to generate precision/recall scores for a range of 

input parameters (number of segments between 3 and 13) of the normalized cut method, the 

stable parameter, as well as manual segmentation. Precision is defined as the proportion of 

boundary pixels in the automatic segmentation that correspond to boundary pixels in the 

ground truth, while recall is defined as the proportion of boundary pixels in the ground truth 

that were successfully detected by the automatic segmentation.

Given two segmentations S1 and S2, a suitable match for each boundary pixel in S1 was 

found by examining its neighborhood within a radius of d for boundary pixels in S2. A pixel 

bi in S1 was matched to a pixel bx in S2 when the following conditions were satisfied.

1. No other boundary pixel bj in S1 exists between bi and bx.

2. The closest boundary pixel in S1 for pixel bx is in the specified direction of 

bi. If bx has several closest neighbors, at least one must point in the 

specified direction of bi. In practical implementation, this means the 

directions from bx to bi, and from bx to one of its closest neighbors must 

be within 25° of each other.

In the case where more than one pixel in S2 satisfies the listed conditions for pixel bi, we 

select the nearest one.

To obtain a meaningful benchmark, for each combination of parameters, we tested the 

methods on a set of 130 food images. The scores for a particular combination of input 

parameters is the median of the precision and recall scores obtained for the individual image. 

The median precision and recall scores computed for different combinations of input 

parameters yield tuning curves characterizing the performance of the methods.

Since the normalized cut and our multiple hypotheses segmentation approach take only one 

input parameter, which is the desired number of segments, we tested these methods for a 

number of output segmented regions within a range of input parameters that yield reasonable 
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segmentations appropriate for our dataset. For the normalized cut method (no classifier 

feedback), the range of input parameter is [3,13]. Our segmentation method automatically 

selects the stable input parameter from the classifier feedback.

We choose for comparison the tuning curves resulting from various precision and recall 

scores. From these curves, the appropriate parameters can be selected that will yield a target 

value of either precision or recall for a given method. More importantly, they provide a 

direct way of comparing the quality of the segmentation produced by different methods 

across a wide range of input parameters. We can tell from these tuning curves if a method 

performs consistently better than others across its particular range of parameters, and then 

rank methods by performance for particular values of precision or recall.

Fig. 5 shows quantitative evidence that our proposed segmentation method including the 

class label information and the classifier’s confidence score outperforms the normalized cut 

(no classifier feedback) across the range of tested input parameters. Comparing the four sets 

of curves, the scores for all tuning curves fall sharply as d decreases. This is consistent with 

the observation made by Martin et al. [50] and supports the use of a smaller matching radius 

during evaluation.

B. Feature and Classification Evaluation

In the previous section, we presented results of combining segmentation and classification 

for quantitative measures of segmentation quality. In this section, we show evaluation results 

of our proposed classification system performance in terms of correct classification accuracy 

given a set of segmented regions. The goal was to measure the efficiency of the features for 

food characterization. For this set of experiments, we considered 83 classes (79 food classes, 

and utensils, glasses, plates, and plastic cups). Each class contained many segmented regions 

or samples obtained from the segmentation of meal images. The number of samples in each 

class varies, with 20 being the minimum number of samples for some classes and 50 being 

the maximum, and an average of 30 per class. Fig. 6 shows manually segmented examples of 

each food item. Fig. 7 shows examples of the automatic segmentation regions used in our 

system.

First, we compared the information captured by each of the 12 feature channels. Table I 

shows mean correct object classification rates for each feature channel for both classifiers: 

KNN and SVM. In the experiments 60% of the data were used for training and 40% for 

testing. Experiments were repeated 10 times with random selection of training and testing 

data. Note that in the SVM case, global color statistics, entropy color statistics, EFD, SIFT, 
Red-SIFT, Green-SIFT, Blue-SIFT, and Steerable filters, GOSDMs were classified using 

RBF kernels, and for predominant color statistics, GFD and SURF descriptor we used 

quadratic kernels. In all cases, we set gamma (SVM parameter) as being the inverse of the 

average number of feature vectors (number of classes times average number of instances per 

class): 0.001 < γ < 0.0001. We set C as the number of classes, C = 83. Only when both γ 
and C were low (<0.01) the SVM performance was substantially degraded. These 

parameters were determined after cross-validation experiments. As shown, global color 
statistics feature outperformed the other color features in all tests considered. Among the 

texture features EFD performed better than the other two types of features: GFD and 
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GOSDM. Also, local features and the BoF approach have proven to be very efficient. These 

results show the importance of color information to globally describe food segments. 

Finally, local features such as SIFT achieved high performance, but so did Red-SIFT, Green-
SIFT, and Blue-SIFT which indicates that color information may also be relevant to describe 

objects locally. From these results, we also observed that, in general, for local features SVM 

performs better than KNN.

After the individual channel classification, the next step in our classification system is to 

obtain the final class decision by combining individual decisions. The experiment consisted 

of comparing our two decision fusion methods as a function of the number of candidate 

classes (1 and 8) on each feature channel. Candidate classes refer to the most likely class 

labels (top ranked) for each feature channel that a classifier selects given an input segmented 

region. By using more than one candidate for each feature channel, the probability that the 

true (correct) label be among the class candidates increases. Table II shows the performance 

of both decision fusion approaches. For reference, we have compared our decision-based 

classifiers with two other types of classifiers: SVM feature concatenation and Fisher vectors 

encoding on SIFT features [51]. SVM feature concatenation refers to concatenate feature 

vectors into one vector. In our case the best performing feature channel of each type (Table 

I): color statistics for color, EFD for texture, and SIFT for local features were used. SVM 

kernels, of the three feature channels, were linearly combined into one single kernel for 

classification. Fisher vector encoding has been evaluated using the publicly available 

VLFEAT library [52].

The best performance was achieved combining decisions obtained using KNN for large 

number of candidates. We observed, that decision fusion strategies require orthogonal 

feature spaces, i.e., feature channels that complement each other. From the results, data 

locality-based classifiers such as KNN have more consistent class decision when considering 

multiple candidates, even for very independent feature spaces when compared to efficient 

classifiers such as SVM. Performing late decision fusion shown an improvement compared 

to the performance of individual classifiers. These results are aligned with earlier work 

presented in [38]–[40], and [53], where similar late decision fusion algorithms outperformed 

individual classifiers. Comparing both decision rules, we observed that maximum 

confidence score has a great dependance upon the training data since it bases its efficiency 

on the visual appearance compactness of a class to assign scores. If unstable segmented 

regions within each class have large variation in appearance, majority rule proved to be a 

better solution.

We also observed that simple decision rules like majority vote rule can be a better choice for 

feature fusion as opposed to concatenate the best performing individual features into one 

single vector and apply SVM. Late decision fusion rules and combination of different type 

of features can also be competitive in terms of classification accuracy compared to other 

state-of-the-art algorithms like Fisher vector encoding using SIFT features that have proven 

its efficiency in image classification tasks [54].

We were also interested in determining the contribution of each feature channel into the final 

food classification decision to identify which features are more salient for food 
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classification. We measured it as the ratio between the number of total correct classification 

foods for a particular feature channel and the number of total correct classification foods of 

the overall system. Global color statistics contributed 0.760 to the final decision, entropy 
color statistics achieved 0.485, predominant color statistics 0.650, EFD 0.648, GFD 0.442, 

GOSDM 0.567, SIFT 0.794, Red-SIFT 0.835, Green-SIFT 0.830, Blue-SIFT 0.831, SURF 
0.751, Steerable 0.720 agreement with the final decision. From these results, we observed 

that SIFT-based features had a large contribution on the overall system; however, simple 

color statistics can also provide salient food descriptions. In terms of type of features, on 

average local features contributed the most with an overall contribution rate of 0.793 versus 

color and texture features with 0.631 and 0.552, respectively. In case only complex foods 

were considered (foods with many ingredients such as cheeseburger, soups, sandwiches), 

local features achieved even a higher contribution rate, 0.882, which indicates how 

descriptive these type of features are for complex objects in contrast with global color and 

texture features that describe more uniform characteristics.

Our evaluations combine errors from both segmentation and classification. If an image is 

perfectly segmented, i.e., it completely agrees with the ground truth, the error in 

classification contributes to pixels being incorrectly labeled. If a region of the image is 

poorly segmented, it may not represent the visual characteristics of associated food class, 

therefore resulting in wrong class labels for pixels belong to that region. As it has been 

mentioned before some foods are inherently difficult to classify due their similarity in the 

feature space; others are difficult to segment due to faint boundary edges that camouflage the 

food item; as well as the nonhomogeneous nature of certain foods. In order to measure the 

joint performance of segmentation and classification, we looked at the improvement 

obtained as a result of applying our iterative approach versus a one-pass segmentation and 

classification strategy in terms of the per pixel accuracy. Per pixel accuracy is obtained by 

comparing the class label assigned to each pixel to ground-truth information. On average, we 

observed an increase of 22% classification accuracy in the final iteration with respect to the 

initial (one-pass) iteration.

Another challenge that we face in our system is the large variation of illumination conditions 

observed in images acquired by users. Fig. 8 show several examples of images acquired by 

users with very different illumination conditions. In order to deal with large number of food 

classes and different illumination conditions our dietary assessment system [2] has the 

ability to output a set of class labels (food suggestions) for each object in the image. This set 

consists of the top four ranked food classes. This information is used by the user to select the 

true food class. By measuring the performance of the system with respect to whether the true 

food class is within the four suggestions, we can increase the food classification rate by 

30%, and thus achieve very high classification accuracies for large number of foods and 

illumination conditions [7]. The user’s feedback also allows the system to learn the user 

eating pattern. Currently, we are investigating the integration of a user’s eating pattern into 

training the classifier to further increase the efficiency of our classification system, as well as 

other contextual information like eating locations, times and dates.
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VII. Conclusion

We have described a segmentation and classification system based on generating multiple 

segmentation hypotheses by selecting segmentations using confidence scores assigned to 

each segment. Evaluation of the proposed MHSC method shows that our approach 

outperforms the normalized cut method. This also agrees well with the visually perceived 

quality of the corresponding segmentations. We have also investigated global and local 

features in order to provide a more complete description of objects. We have shown that by 

individually classifying each feature channel and doing late decision fusion based on the 

individual classifier’s decisions and their confidence scores, we can increase the 

classification rates for each individual classifier. Based on our evaluations, we have shown 

improved accuracy of segmenting food images using our segmentation approach compared 

to normalized cut without classifier feedback when there is no prior information about the 

scene. This translates into an overall improved classification accuracy. Overall we have 

shown that our methods can be integrated into an image-based dietary assessment system.
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Fig. 1. 
Ideal food image analysis system.

Zhu et al. Page 23

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Multiple hypotheses segmentation and classification.
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Fig. 3. 
Classification System. (LG is the number of global feature channels and LL is the number of 

local feature channels. f′(․) corresponds to the training feature set, and f (․) corresponds to 

features of the image.)
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Fig. 4. 
Multiple segmentations obtained from the salient regions.
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Fig. 5. 
Tuning curves for a normalized cut (no classifier feedback) and our MHSC segmentation 

(with classifier feedback) for (a) d = 7, (b) d = 5, (c) d = 3, and (d) d = 1. The stable input 

parameter is automatically chosen based on the segmentation method.
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Fig. 6. 
Examples of 83 food classes used in our experiments.
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Fig. 7. 
Examples of segmented regions: BBQ chicken, frozen meal turkey, lasagna, and vegetable 
soup.
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Fig. 8. 
Examples of images acquired by users exhibiting large illumination variations.
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TABLE I

Mean Classification Rate for All Classes for Each Type of Feature Channel Using the KNN and SVM 

Classifiers

Feature Channel Type Dimension Mean classif.
rate

KNN

Mean classif.
rate

SVM

Color Stats. Global
Color

20/segment 0.68 0.62

Entropy Color
Stats.

Global
Color

6/segment 0.20 0.35

Pred. Color
Stats.

Global
Color

28/segment 0.42 0.60

EFD Global
Texture

120/segment 0.39 0.47

GFD Global
Texture

120/segment 0.23 0.27

GOSDM Global
Texture

60/segment 0.32 0.32

SIFT Local 128/keypoint 0.44 0.48

Red-SIFT Local 128/keypoint 0.45 0.48

Green-SIFT Local 128/keypoint 0.44 0.49

Blue-SIFT Local 128/keypoint 0.47 0.47

SURE Local 128/keypoint 0.43 0.45

Steerable Filters Local 50/keypoint 0.39 0.43
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TABLE II

Average Classification Rate for Each Decision Fusion Approach Majority Vote Rule and Maximum 

Confidence Score for Both KNN and SVM Classifiers for Multiple Candidates (1, and 8)

Decision Fusion
(Classifier)

1
Candidate

8
Candidates

Majority vote rule
(KNN)

0.70 0.74

Maximum confidence score
(KNN)

<0.1 0.75

Majority vote rule
(SVM)

0.57 0.72

Maximum confidence score
(SVM)

0.33 0.70

SVM concat. 0.52

SIFT FV 0.61

And comparison with SVM feature concatenation (SVM concat.) and Fisher vector encoding with SIFT (SIFT FV).
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