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Finding potent multidrug combinations against cancer and infections is
a pressing therapeutic challenge; however, screening all combinations
is difficult because the number of experiments grows exponentially
with the number of drugs and doses. To address this, we present
a mathematical model that predicts the effects of three or more
antibiotics or anticancer drugs at all doses based only on measure-
ments of drug pairs at a few doses, without need for mechanistic
information. The model provides accurate predictions on available
data for antibiotic combinations, and on experiments presented
here on the response matrix of three cancer drugs at eight doses per
drug. This approach offers a way to search for effective multidrug
combinations using a small number of experiments.

drug combinations | drug cocktails | cancer treatment | mechanism-free
formula | predictive formula

To kill cancer cells or bacteria, combination therapy can be more
effective than individual drugs (1–6). Combination therapy is

thought to allow increased efficacy at low doses, thus reducing
side effects and toxicity; it is also believed to minimize the
chances of resistance (7–9), a pressing problem in treating cancer
and infectious diseases.
Much work has been devoted to classifying how pairs of drugs

interact (10–14). Across systems, a good first approximation is the
Bliss independence model (15, 16), in which the pair effect is the
product of the individual drug effects: If the effect of the drugs are g1
and g2, the effect of the combination is g12 = g1 · g2. The Bliss model
ignores interactions in which drugs enhance each other effects—
synergism—or inhibit each other’s effects—antagonism. Some drugs
even inhibit each other so much that the combined effect is lower
than either drug alone, an effect called hyperantagonism (17–21).
Going beyond drug pairs has been difficult. Experimentally

testing high-order combinations beyond pairs in a systematic way
is challenging because it requires an exponentially large number
of experiments (22–25): For N drugs at D doses, one needs DN

experiments. For N = 10 drugs and D = 8 doses, this means ∼109
measurements. The combinatorial explosion makes exhaustive
testing of drug dose combinations unfeasible. This problem is
especially acute in cases where material is scarce, such as testing
of patient-derived samples (26–29). Hence, models for predicting
high-order effects are essential.
Apart from detailed simulations of particular systems (22, 30,

31), there has been little study of general mechanism-independent
models for multiple drugs. An exception is the elegant study by
Wood et al. (32) that showed that combinations of antibiotics can
be predicted by an Iserliss-like formula that uses pair effects to
predict the effects of higher-order mixtures. For example, the effect
of a drug triplet is modeled as g123 = g12g3 + g13g2 + g23g1 − 2g1g2g3.
This formula has not been tested on cancer drug mixtures, to the
best of our knowledge.
Another line of research uses machine learning algorithms to

make predictions based on a small number of measurements (23,
33–37). Such approaches use regression to extrapolate from data,
and often require iteration cycles of prediction and experiment
to home in on solutions. Such machine learning approaches can
benefit from a predictive formula that can make the search less
prone to experimental error and can help avoid local maxima.

Here we study how multiple cancer drugs interact to affect cells by
measuring the response matrix of three cancer drugs at eight doses
per drug. We find that existing approaches do not accurately predict
the response matrix. We therefore introduce a relatively simple
model for drug mixtures. This model predicts high-order combination
effects at all doses, based on measurements on single drugs and
drug pairs at a small number of doses. The model provides accurate
predictions for the three anticancer drug dose–response matrix
measured in this study, and available data on antibiotic effects on
bacterial growth rate (32), even in cases where synergy and antag-
onism is strong. This model is especially noise-resistant because it
interpolates between dose measurements. The present model may
be used to make accurate predictions of multiple drugs, based on
only a few measurements of single and pair effects, thus bypassing
the need for an exponentially large number of measurements.

Results
Current Approaches Do Not Describe the Response Matrix of Three
Cancer Drugs. We experimentally measured the dose–response ma-
trix for eight doses of three commonly used chemotherapy drugs—
doxorubicin, taxol, and cisplatin—on survival of A549 human lung
cancer cells. Survival was measured using a cell viability assay (Methods).
The single-drug dose curves are given by the response matrix

when the dose of the two other drugs is zero. The dose–response
curves were well fit by Hill curves (10, 38, 39), characterized by a
steepness parameter (Hill coefficient) n and a halfway point D0,
equal to the drug concentration of 50% effect

gi =
1

1+ ðDi=D0iÞni
. [1]

When combined, the drugs show a relatively complex interplay,
which can be visualized by 2D slices through the response matrix
(Fig. 1). Some slices show nonmonotonic behavior where survival
is highest at intermediate doses.
To evaluate synergy and antagonism, we computed the Bliss

approximation, given by the product of the single-drug response
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curves g123ðD1,D2,D3Þ= g1ðD1Þg2ðD2Þg3ðD3Þ. The Bliss approxi-
mation differs significantly from the measured response matrix
(Figs. 1 and 2A). The drug combinations show reduced effect
compared with Bliss, which means that they show antagonism
(Fig. 2A). Antagonism is partly due to cell cycle effects where
taxol tends to prevent entry of cells into the S phase in which the
other two drugs are most effective (40–42).
We next compared the data to the Isserlis formula g123 = g12g3 +

g13g2 + g23g1 − 2g1g2g3. We find that the Isserlis model does better
than Bliss but still explains only 60% of the variance, R2 = 0.6 (Fig.
2B). One reason for this relative lack of fit is experimental noise:
The Isserlis model depends sensitively on errors in the three input
pairs g12, g13, and g23 and the three single-effect data points g1, g2,
and g3.
We also performed regression similar to that used in machine

learning approaches (36, 37, 43), which results in the formula
g123 = g12g13g23=g1g2g3 (Methods). This regression formula shows
poor performance (Fig. 2C). We conclude that an improved for-
mula is needed to describe the present three-drug response matrix.

A Simple Dose Model for Drug Combinations. We present a simple
model for drug combinations. This is a model for three or more
drugs, based on measurements of the response of single drugs
and drugs pairs at a few dose combinations.
The model extends the Bliss formula; it is based on the

product of the effects of all drugs in the mixture, not at their true
doses but rather at effective doses that differ from the true doses
due to interactions with the other drugs in the mixture. This
interaction is modeled by introducing interaction terms between
drug pairs (14). In the model, the effective dose of each drug,
Dieff, is its true doseDi times a product of theMichaelis−Menten-like
terms for all of the other drugs

g1:::n = g1
�
D1eff

�
· g2

�
D2eff

�
··· gn

�
Dneff

�

Dieff =Di

Y
j≠i

�
1+ aij

Djeff=D0j

1+Djeff=D0j

�−1

.
[2]

The functions gi are Hill functions appropriate to each single drug (Eq.
1) with steepness ni and halfway point D0i. They are evaluated from
the single-drug response curve. The aij interaction parameters are

computed from two-drug data (Methods). This model assumes that
the effects of drugs on each other’s effective doses are multiplicative,
and that one can neglect third-order and higher interactions (44).
To test this model, we begin by considering two-drug response

surfaces (3, 45, 46). Thus, we consider Eq. 2 with only two drugs.

A B

Fig. 1. Response matrix of three chemotherapy drugs at eight doses shows nonmonotonic behavior that is well captured by the dose model but not by other
models. (A) Survival of A549 lung cancer cells when treated with the three pairs of drugs (taxol−doxorubicin, cisplatin−doxorubicin, cisplatin−taxol) at eight
doses each: (Left) the measured response, (Middle) the predicted response using the present dose model, and (Right) the predicted response by Bliss inde-
pendence. (B) Slices of the three-drug dose–response matrix. The first column is the measured response, followed by the prediction of the three drugs’ in-
teractions using different models. Note that the Isserlis and regression models apply only to triplets and above, not to pairs.
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Fig. 2. Response of three cancer drug mixtures at multiple doses is best
captured by the present dose model. Experimental measurements of the
mixture of the three anticancer drugs taxol, doxorubicin, and cisplatin at all
dose combinations compared with (A) Bliss independence, (B) Isserlis pre-
dictions, (C) regression model, and (D) present dose model predictions. R2 =
1 −

P
(Model − Experiment)/var(Experiment) can yield negative values when

the mean model prediction is different from the mean experimental mea-
surement, indicating a very poor fit.
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The response surface in the model is a product of Hill functions
gi of the effective doses D1eff and D2eff

g12 = g1
�
D1eff

�
g2
�
D2eff

�
. [3]

Each effective dose is modeled as the true dose divided by a
Michaelis−Menten-like factor of the effective dose of the other
drug in units of its halfway point

D1eff =
D1�

1+ a12
D2eff=D02

1+D2eff=D02

�;  D2eff =
D2�

1+ a21
D1eff=D01

1+D1eff=D01

�. [4]

This model has two free parameters for the interaction, a12 and
a21, which are fit from the pair data (Methods).
The model captures all three pairs of cancer drugs studied here

with high accuracy (Fig. 1A). It shows R2 = 0.87, 0.91, and 0.86 for the
pairs doxorubicin−taxol, doxorubicin−cisplatin, and taxol−cisplatin,
respectively. For comparison, Bliss independence gives R2 = 0.16,
0.83, and 0.7. All three pairs of drugs show antagonism (aij > 0),
with the antagonism of taxol and doxorubicin being most significant.
For drug pairs, there exists an additional wealth of published

data to test the model. The model fits well all interactions of 20
antibiotic pairs and two pairs of anticancer drugs measured in

ref. 14 (Fig. 3 and Fig. S1A). The model captures almost all of
the variation in the data (<R2> = 0.95). For comparison, the
Bliss independence model gives <R2> = 0.58. The model is even
capable of capturing hyperantagonism (47), where the pair has a
lower effect than either of the two single drugs [such as the pair
trimethoprim−lincomycin (Fig. 3B)].
Importantly, the present dose model requires only a few mea-

surements to accurately fit the entire dose surface of a drug pair,
because it has only two (or one) free parameters. In all cases
considered here, 10 measurements on pairs of doses suffice to
provide an excellent fit to the entire experimental dose surface of
a drug pair (Fig. S2).
The model can be made even simpler in many cases: For many

drug pairs, setting one of the two interaction parameters a12 or
a21 to zero obtains a model with a single fitting parameter. This
model reduction gives a loss of accuracy of less than 0.5% for
80% of the drug pairs (Fig. S2).
The finding that a single interaction parameter captures many

of the pairs provides a picture of a hierarchy between the drugs:
Drug 1 changes the effective dose of drug 2 but not vice versa
(1→2). A hierarchy is obtained because we find that that these
relations are transitive: If drug 1 affects drug 2 (1→2) and drug
2 affects drug 3 (2→3), then drug 1 will affect drug 3 (1→3) but
not vice versa. The hierarchy between antibiotics is shown in Fig. 4.
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Fig. 3. The present dose model accurately describes response surfaces of antibiotic and chemotherapy drug pairs. Examples of response surfaces for antibiotic pairs
that are (A) antagonistic (B) hyperantagonistic, and (C) synergistic. (D) Interactions of anticancer drug pairs also well described by the model. (E) R2 values of the 20
drug pairs considered here for Bliss independence (o), and the present dose model of Eqs. 3 and 4 (x). Experimental data from Wood et al. (14). Cip, ciprofloxacin;
Cm, chloramphenicol; Dox, doxycycline; Ery, erythromycin; Linc, lincomycin; Ofl, ofloxacin; Sal, salicylate; Tet, tetracycline; Tmp, trimethoprim (see also Fig. S1A).
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For example, salicylate is high on the hierarchy because it acti-
vates a multidrug efflux system that transports other drugs out of
the bacterial cell (48) (Fig. S3).

The Dose Model Describes Combinations of Three and Four Antibiotics
Using Only Pair Data. We now turn to the anticancer drug triplet
measured here. We used the aij interaction parameters for the
three pairs in the triplet. We find that the dose model for three
drugs (Eq. 2) describes the full three-drug interaction matrix very
well (R2 = 0.82; Figs. 1 and 2).
We further compared the model for triplets and quadruplets

of antibiotics published previously (32). The dataset includes six
triplets and two quadruplets at a total of 1,384 dose combina-
tions. The drug pairs that make up these combinations have
synergy and antagonism, and several of the triplet and quadru-
plets are markedly non-bliss-like, so that prediction is challeng-
ing. We find that the model of Eq. 2, with aij parameters fitted
from drug pair data, works very well (R2 ∈ [0.85, 0.93]) for all of
these combinations (Fig. 5 and Fig. S1B).
For example, consider the antibacterial triplet chloramphenicol,

ofloxacin, and salicylate. Salicylate is highest in the hierarchy and
antagonistic to the other two antibiotics (48, 49). In the model,
this antagonism is represented by the parameters a23 = 7.2 ± 0.4
and a13 = 2.8 ± 0.3. The remaining pair has mild antagonism
(a21 = 0.5 ± 0.02). The triplet shows very strong antagonism
predicted accurately by the model [R2 = 0.88; compare with Bliss
R2 ≈ 0 (Fig. 5A)].

A second example that includes both synergy and antagonism is
the triplet chloramphenicol, ofloxacin, and trimethoprim (Fig. 5B).
Here ofloxacin and trimethoprim are synergistic (a23 = −0.8 ± 0.05)
as are chloramphenicol and trimethoprim (a31 = −0.57 ± 0.08),
whereas chloramphenicol and ofloxacin are antagonistic (a21 =
0.99 ± 0.07). Thus, a priori, it is difficult to predict the synergy/
antagonism of the triplet. The model predicts overall synergy, and fits
the experiment very well (R2 = 0.93 compared with Bliss R2 = 0.86).

The Dose Model May Be Used to Optimize Drug Combinations for
Minimal Side Effects. The dose model described here can be used
to navigate the space of multidrug doses to find combinations of
interest. As a schematic example, we consider the problem of
finding a drug combination with a given efficacy that has minimal
side effects. This example is meant to demonstrate a general ap-
proach, which can be made more realistic with accurate models for
side effects or other features that need to be optimized.
To illustrate this, we consider a triplet of antibiotics—

chloramphenicol, erythromycin, and trimethoprim. The model allows
calculating all dose combinations with a given effect, say a 10-fold
growth reduction of the bacteria, g = 0.1. The dose combinations that
give g = 0.1 form a surface in the 3D space of doses (Fig. 6).

Fig. 4. A hierarchy between antibiotics. For most of the drug pairs, one of
the two interaction parameters a12 or a21 can be set to zero without sig-
nificant loss of fit quality, resulting in a single parameter for the interaction.
In these cases, we can say that drug 1 changes the effective dose of drug 2
but not vice versa (1→2). We find that these relations are transitive: If drug 1
affects drug 2 (1→2) and drug 2 affects drug 3 (2→3), then drug 1 will affect
drug 3 (1→3) but not vice versa. The direction of the interaction is transitive,
but the absolute strength of the interaction is not always transitive. To
quantify the strength of the hierarchy we use the goodness of fit (RMSE)
difference in the case of a12 = 0 and a21 = 0. This quantity is indicated by the
arrow thickness. The strength of the interaction is indicated by the color of the
arrow (red, strong antagonistic; blue, strong synergistic). We plotted only in-
teraction with nonnegligible hierarchy (ΔRMSE > 0.005%). Note that 8 out of
the 28 possible interactions were not present in the published dataset.
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Fig. 5. Combinations of three or four drugs arewell described by the present dose
model (x). Bliss independence (o) results are displayed for comparison. The three-
drug combination Cm-Ofl-Sal shows strong antagonism (B) The three-drug combi-
nation Cm-Ofl-Tmp show synergism. (C) The three-drug combination Cm-Ery-Tmp
shows synergism. (D) The three-drug combination Sal-Ery-Cm shows mild antago-
nism (E) The four-drug combination Linc-Cm-Ofl-Tmp shows complex interactions
captured by the model. (F) The four-drug combination Dox-Ery-Linc-Sal shows an-
tagonism. (G) R2 values for three- and four-drug combinations: Bliss model (o) and
the present dosemodel (x). Antibiotic data are fromWood et al. (32); results for the
present experiments on three anticancer drugs on A549 cells (Figs. 1 and 2) are also
presented. Cm/C, chloramphenicol; Dox/D, doxycycline; Ery/E, erythromycin; Linc/L,
lincomycin; Ofl/O, ofloxacin; Sal/S, salicylate; Tmp/T, trimethoprim. Isserlis model for
quadruplets is g1234 = g12g34 + g13g24 + g14g23 − 2g1g2g3g4 (see also Fig. S1B).
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On this surface, we seek the combination with minimal side
effects. Assuming that side effects increase with drug doses, we
can seek to minimize, for example, the sum of normalized doses
S =

P
Di/D0i (Fig. S4). Another possibility is to minimize the

maximal dose in the combination M = max(Di/D0i). In both cases,
an optimal drug combination is found that uses lower doses than
the best individual drug (indicated by an arrow on the g = 0.1
surface in Fig. 6). The combination that minimizes summed doses
has a twofold lower total dose than the best individual drug (Fig.
S4). The combination that minimizes maximal dose has a fourfold
lower dose than the best individual drug (Fig. 6).

Discussion
We presented a model for the effects of multidrug mixtures for
anticancer drugs and antibiotics. The model does not require
knowledge of the mechanism of drug action, and is based on
relatively few measurements on drug pairs. The model accurately
describes published data on antibiotic triplets and quadruplets,
as well as experimental data presented here on dose–response of
combinations of three cancer drugs.
The model has two interaction parameters for each pair, a12 and

a21. These parameters describe how the effective dose of a drug is
affected by the presence of the other drug. The parameters can be
accurately estimated based on about 10 dose combinations for each
pair. The use of several dose combination measurements to esti-
mate the parameters helps reduce the effects of experimental
noise, partly explaining why the present model is more accurate
than previous mechanism-free models such as the Isserlis model
and regression-based models (Fig. S5).
The fitted interaction parameters reveal a hierarchy between

the drugs. Some drugs impact the effective dose of the other
drug but not vice versa. This relationship is transitive and can
offer clues about the mechanisms of synergy and antagonism.

For example, a drug high in the hierarchy is likely to set off
general drug resistance systems, as in the case of salicylate, which
activates the mar system in bacteria (Fig. S3).
The present approach can overcome the combinatorial explosion

problem in which the number of experiments rises exponentially
with the number of drugs and doses, because it requires few mea-
surements. Instead of DN measurements for N drugs and D doses,
we can use the single-drug dose–response curves plus a sampling of
the pair dose combinations to fit the interaction parameters aij. In
total, this model requires only a quadratic number of measure-
ments, N · D + cN(N − 1)/2, where c is ∼10. This means that for
N = 6 drugs and D = 8 doses, we need only 198 measurements
instead of DN ≈ 3 · 105. For N = 10 drugs and D = 8 doses, we
need only 530 measurements instead of ∼109. This approach there-
fore potentially allows navigating the space of high-order drug com-
binations to search for mixtures with high efficacy at low dose.

Methods
RegressionModel.Machine learning approaches often use regressionmodels.
A commonly used regression formula employs the variables xi = 0 or 1
that denote the absence or presence of drug i in the mixture. The effect
of the mixture g is described in the model as logðgÞ=P

bixi +
P

cijxixj.
The parameters bi and cij are fit from single and pair data. For triplets,
the equivalent formula is g123 =g12g13g23=g1g2g3. For quadruplets,
g123 =g12g13g14g23g24g34=ðg1g2g3g4Þ2.

Estimation of Model Parameters. We determine the values and confidence in-
tervals of the model parameters (ni, D0i, and aij) using the MATLAB function “fit.”
We use the single-drug dose–response curve to estimate the values and un-
certainty of ni andD0i for each drug. The interaction parameters aij are determined
by the two-drug responsematrix. In the process of fitting aij, we allow ni andD0i to
change within their uncertainty estimated from the single-drug measurements.

Computation of Effective Doses in the Model. In the general case aij ≠ 0, we
determine the effective dose by numerically solving Eq. 2 using the MATLAB
function “fmincon.” When there exists a hierarchy between the drugs in the
combination and {aij = 0jaji = 0}, there is an analytic solution to Eq. 2 that
one can use instead of a numerical solution

D1eff =D1;Dieff =Di∏
j>i

�
1+ aij

Djeff
�
D0j

1+Djeff
�
D0j

�−1

.

Cell Lines and Culture Conditions. Measurements were performed by BioDuro
(email bioduroinfo@bioduro.com). A549 (non-small cell lung cancer) cells were
grown in 384-well plates (#3707; Corning) plated at 104 cells per well. Plates were
incubated at 37°C and 5% (vol/vol) CO2 for 24 h in membrane-filtered growth
media composed of RPMI (Roswell ParkMemorial Institute) 1640with L-glutamine
(#11875093; Invitrogen) supplemented with 10% FCS [certified FBS, FBS
(#SH30084.03; HyClone)], and 0.05% Penicillin-Streptomycin (#15140-122;
Invitrogen). After 24 h, the drugs (taxol, doxorubicin, and cisplatin) were
added (2.5 μL per well) to final concentrations of 20 μM, 10 μM, 3.3 μM,
1.1 μM, 370 nM, 123 nM, 41 nM, and 13.7 nM and two controls: 0.1%
DMSO and 2.5 μL of regular media (untreated). Cells were incubated
with drugs for 48 h, followed by a cell survival assay [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide].

Cell Survival Assay. The viability assay was done using an MTT-based in vitro
toxicology assay (#C0009; Beyotime). Cells were incubated with reconstituted
MTT for 4 h, and absorbance was measured at 570 nm.
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Fig. 6. Search for a mixture with high efficacy at low doses. We seek a
combination of three antibiotics with a given large effect (g = 0.1). The doses
that satisfy this condition form a surface in the 3D dose space for chloram-
phenicol (Cm), erythromycin (Ery), and trimethoprim (Tmp). On this surface, we
seek the combination with minimal side effects. Assuming that side effects
increase with drug doses, we can seek to minimize, for example, the maximal
dose in the combination M = max(Di/D0i). The colors indicate the decrease in
M relative to the lowest Di/D0i of the individual drugs. The optimal drug
combination indicated by an arrow on the g = 0.1 surface has a fourfold-lower
M than the best individual drug (see also Fig. S4).
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