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Collective sensing by interacting cells is observed in a variety of
biological systems, and yet, a quantitative understanding of how
sensory information is collectively encoded is lacking. Here, we
investigate the ATP-induced calcium dynamics of monolayers of
fibroblast cells that communicate via gap junctions. Combining
experiments and stochastic modeling, we find that increasing the
ATP stimulus increases the propensity for calcium oscillations,
despite large cell-to-cell variability. The model further predicts that
the oscillation propensity increases with not only the stimulus, but
also the cell density due to increased communication. Experiments
confirm this prediction, showing that cell density modulates the
collective sensory response. We further implicate cell–cell commu-
nication by coculturing the fibroblasts with cancer cells, which we
show act as “defects” in the communication network, thereby re-
ducing the oscillation propensity. These results suggest that mul-
ticellular networks sit at a point in parameter space where cell–cell
communication has a significant effect on the sensory response,
allowing cells to simultaneously respond to a sensory input and
the presence of neighbors.

cell–cell communication | calcium oscillations | gap junctions |
cellular sensing | collective behavior

Decoding the cellular response to environmental perturba-
tions, such as chemosensing, photosensing, and mechano-

sensing, has been of central importance in our understanding of
living systems. To date, most studies of cellular sensation and
response have focused on single isolated cells or population
averages. An emerging picture from these studies is the set of
design principles governing cellular signaling pathways: these
pathways are organized into an intertwined, often redundant
network with architecture that is closely related to the robustness
of cellular information processing (1, 2). However, many exam-
ples suggest that collective sensing by many interacting cells may
provide another dimension for the cells to process environmental
cues (3). Examples, such as quorum sensing in bacterial colonies
(4), olfaction in insects (5) and mammals (6), glucose response in
the pancreatic islet (7), and the visual processing of retinal
ganglion cells (8), suggest a fundamental need to revisit cellular
information processing in the context of multicellular sensation
and response, because even weak cell-to-cell interaction may
have strong impact on the states of multicellular network dy-
namics (9). In particular, we seek to examine how the sensory
response of cells in a population differs from that of isolated cells
and whether we can tune between these two extremes by con-
trolling the degree of cell–cell communication.
Previously, we described the spatial–temporal dynamics of

collective chemosensing of a mammalian cell model system (10,
11). In this system, high-density mouse fibroblast cells (NIH 3T3)
form a monolayer that allows nearest neighbor communications
through gap junctions (12). When extracellular ATP is delivered
to the monolayer, store-operated calcium dynamics is mediated
by second messenger inositol 1,4,5-trisphosphate (IP3) (13).
The dynamics is complicated by nonlinear feedback between
Ca2+ and the ion channel opening probability, which leads to
rich behaviors, such as cytosolic calcium oscillations (14). In the

situation of collective ATP sensing, we have found that gap
junction communications dominate intercellular interactions
(10). Furthermore, these short-range interactions propagate
and turn the cell monolayer into a percolating network (11).
These characteristics make the system ideal for studying how
sensory response is modulated by communication in multicellular
networks.
Here, we use this model system to examine how cell–cell

communication affects collective chemosensing. Combining ex-
periments with stochastic modeling, we find that cells robustly
encode the ATP stimulus strength in terms of their propensity
for calcium oscillations, despite significant cell-to-cell variability.
The model further predicts that the oscillation propensity de-
pends on not only the stimulus but also the density of cells, and
that denser monolayers have narrower distributions of oscillation
frequencies. We confirm both predictions experimentally. To
verify that the mechanism behind the density dependence is the
modulation of cell–cell communication, we introduce cancer
cells (MDA-MB-231) into the fibroblast cell monolayer. As we
show, MDA-MB-231 cells act as “defects” in the multicellular
network, because they have distinct calcium dynamics compared
with the fibroblasts caused by reduced gap junction communi-
cation (15–17). We find that the oscillation propensity of the
fibroblasts decreases as the fraction of cancer cells increases,
confirming that the sensory response is directly affected by the
cell–cell communication.

Results
To study the sensory responses of a multicellular network, we use
single-channel microfluidic devices and deliver ATP solutions to
monolayers of fibroblast (NIH 3T3) cells. The ATP concentrations
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vary from 0 to 200 μM, and the calcium dynamics of individual cells
is obtained with fluorescent calcium indicator at 4 frames per
second (more details are in SI Appendix, section 1).
We modulate the degree of communication in two ways. First,

we vary the cell density. Smaller cell densities correspond to larger
cell-to-cell distances, which we expect to reduce the probability of
forming gap junctions. Second, we coculture the fibroblasts with
breast cancer (MDA-MB-231) cells in the flow channel (SI Ap-
pendix, section 1). As we later show, MDA-MB-231 cells have re-
duced communication properties and therefore, act as defects in
the multicellular network. To distinguish the two cell types, MDA-
MB-231 cells are prelabeled with red fluorescent dye (Cell Tracker
Red CMTPX; Life Technologies). Varying cell density and the
fraction of cancer cells allow us to control the architecture of the
multicellular network over a wide range.
Fig. 1A shows the composite image of a high-density cell

monolayer with cocultured fibroblast and cancer cells. In this
example, MDA-MB-231 cells make up a fraction FC = 15% of
the total population, which has a total cell density of ρT =2,500
cells per 1 mm2. At this density, each cell has an average of six
nearest neighbors, from which extensive gap junction communi-
cation is expected. After identifying cell centers from the com-
posite image (SI Appendix, section 1), we compute the time-
dependent average fluorescent intensity near the center of each
cell, which represents the instantaneous intracellular calcium
concentration at the single-cell level.

Collective Response to ATP Stimuli. Typical responses of cells to
excitation by ATP are shown in Fig. 1B. We see that, on average,
higher concentrations of ATP trigger larger increases in calcium
levels. Cell-to-cell variations are significant; for example, response
times as well as subsequent calcium dynamics of individual cells
vary dramatically. In many cells, the initial calcium increase is
followed by transient calcium oscillations. We quantify the oscil-
lation propensity by computing the fraction of nonoscillating cells
FN using a peak-finding algorithm (SI Appendix, section 2). We
see in Fig. 1C that higher concentrations of ATP cause a larger
percentage of cells to oscillate and thus, a smaller FN.
The period of the oscillation is characterized by the interspike

interval (ISI), which has been proposed to dynamically encode
information about the stimuli (18, 19). To investigate the char-
acteristics of ISI in the context of collective chemosensing, we
study the statistics of the ISI from 30,000 cells. Fig. 1D shows the
histogram (event counts) of ISI values normalized by the number
of cells of a typical experiment where the ATP concentration is
50 μM. We see that the distribution is broad, which underscores
the high degree of cell-to-cell variability in the responses. Fig. 1E
summarizes the distribution at each ATP concentration using a
box and whisker plot. We see that there is no significant de-
pendence of the ISI on the ATP concentration. This observation
is at odds with a familiar property of calcium oscillations, termed
frequency encoding, in which the oscillation frequency (or ISI)
depends on the strength of the stimulus (14, 18, 20, 21). How-
ever, we will see in the next section that the lack of a dependence
here is likely caused by the high degree of cell-to-cell variability.
Finally, we characterize the spatial correlations of the ISI

within the monolayer by computing the cross-correlation func-
tion CISI as a function of topological distance d between cells
[defined by Delaudry triangulation (10)]. For each experiment,
we compute the average ISI Ti for each oscillatory cell i. We then
define δTi =Ti − hTii and CISIðdÞ= hδTiδTjiDij=d=hδT2

i i, where Dij
is the topological distance between cells i and j. Fig. 1F shows
that CISI falls off immediately for d> 0. This observation is sur-
prising, because one might hypothesize that communication
between cells would result in ISI values for nearby cells being
correlated. However, as described next, evidence from mathematical
modeling suggests that this correlation is removed by the cell-to-
cell variability.

Stochastic Modeling of the Collective Response. To obtain a
mechanistic understanding of the experimental observations, we
turn to mathematical modeling. We develop a stochastic model of
collective calcium signaling based on the works of Tang and
Othmer (18, 22). Their model captures the ATP-induced release
of IP3, the IP3-triggered opening of calcium channels, and the
nonlinear dependence of the opening probability on the calcium
concentration as illustrated in Fig. 2A. The model neglects more
complex features of calcium signaling observed in some cell
types, such as upstream IP3 oscillations (23, 24) and spatial
correlations among channels (25, 26). The model predicts that, at
a critical ATP concentration, the calcium dynamics transitions
from nonoscillating to oscillating. However, it was previously

C

E F

BA

1

-1
200 400

In
te

ns
ity

 (A
.U

.)

time (sec)

10μM

20μM

50μM

100μM1

-1

D

20

80

10 20 50 100
ATP (μM)

IS
I (

se
c)

 

0.2

0.3

0.1

0 50 100
ISI (sec) 

no
rm

. c
ou

nt
s 

0 50 200
ATP (μM)

0.3

0.8

0 4

0

10
topological distance

0.6

*

*

Fig. 1. Calcium dynamics of cell monolayer in response to extracellular ATP.
(A) Composite image showing the multicellular network of cocultured fi-
broblast (NIH 3T3) and breast cancer cells (MDA-MB-231). Green, fluorescent
calcium signal for both cell types; red, MDA-MB-231. (B) Normalized fluo-
rescence intensity profiles of one typical experiment for each ATP concen-
tration tested. Blue, randomly selected single-cell calcium responses; red,
average intensity profiles of all cells in each experiment. All time series begin
∼50 s before arrival of ATP stimuli. Intensity profiles of individual cells have
been rescaled to ½−1, 1�. (C) Fraction of nonoscillating cells FN as a function of
ATP concentration at fixed cell density. Error bars: SEMs for n≥ 4. *P < 0.05.
(D) ISI event counts normalized by number of cells for only NIH 3T3 cells.
(E) Average experimentally measured ISI values of NIH 3T3 cells at varying ATP
concentrations at fixed cell density. In B, C, and E, cell density ρT = 1,200± 200
cells per 1 mm2, and cancer cell fraction FC = 15± 6%. (F) ISI cross-correlation as
a function of topological distance. Data from experiments with 50 μM ATP at
fixed cell density (ρT = 1,400± 400 cells per 1 mm2) and cancer fraction
(FC = 20± 5%). Error bars show SDs from five experiments.
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only analyzed deterministically for a single cell (18, 22).
Therefore, we extend it to include both intrinsic noise and
cell–cell communication via calcium exchange (SI Appendix,
section 3). We also explicitly include the dynamics of IP3,
which has a constant degradation rate and a production rate α
that we take as proportional to the ATP concentration. We
simulate the dynamics using the Gillespie algorithm (27), and
we vary the density ρT of cells on a square grid, which mod-
ulates the degree of communication.
Fig. 2B shows the dependence of FN on α, the model analog of

the ATP concentration. Consistent with the experimental find-
ings in Fig. 1C, we see that FN decreases with α. In the model, the
decrease is caused by the fact that intrinsic noise broadens the
transition from the nonoscillating to the oscillating regime. Thus,
instead of a sharp transition from FN = 1 to FN = 0 as predicted
deterministically, the transition occurs gradually over the range
of α shown in Fig. 2B. Fig. 2C shows the dependence of the ISI
on α in the model (Fig. 2C, green box plots). We see that the ISI
decreases with α, which is expected, because frequency encoding
is a component of the Tang–Othmer model (18, 22). However,

this property is not consistent with the experimental observation
in Fig. 1E, where the ISI shows no clear dependence on ATP
concentration. Furthermore, Fig. 2D shows the dependence of
the correlation function CISI on the topological distance d in
the model (green dashed curve in Fig. 2D). We see that CISI
decreases gradually with d, indicating nonzero spatial correla-
tions in the ISI, again inconsistent with the experimental findings
(Fig. 1F).
Motivated by the high level of cell-to-cell variability evident in

Fig. 1 B and D, we hypothesize that cell-to-cell variability is re-
sponsible for these discrepancies between the model and the
experiments. Indeed, inspecting the ISI histogram from the
model reveals a very narrow distribution of ISI values, as seen in
Fig. 2E, green bars, which is in contrast to the broad distribution
observed experimentally in Fig. 1D. To incorporate cell-to-cell
variability, we allow the model parameters to vary from cell to
cell. Lacking information about the susceptibility of particular
parameters to variation, we allow all model parameters to vary
by the same maximum fold change F. F is found by equating the
variance of the resulting ISI distribution with that from the ex-
periments, which yields F = 2 (SI Appendix, section 3). As seen in
Fig. 2E, blue bars, the resulting ISI distribution is consistent with
that observed in Fig. 1D in both width and shape.
We see in Fig. 2C, blue box plots, that including cell-to-cell

variability in the model severely weakens the decrease of the ISI
with α, therefore agreeing with the experimental results shown in
Fig. 1E (with variability, α is defined as the mean of the α values
sampled for each cell). We also see in Fig. 2D, blue curve, that
variability removes the correlation CISI for d> 0, which is con-
sistent with the immediate fall off observed experimentally in
Fig. 1F. Importantly, even with variability, the decrease of FN
with α seen in Fig. 2B persists, as shown in Fig. 2F. This decrease
remains consistent with the experimental observation in Fig. 1C.
Indeed, variability significantly broadens the range of α values
over which the transition occurs, as expected (compare Fig. 2 B
and F), which is consistent with the broad range over which the
transition occurs experimentally (Fig. 1C).

Effects of Communication on the Sensory Response. Having vali-
dated the model, we now use it to make predictions about the
effect of cell–cell communication on collective calcium dynam-
ics. Communication in the model is controlled by cell density,
with higher density leading to more cell-to-cell contacts and thus,
a higher degree of communication. Therefore, we first investigate
the dependence of the oscillation propensity on the cell density.
Fig. 3A shows FN as a function of both cell density ρT and the ATP-
induced IP3 production rate α. We see that the fraction of non-
oscillating cells transitions from FN = 1 to FN = 0 as a function of α
and that there is also a dependence of FN on ρT. At low α, FN is
everywhere large and independent of ρT (Fig. 3 A, Left and B).
However, at intermediate α, FN is a decreasing function of ρT (Fig.
3 A, Right and C). In this regime, increasing the cell density causes
more cells to exhibit oscillatory calcium dynamics (thus decreasing
FN), even with a fixed sensory stimulus α. At large α (beyond the
range shown in Fig. 3A), we have checked that the nonoscillating
fraction is driven to low values as expected, and the density de-
pendence of FN is weakened (SI Appendix, section 3).
The prediction in Fig. 3C is striking, because it implies that

cell–cell communication causes more cells to oscillate, even
while cell-to-cell variability causes their ISI values to be spatially
uncorrelated (Fig. 2D). Therefore, we wondered whether com-
munication would have an effect on the width of the ISI distri-
bution in this regime. The width or more generally, the amount
of uncertainty in the ISI distribution is characterized by the en-
tropy. For a continuous variable x, the entropy becomes the
differential entropy defined as HISI =−

R
ρðxÞlogρðxÞdx, where

ρðxÞ is the probability density. As seen in Fig. 3D, the entropy of
the ISI distribution increases with FN. This result indicates that,
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Fig. 2. Model development and validation. (A) Schematic of the model. ATP
stimulates IP3 release at rate α, and IP3 acts jointly with Ca2+ to open the
endoplasmic reticulum (ER) calcium channels (positive feedback), whereas
additional Ca2+ binding closes channels (negative feedback). Communica-
tion is modeled via diffusion of Ca2+ between adjacent cells. (B) Fraction of
nonoscillating cells FN as a function of ATP-induced IP3 production rate α.
(C) ISI decreases with α (green). The decrease is severely weakened by cell-to-cell
variability (blue). (D) ISI cross-correlation as a function of topological dis-
tance d (green). Cell-to-cell variability removes correlations for d > 0 (blue).
(E) Distribution of ISI values (green). Cell-to-cell variability significantly
broadens distribution (blue). (F) FN vs. α with cell-to-cell variability. Cells are
simulated on a (B, C, E, and F) 3× 3 or (D) 7× 7 grid with density (B, D, and F)
ρT = 2.5×103 or (C and E) 1.4× 103 mm−2. In B and F, error bars are SEMs for
n=5 subsamples.
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as communication decreases FN, it also narrows the distribution
of ISI values.
We now test these predictions in our experimental system. To

test our predictions about how the nonoscillating fraction of cells
should depend on cell density, we measure FN as a function of ρT
for various ATP concentrations. We see in Fig. 4A that, with no
ATP, FN is large at both low and high densities, and there is no
statistically significant correlation between FN and ρT. Then, we
see in Fig. 4B that, at intermediate ATP concentrations (10–100 μM),
FN significantly decreases with ρT. Finally, we see in Fig. 4C that,
at large ATP concentration (200 μM), FN is small at both low and
high densities, and again, there is no statistically significant cor-
relation between FN and ρT. These results confirm the predictions
in Fig. 3.
To test the prediction that the entropy of the ISI distribution

increases with the nonoscillating fraction of cells, we measure
HISI as function of FN. As seen in Fig. 4D, HISI increases with FN,
consistent with the prediction in Fig. 3D. This result implies that
increasing the degree of communication narrows the distribution
of ISI, making the ISI values less variable across the population.
We have also checked that the entropy of the distribution of
cross-correlation values for nearest neighbors’ entire calcium
trajectories CNN (10, 11) decreases as a function of cell density
(SI Appendix, section 4). Together, these results imply that cell–
cell communication has a significant effect on the collective
sensory response. This finding is especially striking given the
strong effects of cell-to-cell variability (Fig. 1 E and F). We
conclude that the effects of communication observed here per-
sist, despite extensive variability.

Effect of Cancer Cell Defects. We have seen that increasing cell
density increases the propensity of cells to oscillate in response
to an ATP stimulus. This behavior is consistent with our model,
which predicts that the mechanism is through increased cell–cell
communication. However, it could be in the experiments that
increasing the cell density introduces other effects beyond
increased gap junction communication, such as mechanical
coupling between cells or coupling to the substrate (28). To

modulate the communication directly, we vary the fraction FC of
cancer cells with which the fibroblasts are cocultured, while
keeping the density of all cells fixed. Because cancer cells are
known to have reduced gap junction communication (15–17), we
expect the fraction of nonoscillating cells FN to have the opposite
dependence on FC that it does on cell density (Fig. 4B).
We first investigate whether MDA-MB-231 cells indeed have

reduced communication in our system. Fig. 5A shows several
examples of single-cell calcium dynamics for NIH 3T3 and
MDA-MB-231 cells in a typical experiment. We see that both
cell types exhibit immediate increases in cytosolic calcium levels
at the arrival of ATP, but cancer cells typically show long re-
laxation times, whereas fibroblast cells tend to more often exhibit
oscillations after stimulation. These qualitative features are
maintained across all ATP concentrations. Fig. 5B shows a com-
parison of the intercellular diffusion coefficients in the two cell
types obtained from a fluorescence recovery after photobleaching
analysis (29) (SI Appendix, section 1). We see in Fig. 5B that gap
junction-mediated diffusion between MDA-MB-231 cells is sig-
nificantly weaker than that between NIH 3T3 cells, consistent with
previous reports (15–17). Therefore, it is evident that MDA-MB-
231 cells can be treated as communication defects in the cocul-
tured multicellular network. Indeed, Fig. 5C shows the spatial
distribution of these defects in the monolayer. In Fig. 5C, the
mean ISI for each cell is shown in color, with nonoscillating cells
in black. We see that cancer cells, labeled by white circles, are
more likely to be nonoscillating, which is consistent with the
qualitative characteristics shown in Fig. 5A. We have further
quantified the distinction between the two cells types in SI Ap-
pendix, section 2, where we show using the distributions of ISI values
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that oscillatory events are at least five times less likely to occur for
the MDA-MB-231 cells.
Having established that the presence of cancer cells reduces

the degree of cell–cell communication in the monolayer, we now
vary the fraction of cancer cells and measure the oscillation
propensity of the remaining fibroblasts. Fig. 5D shows the non-
oscillating fraction of fibroblasts FN (blue bars) as a function of
the cancer cell fraction FC for a typical experiment at fixed cell
density (ρT = 1,200± 200 cells per 1 mm2). We see that FN sig-
nificantly increases with FC. We also see that FN for all cells
(both fibroblasts and cancer cells) (red bars in Fig. 5D) signifi-
cantly increases with FC and that, as expected, FN is larger for all
cells than for just fibroblasts. These findings imply that reduced
cell–cell communication decreases the propensity for calcium
oscillations, which is consistent with the effects of varying cell
density (Fig. 4B). Finally, we also investigate the effect of cancer
cells on the entropy of the ISI distribution. As shown in SI Ap-
pendix, section 2, HISI is higher for cells that are surrounded by a
large number of cancer cells and lower for cells with pure fi-
broblast neighbors. In the latter case, HISI also increases as the
number of nearest neighbors decreases. These findings imply
that reduced cell–cell communication increases the entropy of
the ISI values, even at the local level of a cell’s microenviron-
ment, which is consistent with the effects seen in Fig. 4D. Taken
together, we conclude that the calcium dynamics of individual
cells is strongly regulated by the degree of gap junction com-
munication inside the cell monolayer.

Discussion
We have characterized the collective calcium dynamics of mul-
ticellular networks with varying degrees of cell–cell communi-
cation when they respond to extracellular ATP. We have found
that increasing the ATP stimulus increases the propensity for
cells to exhibit calcium oscillations, which is expected at the
single-cell level. However, we have also found that increasing the
cell density alone, while keeping the stimulus fixed, has a similar
effect, revealing a purely collective component to the sensory
response. Modeling suggests that this effect is caused by an in-
creased degree of molecular communication between cells. In
line with this prediction, we have found that increasing the
fraction of cancer cells in the monolayer reduces the oscillation
propensity, because cancer cells act as defects in the communi-
cation network. Based on these results, we conclude that the
collective sensory response, in which nonlinear signaling dy-
namics is coupled with strong intrinsic and extrinsic noise, en-
codes both stimulus strength and degree of communication.
Our results suggest that the calcium response to extracellular

ATP encodes multiplexed information under physiological con-
ditions. Typical plasma and pericellular concentrations of ATP
in animals and human have been reported to range from sub-
micromolar to tens of micromolar (30–32), whereas hundreds of
micromolar have been associated with tumor because of the
hypoxia microenvironment (33). The concentration range of
ATP in Fig. 4B is associated with several physiological phe-
nomena, including immunomodulation (34, 35), traumatic shock
(36), and platelet activation (37). Within this range, our results
show that calcium dynamics encodes both stimuli strength in the
magnitude of intracellular calcium concentration (Fig. 1B) and
cell density in the propensity of calcium oscillation (Fig. 4B).
Such multiplexing has been shown to be possible with simple
biochemical networks (38), and it is thought to underlie the
ability of single networks to respond with specificity to multiple
inputs, such as neuronal growth factor and EGF in the rat PC-12
system (39). A possible reason for multiplexing is that it is ben-
eficial for the responses to each input to be dependent on each
other (40), which in our case, suggests a benefit for a collective
component to the ATP sensory response. The ways in which
dynamic information is stored in and extracted from cellular
signals are a topic of ongoing research (41, 42).
Recent experiments have put our results in the context of a

unique paradigm of cell signaling: cells may decode information
from the dynamics and not just the magnitude of signaling
molecules (43). For instance, UV and γ-radiation differentially
trigger nonoscillatory and oscillatory p53 dynamics (44). Simi-
larly, when endothelial cells are stimulated by VEGF, non-
oscillatory and oscillatory calcium dynamics leads to migration
and proliferation, respectively (45). In light of these develop-
ments, our results suggest that cell density, via gap junctional
communication and nonlinear signaling dynamics, can impact
cellular function, similar to so-called dynamical quorum sensing
(46–48).
Our results suggest that the dependence of the calcium re-

sponse on both sensory and collective parameters persists, de-
spite significant cell-to-cell variability. Certain measures are
robust to variability, such as the oscillation propensity and the
entropy of the ISI distribution, whereas others are not, such as
spatial correlations in the ISI and its dependence on the ATP
input (frequency encoding). This result implies that our main
finding of communication-dependent sensing is generic, because
it persists despite large variability, but that traditional measures
of information processing, such as frequency encoding, may have
to be rethought in contexts where cell-to-cell variability is pro-
nounced. It is becoming increasingly understood that variability
is common in cell populations, and recent examples suggest that
it may even be beneficial. For example, recent studies in a related
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Fig. 5. Effects of cancer cell defects on collective response. (A) Typical
fluorescence intensity profiles showing the calcium dynamics on the single-
cell level, where basal-level intensity has been subtracted. For each cell,
basal-level intensity is estimated by averaging 100 s of its fluorescent in-
tensity before ATP arrival (ATP concentration = 50 μM; ρT = 2,400 cells per
1 mm2; FC = 12%). (B) Fluorescence recovery after photobleaching experi-
ments confirm that MDA-MB-231 cells have weaker gap junction commu-
nication compared with NIH 3T3 cells (error bars: SEMs for n> 100). **P <
0.01. More details are in SI Appendix, section 1. (C) Spatial map of average ISI
of each individual cell. ATP concentration is 50 μM. Black, nonoscillating cell;
circle, MDA-MB-231 cell. (D) When stimulated by an intermediate range of
ATP concentrations (10–100 μM), the fraction of nonoscillating cells FN in-
creases with increased cancer fraction FC at fixed total cell density
(ρT = 1,200± 200 cells per 1 mm2). *P < 0.05. Blue, fraction of nonoscillating
NIH 3T3 cells; red, fraction of nonoscillating cells including both cell types.
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system (NF-κB oscillations in fibroblast populations) also found a
large degree of cell-to-cell variability (49) and showed that this
variability allows entrainment of the population to a wider range
of inputs (50).
In our model, the transition from the nonoscillatory to the os-

cillatory regime occurs because of a saddle-node bifurcation, a
critical point in parameter space where the number of dynamical
fixed points changes (SI Appendix, section 3). This transition is
broadened by intrinsic noise and cell-to-cell variability into a crit-
ical “region,” and cell–cell communication causes the oscillation
propensity to depend on cell density within this region (Fig. 3A).
Our finding that this region is broad and our suggestion that it may
be of some functional use for the system resonate with recent
studies that have argued that biological systems are poised near
critical points in their parameter space (51–53). The connection
between dynamical criticality, as in our model, and criticality in
many-body statistical systems remains to be fully explored.

Gap junctional communications exist among many types of
cells. Therefore, our results may have far-reaching implications
for other biological model systems, such as neuronal networks or
cardiovascular systems. Because gap junctions mediate fast,
nearest neighbor communication, we expect our conclusions to
also hold for 3D cell aggregates, such as tissue organoids. It will
be interesting to explore whether distinctions in the calcium
dynamics in these systems originate from differences in their
degrees of cell–cell communication.

Materials and Methods
SI Appendix, section 1 has details of sample preparation and data collection,
and SI Appendix, section 3 has details of stochastic modeling.
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