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Abstract

Rationale: The development of molecular diagnostics that detect
both the presence ofMycobacterium tuberculosis in clinical samples
and drug resistance–conferring mutations promises to revolutionize
patient care and interrupt transmission by ensuring early diagnosis.
However, these tools require the identification of genetic
determinants of resistance to the full range of antituberculosis drugs.

Objectives: To determine the optimal molecular approach needed,
we sought to create a comprehensive catalog of resistance mutations
and assess their sensitivity and specificity in diagnosing drug
resistance.

Methods:We developed and validated molecular inversion probes
for DNA capture and deep sequencing of 28 drug-resistance loci in
M. tuberculosis. We used the probes for targeted sequencing of a
geographically diverse set of 1,397 clinicalM. tuberculosis isolates
with known drug resistance phenotypes. We identified a minimal
set of mutations to predict resistance to first- and second-line

antituberculosis drugs and validated our predictions in an
independent dataset. We constructed and piloted a web-based
database that provides public access to the sequence data and
prediction tool.

Measurements and Main Results: The predicted resistance to
rifampicin and isoniazid exceeded 90% sensitivity and specificity
but was lower for other drugs. The number of mutations needed to
diagnose resistance is large, and for the 13 drugs studied it was 238
across 18 genetic loci.

Conclusions: These data suggest that a comprehensive
M. tuberculosisdrug resistance diagnosticwill need to allow for a high
dimension of mutation detection. They also support the hypothesis
that currently unknown genetic determinants, potentially
discoverable by whole-genome sequencing, encode resistance to
second-line tuberculosis drugs.
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Global surveillance for drug-resistant (DR)
tuberculosis (TB) suggests that at least
3.5% of the 9 million incident TB cases
are multidrug resistant (MDR) (i.e., resistant
to isoniazid [INH] and rifampicin [RIF]),
and that 9% of these MDR cases are also
extensively DR (XDR) (i.e., also resistant
to amikacin [AMI], kanamycin [KAN],
or capreomycin [CAP] and at least one
fluoroquinolone [FLQ]) (1). The World
Health Organization (WHO) estimates that
MDR-TB is detected in fewer than 45%
of the 480,000 people affected and of these,
at most 70% receive appropriate drug
therapy (1). The remainder are not only
likely to fail treatment but also to spread

resistant organisms (2). WHO cites
MDR-TB as a public health crisis and a
priority area that needs to be addressed for
TB control (1).

One of the main challenges faced in the
control of DR-TB is the lack of laboratory
capacity for the diagnosis of resistance (3).
Several problems limit the utility of
conventional drug susceptibility tests
(DSTs). First, culture-based methods are
expensive and require a specialized
biosafety environment that is usually
present only in centralized reference
laboratories. Second, the slow growth of
Mycobacterium tuberculosis (MTB) implies
that results may take weeks to months to be
reported. Finally, methods for DST for
several of the second-line drugs have not
yet been sufficiently standardized (4, 5).

Molecular diagnostics are now
available that offer multiple advantages for
the diagnosis of DR-TB (6–8). Some can
be performed directly on sputum and
therefore do not require the biosafety
facilities needed for conventional culture
and can be performed by relatively
unskilled workers. In some cases, results
can be available within 3 hours (2).
However, recommended assays only test for
resistance to RIF (6, 8) and INH (8) and
consequently, the WHO recommends that
conventional culture and DST should
continue to be used to “confirm or exclude
XDR-TB” and individualize MDR-TB
treatment regimens (5). Although expanded
diagnostics that test resistance to FLQs
and second-line injectables are now
commercially available their sensitivity is
only moderate ranging from 69.1 to 99.2%
in different reports, and their use has not
been endorsed by the WHO (9–11). The
limited performance of these tests, which
rely on detecting mutations within the
narrow resistance-determining regions of
gyrA, gyrB, rrs, and the eis promoter,
has raised questions about the optimal
molecular technology needed, including the

level of multiplexing of genes and mutations
that is needed for a comprehensive and
accurate diagnostic. Here in the largest
collection of prospectively collected DR
isolates to date (12, 13), we identify
molecular determinants of resistance to
13 anti-TB drugs using molecular inversion
probes (MIPs), and present a validated
prediction model based on the detection of
mutations within the full length of 28
putative DR loci. Some of the results of these
studies have been previously reported in the
form of an abstract (14).

Methods

Archive Assembly
We identified 1,748 MTB isolates archived at
six reference laboratories: the U.S. CDC, the
New Jersey Public Health Research Institute
(PHRI), the Massachusetts Supranational TB
Laboratory (MSLI), Stellenbosch University
(SU) in South Africa, the National Institute
for Public Health and the Environment of the
Netherlands (RIVM), and the Institute of
Tropical Medicine housing the WHO
Tropical Disease Research (TDR) strain bank
(15). These laboratories were selected
because they belonged to the WHO network
of supranational reference laboratories,
which participate in a three-layer quality
control: (1) routine testing of control strains
with known minimum inhibitory
concentrations, (2) a blinded exchange of
samples with another national laboratory,
and (3) the international WHO proficiency
testing (RIVM, MSLI, CDC, and TDR).
PHRI and SU were chosen because they had
a track record of research associated with a
well-characterized clinical strain collection.

Isolate Culture, DST, and
Fingerprinting Methodology
All isolates underwent DST to at least INH,
RIF, ethambutol (EMB), and one of the
injectable agents (AMI, KAN, and CAP).
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At a Glance Commentary

Scientific Knowledge on the
Subject: Drug resistance threatens to
undermine tuberculosis control. To
tackle the drug-resistant threat, better
diagnostic tests are needed that can
accurately determine the sensitivity of
the bacterium to the full panel of drugs
used for tuberculosis treatment.
Present tests only detect resistance to a
small portion of these drugs, and for
several the test accuracy is moderate or
poor.

What This Study Adds to the
Field: Our study investigated bacterial
mutations that can be used to diagnose
drug resistance to 13 antituberculosis
drugs. The findings significantly
expand the list of mutations that can
be used for resistance diagnostics
and imply that only diagnostics
technologies that can detect hundreds
of mutations are likely to achieve the
goal of a comprehensive diagnostic test
for tuberculosis drug resistance.
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DSTs were performed using the indirect
7H10 agar proportions method (PHRI,
CDC, MSLI), 7H11 agar proportions
method (SU, TDR), or BACTEC MGIT
960 (RIVM). A subset of isolates was tested
for pyrazinamide (PZA) resistance by
BACTECMGIT 960 (RIVM, SU, and CDC),
BACTEC 450 (MSLI, CDC), and indirect
7H10 agar proportions (CDC). Molecular
fingerprinting by spoligotyping, IS6110
restriction fragment length polymorphism,
or mycobacterial interspersed repetitive
unit-variable number tandem repeats was
performed for a subset of the isolates
using standard methodology (16, 17) and
lineages were identified by comparison with
those from publically available databases
(see Table E1 in the online supplement)
(18, 19).

Genetic Sequencing Using MIPs
MIPs (20) were designed to cover both
DNA strands of the open reading frames,
promoter regions, and 100 flanking bases
on either side of the 28 selected loci
(see Figures E1–E3, Tables E2 and E3). A
total of 10 ng–100 pg of DNA was extracted
from sputum cultures using standard
methods. Barcodes and Illumina (San
Diego, CA) adapters were attached to
the captured sequences during the
amplification phase followed by 75-bp read
parallel sequencing on an Illumina GAIIx
device (see Figure E4). We repeated this
process on isolates for which fewer than
95% of the targeted nucleotide positions
were covered by at least 20 reads and we
retained in the analysis only those
resequenced isolates that met these criteria.

Variant Identification and
Heterogeneity
We used a custom bioinformatics pipeline
to clean and filter the raw reads. We
aligned filtered reads to the reference
MTB isolate H37Rv and included in the
analysis variants called by either Bowtie
(21) 0.12.7/SAMtools (22) 0.1.18 or
Stampy 1.0.23 (23)/Platypus 0.5.2 (24)
(see Table E4). We classified a variant
as “heterogeneous” (i.e., representing a
population of mixed bacteria) if more than
one base type was present in the reads
aligning to that site. We included variants
in our analysis if they were present in
at least 40% of reads and conducted a
sensitivity analysis lowering this threshold
to 10% (see Table E5).

Validation of MIP Sequencing Results
We assessed the sequencing performance
in three ways. First, we measured
the concordance between variants
identified by MIP-capture and Illumina
sequencing with those identified by
Sanger sequencing in eight loci among
249 isolates that had been sequenced
using both methods. Second, we compared
MIP-identified variants with variants
identified in the same regions in Illumina
whole genome sequences from 40 isolates.
Third, we followed up possible false-
negative MIP results by performing
Sanger resequencing of relevant loci in a
subset of 133 isolates in which our MIP-
based sequencing failed to identify variants
in DR isolates.

Phylogeny Construction and Isolate
Diversity
After excluding variants predictive of
resistance, we constructed and annotated
a neighbor-joining tree using the Phylip
(25) Neighbor program and Figtree v1.4.0.
We classified isolates into three principal
genetic groups on the basis of mutations in
the genes gyrA and katG as described by
Sreevatsan and coworkers (26). Strain
diversity was measured using the Kimura
two-parameter model as implemented by
MEGA6 (27). Mutations in the sequenced
DR genes that were previously determined
to be lineage defining were also assessed
(see Table E6).

Univariate Associations
We tested for an association between
nonsynonymous and presumptive promoter
variants and the DR phenotype to specific
drugs using parallel Fisher exact tests with
a Bonferroni correction.

Random Forest Modeling and
Validation
For the full prediction model, we excluded
mutations if they were silent, occurred only
in sensitive isolates or a single resistant
isolate, and if they were one of the following
variants known not to code for resistance:
gyrA: E21T, S95T, G668D, and katG:
R463L (28–30). We performed a sensitivity
analysis including singleton mutations and
the accuracy of the resistance prediction
was similar (see Table E6). For drugs other
than ofloxacin and paraaminosalicylic acid
(PAS), we randomly split the data into
training and validation sets containing 67%
and 33% of the isolates, respectively.
Because of the low numbers of isolates
resistant to either ofloxacin or PAS, we
developed predictions for these drugs using
the entire isolate set and measured the
prediction error using a 10-fold cross-
validation procedure (31).

Random forest predictive modeling was
performed using R version 2.15.2 and
randomForest R package version 4.6.7. The
randomForest classwt variable was varied
to maximize the sum of sensitivity and
specificity (see online supplement). The

Table 1. Isolate Resistance and Genes Sequenced by Drug

Drug Resistant Sensitive Genes Sequenced

INH 1,219 136 katG, inhA (1promoter), fabG1, embB, kasA, ahpC
(1promoter), oxyR’, iniA, iniB, iniC, ndh

RIF 1,163 206 rpoB
EMB 914 416 embB, embA, embC, iniA, iniB, iniC
PZA 611 374 pncA
SM 941 414 rpsL, rrs, gid
ETH 612 374 ethA, inhA (1 promoter)
CIP 215 695 gyrA, gyrB
LEVO 110 437
OFLX 69 201
AMK 228 729 rrs, rrl
KAN 257 631
CAP 577 363 rrs, rrl, tlyA
PAS 78 849 thyA
CYS 8 855 alr, ddl
Total 1,397

Definition of abbreviations: AMK = amikacin; CAP = capreomycin; CIP = ciprofloxacin;
CYS = cycloserine; EMB = ethambutol; ETH = ethionamide; INH = isoniazid; KAN = kanamycin;
LEVO = levofloxacin; OFLX = ofloxacin; PAS = paraaminosalicylic acid; PZA = pyrazinamide;
RIF = rifampicin; SM = streptomycin.
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weighted model was then run with serially
smaller subsets of mutations, eliminating
one variable at a time in increasing order
of importance. We used the unscaled
permutation mean decrease in accuracy
as our measure of variable importance
(32, 33). We ran the serial models on 100
bootstrap samples of the training sets for
each drug (34). For each bootstrap sample,
a candidate minimum set of mutations was
identified when any further removal of a
mutation resulted in a decrease of more
than one SD from the model’s bootstrapped
mean accuracy. The consensus minimum
number of variables were those variables
that we selected in most (.50%) of the
bootstrap replicates for each drug. We
finally constructed 1,000 tree random forest
using this final set of variables for each drug

and this constituted our final model. We
calculated the SD of the sensitivity and
specificity of full and minimal models by
100-fold boostrapping. We validated our
classification of predictive mutations by
comparing with mutation lists previously
defined as lineage defining and likely
benign (see Table E6).

Additional sequencing and method
description is provided in the online
supplement.

Public Database and Prediction Tool
We created a public data-sharing tool
(http://www.broadinstitute.org/annotation/
genome/mtb_drug_resistance.1/
DirectedSequencingHome.html) that
includes the genetic data and DR
phenotypes. The resistance prediction

model is provided with the online
supplement.

Results

Phenotypic Drug Resistance Profiles
Isolates underwent culture-based DST to a
median of 11 drugs (Table 1; see Table E1),
78 (6%) were fully drug sensitive, 141
(10%) were resistant to one or more
first-line drugs but not to both INH and
RIF, and 1,130 (81%) were resistant to both
INH and RIF. Of the MDR isolates, 51%
were also resistant to PZA, 62% to EMB,
23% to at least one FLQ, and 53% to at
least one second-line injectable. Nineteen
percent of the MDR isolates were XDR
(i.e., also resistant to both an FLQ and an
injectable) (see Table E8).

Table 2. Most Frequent Variants by Region

Drug Gene Base Position Codon
Resistant Isolates

with Mutation [n (%)]
Sensitive Isolates

with Mutation [n (%)]

FLQ (CIP or OFLX) gyrA 269 90 45 (16) 8 (1)
280* 94 19 (7) 1 (0.1)
281* 94 94 (33) 14 (2)

RIF rpoB† 1303 435 25 (2) 4 (2)
1304 435 146 (13) 1 (0.5)
1333* 445 98 (8) 6 (3)
1334 445 76 (7) 1 (0.5)
1348 450 6 (0.5) 0
1349 450 767 (66) 5 (2)
2083 695 82 (7) 5 (2)

SM rpsL 128 43 225 (24) 5 (1)
262 88 1 (0.1) 0
263* 88 67 (7) 2 (0.4)

Gid 276 92 211 (22) 56 (13)
275 92 1 (0.1) 0
274* 92 0 1 (0.2)

Rrs 513 — 19 (2) 1 (0.2)
517 — 79 (8) 3 (0.7)

AG (AMK) Rrs 1401 — 184 (82) 17 (2)

INH promoter-inhA 215 — 265 (22) 2 (1)
katG 943 315 2 (0.1) 0

944* 315 909 (74) 3 (2)
945 315 47 (4) 0

kasA 805 269 209 (17) 7 (5)
ahpC 146 49 162 (13) 4 (3)
iniB 208 70 72 (6) 1 (0.7)

EMB embB 916 306 285 (31) 14 (3)
918* 306 258 (28) 28 (6)

1216 406 40 (4) 6 (2)
1217* 406 97 (10) 22 (5)

embC 2320 774 97 (11) 27 (6)

Definition of abbreviations: AG = aminoglycosides; AMK= amikacin; CIP = ciprofloxacin; EMB = ethambutol; FLQ = fluoroquinolone; INH = isoniazid;
OFLX = ofloxacin; RIF = rifampicin; SM = streptomycin.
*Two or more nonreference alleles were present at the same base position. Regions currently targeted by commercial molecular diagnostics (6, 49) are
shown in bold. Here, we only include mutations that were more prevalent in resistant versus sensitive isolates and exclude variants with a frequency of
,5% per codon or noncoding site in resistant isolates (except for rrs mutations in relation to SM resistance, for which we include the two most common
mutations). †H37Rv rpoB codon numbering used here. Table E18 provides a conversion to Escherichia coli numbering. Table E19 details the variants by
laboratory and DST method.
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Figure 1. Geographic and genetic diversity of the isolates. (A) Isolate principal genetic group (PGG) (26) by country of origin. The digits represent the
number of isolates collected from each country. Isolate numbers less than 10 are not displayed. (B) Neighbor-joining phylogenetic tree of Mycobacterium

tuberculosis isolates. All red tones belong to the Europe–Africa–Americas lineage 4 (taupe, Haarlem;magenta, X/low-copy clade; orange, T;maroon, Latin
American–Mediterranean). Blue, East Asia lineage 2 (e.g., Beijing); purple, East Africa and India lineage 3 (e.g., Central Asian Strain). S = sensitive.
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MIP Sequencing
We selected 26 putative or known resistance
genes and two promoter regions through
a literature review (35) and consultation
with experts (Table 1). We designed
MIPs (20) to sequence these regions
(see Figures E1–E3, Tables E2 and E3)
because of the expected higher depth
of MIP sequencing relative to whole
genome sequencing (WGS) (20). Of
1,748 isolates sequenced with MIPs, 351
isolates were excluded because less than
95% of their bases were covered by 20 or
more reads. In the remaining 1,397 isolates,
the MIPs amplified uniformly with 85%
producing between 100 and 1,000 reads
(see Figure E5). Overall, MIPs captured
an average of 99.9% of the targeted
bases, and an average of 97.1% of the
bases were covered with at least 20 reads
(see Table E9).

In validation experiments, MIP-based
sequencing captured all variants called by
Sanger in 99% of the isolates (n = 249)
and 100% of variants identified by WGS
(40 isolates). MIPs also captured 84
additional variants not identified by
WGS in these isolates. More than 95% of
these variants were missed by WGS
because of low coverage (see Table E10).
Among the 133 isolates for which MIPs
did not identify a relevant variant, 115
of 133 (87%) of the MIP results were
confirmed by Sanger sequencing (see
Table E11).

Gene Diversity
We targeted 42,367 bases for sequencing in
the 1,397 isolates and identified 30,747
genetic variants starting at 2,673 distinct
genomic sites (Table 2; see Figure E6).
Of these variants, 5,987 (19%) were
heterogeneous (i.e., detected at a read
frequency of 40–95%; mean, 61%), and
24,760 were called with greater than 95%
purity. Seventy percent of the variants
(21,655) were protein-altering or occurred in
promoter/intergenic regions (see Table E12).

Isolate Diversity
Among the isolates sequenced, 785 isolates
(56%) originated from Peru, 133 (10%)
were from South Africa, 97 (7%) were
from the United States, 48% (3%) were from
Korea, and the remaining 334 were from
63 other countries (Figure 1). Among
the 509 isolates for which molecular
fingerprints were available, 25% belonged
to the Latin American–Mediterranean
lineage, 22% to Beijing, 21% to T, and the
remaining 32% to other lineages. Sensitive
isolates were evenly distributed across MTB
lineages (Figure 1; see Table E6). After we
excluded DR-associated variation, the
median pairwise genetic distance was 3.1
substitutions/10 kbp (interquartile range,
2.3–3.8) across the 42 kbp sequenced.

Univariate Associations
We found univariate associations between
47 genetic variants and a DR phenotype

(see Table E13). These include many of the
known resistance mutations and the
following novel associations that reached
statistical significance: the iniB A70T
and embA N54D mutations and EMB
resistance, and the embB M306I and
M306V mutations and INH resistance even
after stratification by the EMB resistance
status (see Table E14). We also found
strong associations between the thyA
H207R and L8Q mutations and PAS
resistance and between the embA/B
promoter region and both INH and EMB
resistance (see Table E15). We noted
more than 800 novel variants (35)
(see Table E16) that occurred more often
in resistant than sensitive isolates, but these
associations did not reach statistical
significance.

Diagnostic Performance
Table 3 gives the sensitivity and specificity
of the full and minimal genetic models
for the prediction of the resistance
phenotype. For PZA, the large number
of very rare variants that contributed to
resistance prediction meant that the
minimal set of predictive mutations could
not be chosen reliably. The final list of
mutations encompassed 124 of the 127
nonsynonymous variants we observed in
the pncA gene and promoter yet still
underperformed in the validation set of
isolates. For the other drugs, the minimal
set of genetic variants predicted resistance

Table 3. Genetic Predictive Model Performance

Mutations
Included

All Variables on Learning
Selected
Mutation

Selected Variables on
Learning Isolate Set

Selected Variables on
Validation Isolate Set

Sensitivity (%) Specificity (%) Number Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

INH 220 96 6 1 98 6 2 18 95 6 1 98 6 2 94 6 1 94 6 3
RIF 85 93 6 1 98 6 1 14 92 6 1 98 6 1 93 6 1 95 6 2
PZA 127 72 6 2 97 6 1 124 72 6 3 96 6 1 64 6 3 92 6 3
EMB 126 84 6 2 91 6 2 18 83 6 2 89 6 2 80 6 2 82 6 3
STR* 176 65 6 2 97 6 1 37 61 6 2 97 6 1 54 6 3 94 6 2
ETH 110 65 6 2 92 6 2 20 55 6 3 90 6 2 54 6 3 89 6 3
KAN 19 66 6 4 98 6 1 2 62 6 4 99 6 0.5 66 6 5 98 6 1
CAP 66 43 6 3 96 6 1 5 38 6 2 96 6 1 38 6 3 95 6 2
AMK 47 85 6 3 98 6 1 2 82 6 3 98 6 1 79 6 5 97 6 1
CIP 26 56 6 4 98 6 1 7 52 6 5 99 6 0.4 51 6 5 100 6 0.0
LEVO 18 77 6 5 99 6 0.3 8 74 6 5 99 6 0.4 63 6 9 99 6 1
OFLX† 19 83 6 5 88 6 3 6 77 6 5 90 6 2 74 6 15 90 6 6
PAS† 13 18 6 5 99 6 0.3 4 14 6 5 99 6 0.2 13 6 9 99 6 1

Definition of abbreviations: AMK = amikacin; CAP = capreomycin; CIP = ciprofloxacin; EMB = ethambutol; ETH = ethionamide; INH = isoniazid;
KAN = kanamycin; LEVO = levofloxacin; OFLX = ofloxacin; PAS = paraaminosalicylic acid; PZA = pyrazinamide; RIF = rifampicin; STR = streptomycin.
Bootstrap SEs are reported.
*For STR we also ran the prediction model after removal of gid_E92D. This resulted in a decrease in the sensitivity of prediction model by 2% but no
change in the specificity.
†Tenfold cross-validation results shown for OFLX and PAS in seventh and eighth columns.
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in the validation set with equivalent
sensitivity and specificity as the full model
(Table 3, Figure 2).

The model predicted INH resistance
with 96% (61%) sensitivity for MDR
isolates but only 84% (64%) sensitivity
for monoresistant isolates. katG 315T
mutations were less frequent and inhA -15T

mutations more common in mono-INH
resistant than in MDR isolates (42 vs. 73%,
P = 43 1028, and 30 vs. 21%, P = 0.07,
respectively) (see Figure E7).

The minimal lists of predictive
mutations included the following novel
variants not previously recognized as
diagnostically relevant: embA/B promoter,

and the ahpC, iniB, and gyrB genes
(see Table E17, Figure E8). Mutations
excluded from the lists and their
distribution are provided in Table E7.
Twenty-four mutations were previously
determined to be lineage defining (12, 36, 37)
and were in a region sequenced in this
study. Of these gid E92D was classified as
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Figure 2. Diagnostic performance of serially pared predictive models by drug. Sensitivity is plotted in black, specificity in red. Dashed lines

represent 61 SD. Vertical lines represent the minimal set of predictive mutations chosen (in an automated step-down fashion) beyond
which the sensitivity drops .1 SD from the mean sensitivity for the full model. AMK = amikacin; CAP = capreomycin; CIP = ciprofloxacin;
EMB = ethambutol; ETH = ethionamide; INH = isoniazid; KAN = kanamycin; LEVO = levofloxacin; OFLX = ofloxacin; PAS = paraaminosalicylic acid;
PZA = pyrazinamide; RIF = rifampicin; STR = streptomycin.
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predictive and the 23 others were classified
as nonpredictive of drug resistance (see
Table E6).

Discussion

This analysis of almost 1,400
comprehensively sampled MTB clinical
isolates, including more than 1,100 MDR
isolates, has expanded the list of genetic
determinants for drug resistance. The
large number of genetic determinants
found (238 mutations in 18 genetic loci)
emphasizes that future MTB drug resistance
diagnostics need to allow for a high
dimension of mutation detection. This
may render WGS technology the most
attractive approach especially as it becomes
more affordable and more readily available
even in resource-limited settings.

Our analysis also shows that although
the genetic determinants of resistance to
RIF and INH are well defined, the full
complement of mutations encoding
resistance to other first- and second-line
drugs is not yet established. These findings
support previous work showing that
rapid diagnostic tests for detecting
mutations that confer resistance to INH
and RIF are highly sensitive and specific but
those targeting other drugs require further
optimization if they are to replace
conventional DSTs (6, 38, 39).

Several possible mechanisms may
account for this sensitivity gap. First, there
are likely as-yet-undetected DR loci and
epistatic effects that code resistance to
one or more drugs. Genome-wide analysis
studies may identify these targets in the near
future. Here we focused only on genes
known or suspected to be associated with
resistance, but we nevertheless identified
multiple novel variants associated with
clinical DR.

Second, some discrepancies may be
caused by errors in “gold standard” DSTs.
For example, the reproducibility of DST
for some agents, such as PZA and EMB,
is low, and results vary both by laboratory
and technician (40). We tried to limit
these discrepancies by choosing isolates
well-characterized with respect to DR tested
in national and supranational reference
laboratories using WHO-recommended
methods (5), but it is possible that some

discrepancies remain and account for the
low sensitivity and specificity of targeted
sequencing for these more problematic
drugs. It was not possible to retest all
isolates that had discordant genotype and
phenotype results because of the large
number of isolates resistant to second-line
drugs in these study. We did observe a DST
false-negative rate of 0.1–6% as determined
by the frequency of isolates that were
phenotypically sensitive and found to have
canonical resistance mutations (indicated
by genes in bold in Table 2). Although
factors that determine the false-positive rate
are somewhat different, a false-positive rate
of a similar magnitude to the observed
false-negative rate is unlikely to explain
most of the genotypic sensitivity gap.

Third, despite the high depth of
our MIP sequencing, it is possible that
minority resistant bacterial populations
that resulted in a resistant DST were
not adequately amplified and sequenced.
Finally, it is possible that some
genetic variants that lead to antibiotic
resistance may involve rearrangements or
recombination events that are not detected
by the sequencing tools used here,
which yield short DNA sequence reads
optimized for detecting short nucleotide
polymorphisms rather than these
structural changes. It is well documented
that rearrangements (41) can lead to
resistance to chemotherapeutic drugs used
to treat human malignancies and that
resistance to antibiotics can result from
large duplications that result in increased
gene dosage (42).

Although our results are consistent
with several previous reports on targeted
sequencing of DR-TB, some of these have
reported higher sensitivities for specific
drugs. For example, two other groups
obtained higher sensitivities for KAN
because they included the eis gene among
the loci sequenced (38, 39). Eis had not
been identified as a resistance-associated
gene at the time our study began, but
mutations in this locus have since been
found to explain up to 20% of KAN
resistance (43). Other recently identified
resistance genes in MTB include panD
and rpsA, which was reported to confer
PZA resistance in isolates that lack pncA
mutations (12, 44, 45). Previous studies
have also focused exclusively on either

MDR (39) or XDR (38) isolates, which
may have a narrower range of resistance
mutations. This is supported by our
observation of a lower genotypic sensitivity
for INH resistance in monoresistant as
compared with MDR isolates.

Although some of the variants
associated with resistance phenotypes may
cause resistance, others are likely to be
mutations that interact with a causative
mutation or compensate for its fitness
cost. For example, one study showed that
mutations in rpoC ameliorated fitness costs
incurred by RIF resistance mutations in
rpoB (46). Even if these mutations do not
themselves confer resistance, it may be
useful to include them in molecular
diagnostic tools if they reliably predict
resistance. In this study, we oversampled
DR isolates to detect rarer genetic
determinants and develop a more sensitive
genotypic prediction model. This was at
the expense of undersampling isolates
sensitive to INH and RIF and may
negatively impact the specificity of the
resistance variants selected for these two
drugs. Despite this oversampling, the
variant-based model’s specificity for these
two drugs was validated at greater than or
equal to 94% on an independent set of
patient isolates. For all other drugs studied,
at least 31% of the sample were
phenotypically sensitive.

We do expect the sensitivity and
specificity gaps to close as more clinical and
research teams move to routine WGS of
resistant isolates (47). The success of this
endeavor depends on creation of public
databases pooling data across laboratories
and geographic regions and on the further
refinement of predictive models similar to
that proposed here that can update DR
predictions as soon as new data become
available (48). With WGS and user-friendly
public databases, we expect that it will be
possible to conduct routine diagnosis of
resistance to the full spectrum of TB drugs,
thereby allowing effective individualized
treatment for DR-TB. n
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