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The development of sophisticated experimental means to control
nanoscale systems has motivated efforts to design driving protocols
that minimize the energy dissipated to the environment. Computa-
tional models are a crucial tool in this practical challenge. We
describe a general method for sampling an ensemble of finite-time,
nonequilibrium protocols biased toward a low average dissipation.
We show that this scheme can be carried out very efficiently in
several limiting cases. As an application, we sample the ensemble of
low-dissipation protocols that invert the magnetization of a 2D Ising
model and explore how the diversity of the protocols varies in
response to constraints on the average dissipation. In this example,
we find that there is a large set of protocols with average dissipa-
tion close to the optimal value, which we argue is a general
phenomenon.

nonequilibrium | irreversible thermodynamics | entropic sampling
methods | Metropolis algorithm | Ising model

When a system is guided gradually from one equilibrium
state to another, the amount of heat dissipated into its

surroundings is insensitive to the manner of driving. In the more
realistic case of an irreversible transformation in finite time,
however, the dissipation can vary greatly from one driving pro-
tocol to another. These basic tenets of thermodynamics have
received renewed attention in recent years due to improved
capabilities for manipulating systems at small scales (1–7) and
advances in the theoretical understanding of nonequilibrium
fluctuations (8–10). In particular, many studies have sought to
identify which finite-time protocols transform a system with the
minimum amount of dissipation (11–18). Protocols that are
optimal in this sense provide the most efficient route to mea-
suring equilibrium free-energy differences—in simulations and
in experiments (19)—via the Jarzynski relation (14, 20). More
generally, low-dissipation protocols provide insight into the op-
timal design of nanoscale machines, both synthetic (4, 5) and
natural (21).
However, it remains challenging to identify the minimum-

dissipation protocol for complex, many-body systems driven
far from equilibrium, despite recent progress (22–24). The
difficulty of computing strictly optimal protocols motivates a
pragmatic question: how large is the set of nearly optimal pro-
tocols? In this paper, we develop a framework to characterize
that set. We introduce an entropy that indicates how many dif-
ferent protocols realize the same value of dissipation. For low
values of dissipation, this protocol entropy quantifies how
prevalent the near-optimal protocols are, highlighting when
the system may be efficiently driven in many different ways. In
analogy with common techniques of statistical physics, we pre-
sent Monte Carlo methods to numerically compute the entropy
by sampling protocols with a preference for low dissipation.
The samples generated by this procedure demonstrate the distinct
ways in which the system can be driven while maintaining the
expectation of low dissipation. Variation among the sampled
protocols accentuates features that are unimportant for ensuring

low dissipation; similarly, the lack of variation highlights fea-
tures that are essential for this goal. These ideas and capa-
bilities complement previous approaches to determining
optimal control procedures, using tools with many similar
features (22, 24, 25). We elaborate on the connections in
Discussion.
We illustrate our protocol-sampling framework with a nu-

merical study of spin inversion of a ferromagnet, an essential
process for copying information encoded in magnetic storage
devices. Reducing dissipation in this context is of practical in-
terest because thermodynamic costs of copying and erasing bits is
projected to account for a significant fraction of future compu-
tational energy expenditures (26, 27). We examine a simple
microscopic model of this process, based on the 2D Ising model
(Fig. 1). At low temperature and in the presence of an external
magnetic field, spins align strongly in the direction of the field.
By adjusting the magnetic field and the temperature as functions
of time, the magnetization may be rapidly inverted with a dissi-
pation that depends on the manner in which the field and tem-
perature are changed. Analysis of the protocol entropy in this
model indicates that a large set of nonoptimal protocols can be
used to control the system with a dissipation comparable to that
of the optimal protocol.

Protocol Entropy
We first consider an ensemble of protocols ΛðtÞ sharing the same
value ω of average dissipation. The protocol entropy SðωÞ of this
ensemble measures the density of protocols that have mean
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dissipation ω. In analogy to the standard microcanonical en-
semble of statistical mechanics, we define the entropy

SðωÞ= ln
�
Ω0

Z
DΛðtÞ  δðω− hωiΛÞ

�
, [1]

where the integral runs over the space of time-dependent
protocols ΛðtÞ and Ω0 is a constant that sets the arbitrary zero of
entropy. The delta function picks out protocols whose average
dissipation hωiΛ lies within an infinitesimal interval around the
specified value of ω. The Λ subscript denotes an average taken
over the probability distribution Ptraj½xðtÞjΛðtÞ� of stochastic tra-
jectories evolving under the fixed protocol ΛðtÞ:

hωiΛ =
Z

DxðtÞ  Ptraj½xðtÞjΛðtÞ�ω½xðtÞ,ΛðtÞ�. [2]

For a single trajectory xðtÞ, the dissipation ω can be cast in terms
of an imbalance between forward and reversed dynamics (10)
giving

ω½xðtÞ,ΛðtÞ�= ln
Ptraj½xðtÞjΛðtÞ�
Ptraj

�
~xðtÞj~ΛðtÞ�. [3]

Tildes signify time reversal, so the numerator and denominator are
probabilities of forward and reverse trajectories, respectively.
Optimal protocols, which carry some minimal dissipation,

represent a small fraction of the possible protocols. Conse-
quently, the protocol entropy evaluated at this minimal dissipa-
tion is low. As the dissipation increases, the entropy increases,
and the growth rate reflects how flexibly low-dissipation proto-
cols may be constructed. In particular, rapid entropic growth
near the minimum dissipation suggests that targeting an exact
optimal protocol is both challenging and gratuitous. Many other
protocols, in practice, will perform comparably to the optimum.
The limiting behavior of SðωÞ near the minimum dissipation

ωp can be calculated exactly, assuming only that hωiΛ depends
smoothly on variations in the low-dissipation protocols. As
shown in Supporting Information, protocol entropy grows loga-
rithmically in this regime:

SðωÞ= const+
�n
2
− 1
�
lnðω−ωpÞ, [4]

where n is the total number of protocol degrees of freedom, that
is, the total number of parameter values defining any given pro-
tocol. Quite generally, therefore, protocol entropy increases
sharply over a narrow range of dissipation values just above
the minimum ωp.

A Canonical Protocol Ensemble
To numerically compute the protocol entropy, it is useful to in-
troduce a canonical protocol ensemble with distribution

Pcanon½ΛðtÞ�∝ e−γhωiΛ . [5]

In correspondence with the canonical ensemble of statistical
mechanics, hωiΛ acts as an effective energy for each protocol and
γ plays the role of inverse temperature, tuning the mean dissipa-
tion, that is, the average of ω over the distribution Pcanon. Searching
for a protocol with strictly minimum dissipation amounts to a zero
“temperature” (γ→∞) quench, whereas near-optimal protocols
are identified by large values of γ.
When using a sufficiently large γ, the samples reveal repre-

sentative low-dissipation protocols. By using different biasing
strengths γ in Eq. 5, we can learn about the characteristics of
protocols with distinct values of average dissipation. In addition,
the protocols sampled with various choices of γ can be combined
to calculate SðωÞ over a broad range.

Sampling Protocols and Trajectories. In principle, the ensemble
defined by Eq. 5 may be directly sampled with a Monte Carlo
procedure that conditionally accepts protocol changes based on
the corresponding changes in hωiΛ. For complex systems, how-
ever, values of hωiΛ are typically not known exactly. They can be
estimated from the sample mean ωΛ =N−1P

iω½xiðtÞjΛðtÞ� of a
collection of N trajectories drawn from Ptraj½xðtÞjΛðtÞ�. However,
for finite N, replacing hωiΛ by ωΛ in Eq. 5 yields a distribution of
protocols that differs from Pcanon½ΛðtÞ�. Strategies to correct for
the finite-N bias have been formulated to enable conventional
Boltzmann sampling when configurational energies cannot be
calculated with certainty (28–32). Here, we consider an analo-
gous strategy in the context of sampling protocols.
To sample the canonical protocol distribution, we construct a

Monte Carlo procedure that performs a random walk through
the joint space of protocols and N independent trajectories
x1ðtÞ, x2ðtÞ, . . . xNðtÞ. A trial move amounts to an attempt to make
changes in both ΛðtÞ and in fxiðtÞg. Operationally, this proposed
change can be achieved by first perturbing the protocol (with a
symmetric generation probability) before regenerating the tra-
jectories using the new protocol. For simplicity, we consider the
case that the trajectory generation probabilities are also sym-
metric, as in the noise-guided shooting procedures of transition
path sampling (33–36). Accepting a trial move with the Me-
tropolis probability min½1, expð−λΔωÞ�, where Δω is the differ-
ence between the sample means under the original and trial
protocols, yields the stationary distribution

Psampled½x1ðtÞ, . . . , xNðtÞ,ΛðtÞ�∝ exp

 
−
λ

N

XN
i=1

ω½xiðtÞjΛðtÞ�
!
. [6]

The resulting marginal distribution of protocols,

Psampled½ΛðtÞ�∝
D
e−λω=N

EN
Λ
, [7]

is determined by the dissipation statistics of each protocol, but in
a more complicated way than Pcanon. Nevertheless, we show that

A

B C

D

Fig. 1. Low-dissipation protocols that invert a 2D Ising magnet in finite
time. (A) Snapshots of the 40× 40 periodically replicated magnet during field
inversion. (B) The 450 representative samples of low-dissipation protocols
(blue), collected from the λ= 0.5,  N= 5 protocol ensemble (Eq. 6). Protocols
are discretized into 10 intervals in the temperature vs. field plane. Each interval
represents a fixed amount of time (20 Monte Carlo sweeps), and the temper-
ature and field values are linearly interpolated between the endpoints. (C) The
external field as a function of time. (D) The temperature as a function of time.
In B–D, lines ranging from gray to black indicate averages over the 450 pro-
tocols, with shading corresponding to the times of the snapshots in A.
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the sampled protocols are drawn from a canonical protocol dis-
tribution in two special situations: the case of Gaussian dissipa-
tion distributions and the large N limit.

Cumulant Expansion. The expression for the marginal distribution
Eq. 7 may be recast as

Psampled½ΛðtÞ�∝ eNψΛð−λ=NÞ, [8]

where ψΛðkÞ= lnhekωiΛ is the cumulant-generating function for
the dissipation. A cumulant expansion,

ψΛð−λ=NÞ=−
λhωiΛ
N

+
λ2
�
δω2
	
Λ

2N2 −O


λ3

N3

�
, [9]

relates the probability of sampled protocols to the cumulants of
the dissipation distribution PðωjΛðtÞÞ, where δω=ω− hωiΛ. As N
grows, the contribution from higher-order cumulants vanishes,
consistent with the central limit theorem. In the limit N→∞,
sampling Eq. 5 becomes equivalent to sampling Eq. 6 because
the sample mean converges to the average dissipation.
In the special case that PðωjΛðtÞÞ is Gaussian for each protocol

ΛðtÞ, a powerful simplification arises, averting the need to use
large values of N. Gaussian dissipation distributions occur in many
contexts—as a defining feature of linear response (37), in the limit
of slow adiabatic driving (37), and when Brownian particles evolve
in driven harmonic potentials (38). In all these cases, the cumulants
of PðωjΛðtÞÞ beyond the variance vanish, allowing us to exactly
truncate Eq. 9 at second order. If we further take ΛðtÞ to be
symmetric under time reversal, then the fluctuation theorem pro-
vides an exact relationship between the mean and variance:
hδω2iΛ = 2hωiΛ. As a result, the biased protocol distribution can be
expressed in terms of mean dissipation alone:

PGaussian½ΛðtÞ�∝ e−λð1−λ=NÞhωiΛ . [10]

Eq. 10 has precisely the form of the canonical protocol distribution
(Eq. 5), with an effective bias γ = λð1− λ=NÞ. This result offers tre-
mendous flexibility. An exact bias toward low average dissipation can
be achieved with any N, for example, by sampling a small number of
trajectories for each proposed change in protocol. Because generat-
ing trajectories dominates the computational expense of our sam-
pling scheme, the freedom to choose small N is very attractive.
The limitation with using small N when sampling protocols is

that the achievable bias strength γ cannot exceed γmax =N=4.
This constraint arises because the λ bias in Eq. 5 directly favors
low-dissipation trajectories, and not necessarily low-dissipation
protocols. For small values of λ, the trajectories sampled for a
given protocol are typical of the unbiased trajectory distribution
Ptraj½xðtÞjΛðtÞ�. In this case, there is thus a strong correlation
between sampled low-dissipation trajectories and protocols that
yield low dissipation on average. This correspondence degrades
for large λ. In fact, for λ>N=2, sampled trajectories have neg-
ative dissipation on average,† which cannot be typical of any
protocol according to the second law of thermodynamics. Thus,
as λ is increased toward N=2, the joint ensemble of trajectories
and protocols switches from highlighting low-dissipation proto-
cols to emphasizing rare negative-dissipation trajectories.
Moreover, sampling with large values of λ requires generation of
increasingly rare trajectories, complicating efficient path sampling
as discussed in Supporting Information.

Results
Spin Inversion Protocols. To illustrate the use of the low-dissipation
protocol ensemble, we consider the inversion of spins in a ferro-
magnet. Specifically, we imagine initializing a system of interacting
spins at low temperature, where its equilibrium state has long-
range “up” or “down” order. We then ask how best to flip this
“bit.” That is, how should we vary the temperature and external
field as functions of time to flip the state of the magnet without
excess dissipation? This problem, relevant to the design of low-
power magnetic hard drives, has been investigated as an optimal
control problem elsewhere (23, 40). Here, we also consider the
near-optimal drivings.
We represent the ferromagnet as a 2D Ising model with pe-

riodic boundary conditions and dynamics generated by a suc-
cession of individual spin flips. With an external magnetic field h,
the energy of a configuration is given by

E=−h
X
i

σi −
X
hiji

σiσj, [11]

where σi =±1, and hiji indicates a sum over nearest neighbor
sites i and j. An attempted spin flip that alters the energy by
ΔE is accepted with Glauber probability e−ΔE=T=ð1+ e−ΔE=TÞ,
where T is the temperature of the bath. Unlike equilibrium
Ising model dynamics, the temperature and magnetic field are
time dependent as prescribed by a nonequilibrium protocol
ΛðtÞ= fTðtÞ, hðtÞg. In a finite amount of time tobs, we aim to
switch from the macroscopic up state to the down state. We
therefore consider only protocols that begin and end at low
temperature ½Tð0Þ=TðtobsÞ= 0.05� and that switch from a pos-
itive to a negative field ½hð0Þ=−hðtobsÞ= 1�.
One consequence of the nonequilibrium driving is that the

dynamics is not microscopically reversible. For ordinary Glauber
dynamics, the equilibrium probability of a trajectory segment is
equal to its time-reversed counterpart, but our time-dependent
driving breaks this equality. By tracking the random numbers
that generate each spin flip, we explicitly compute the forward
and time-reversed probabilities of each trajectory, thereby com-
puting the stochastic thermodynamic dissipation via Eq. 3.
Physically, the dissipation of each microscopic step multiplied by
T is the heat transferred from the thermal bath into the system.
We use Monte Carlo techniques, discussed further inMaterials

and Methods, to sample low-dissipation protocols from Eq. 6
with λ= 0.5,N = 5. Fig. 1 shows 450 representative protocols, all
of which avoid the region of parameter space near the Ising
critical point. Control is particularly costly (23) in this vicinity
due to critical slowing down, which causes the spin system to lag
behind changes in the control parameters. There is a natural
connection between dissipation and lag (41, 42): the farther the
system falls out of equilibrium with control parameters’ instan-
taneous values, the more heat is dissipated to the reservoir during
the relaxation.
Roughly, the optimal strategy requires that we first heat the

magnet, next invert the field, and then cool the magnet. How-
ever, the varied protocols in Fig. 1 demonstrate significant lee-
way in how these steps are carried out. Most notably, while the
system is held at low temperature, the magnetic field need not be
precisely tuned, as evidenced by large variations both early and
late in the protocol. Some low-dissipation protocols even tran-
siently invert the field at low temperature, thereby crossing the
equilibrium coexistence curve, only to restore the field’s original
sign a short time later. This seemingly wasteful procedure in fact
incurs little dissipative cost, because it is highly ineffectual. The
low-temperature field inversion is too brief for nucleation of the
new phase to occur with significant probability, so the extent of
relaxation is negligible. Absent relaxation, no heat is dissipated

†The cumulant-generating function ψΛðkÞ is symmetric about k=−1=2 (39), and
Psample½ΛðtÞ� is correspondingly symmetric in λ about λ=N=2. This symmetry implies neg-
ative average dissipation when λ>N=2.
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to the bath. Perhaps counterintuitively, the lag is so severe in this
case as to be irrelevant.

Protocol Entropy. The protocol entropy determined by sampling
magnetization inversion dynamics is shown in Fig. 2. Near the
apparent minimum dissipation, a small increase in mean dissi-
pation is accompanied by a steep rise in SðωÞ, that is, the number
of protocols grows rapidly as we permit modest excess dissipa-
tion. In fact, the density of protocols increases by several orders
of magnitude for a change in dissipation that is very small rela-
tive to dissipation fluctuations for a fixed protocol. This rapid
initial growth is captured well by the asymptotic form of Eq. 4,
which depends on the number of degrees of freedom in the
protocol. Farther from the minimal value of mean dissipation,
the protocol entropy climbs much more gradually.
The slope of SðωÞ reflects the strength of bias γ needed to

depress the average dissipation. The Inset of Fig. 2 illustrates a
crossover between two regimes: small biases greatly reduce the
mean dissipation but further reduction requires very large biases.
Thus, weak biases on hωiΛ can be greatly effective at directing
the protocol sampling toward the optimum. We anticipate that
these limiting behaviors are generic, and the corresponding as-
ymptotic forms are derived in Supporting Information. The re-
duction in dissipation due to small values of γ is governed by the
variability of hωiΛ in an unbiased protocol ensemble. Because
complex systems typically depend sensitively on one or more of
their control parameters, this variability should be substantial in
general. Large values of γ favor nearly optimal protocols, whose
diversity is well described by Eq. 4. Correspondingly, the mean
dissipation in the large γ limit decays slowly as hωi=ωp + n=ð2γÞ.
Gaussian Fluctuations. We have computed SðωÞ for the spin in-
version process both with and without the simplifying assumption
that the dissipation is Gaussian distributed. We find that the
Gaussian approximation provides an estimate that is accurate
within statistical error despite requiring a significantly reduced
number of trajectories. To more explicitly demonstrate the validity
of the approximation, we selected three protocols from our sam-
pling, which are shown in Fig. 3A.

For each protocol, we computed the dissipation distribution
PðωjΛÞ. Empirically, we find that these distributions are strik-
ingly Gaussian over a large range of ω that includes ω= 0. At
large positive values of dissipation, we observe “fat” exponential
tails, consistent with the structure of generic current large devi-
ation functions that has recently been demonstrated for the case
of time-independent driving (44, 45). This fat tail, associated
with clusters of spins that resist reorientation, only weakly re-
stricts our use of the Gaussian dissipation assumption. The
positive λ bias, useful to study low-dissipation behavior, focuses
the sampling toward the Gaussian region of the distribution,
rendering the exponential tails insignificant.

Discussion
Low dissipation, the focus of our exploration of driving protocols,
is one of many possible objectives for nonequilibrium control.
Indeed, minimizing dissipation can be viewed as an instance of the
extensively studied problem of stochastic optimal control (46–50).

Fig. 2. Protocol entropy quantifies the diversity of protocols with average
dissipation ω. By sampling the distribution equation (Eq. 5) with tobs = 200
Monte Carlo sweeps and using various biasing strengths γ, the protocol
entropy SðωÞ was computed using the MBAR method (43). The slope of the
protocol entropy at ω= hωi gives the strength of the bias necessary to yield
mean dissipation hωi. Asymptotic limits for small and large γ are plotted as
the dotted and dashed lines, respectively. (Inset) The average dissipation for
protocols as a function of the bias γ. Note that a small bias produces most of
the achievable dissipation reduction.

A

B

Fig. 3. Dissipation distributions for representative protocols. (A) Three
randomly selected protocols from the ensemble equation (Eq. 6) are plotted
on the temperature, external field plane as in Fig. 1. (B) The distribution
of dissipation values PðωjΛÞ for the three protocols, displayed with
corresponding colors. Dashed black lines show Gaussian distributions with
the same means hωiΛ as the sampled distributions and with variances 2hωiΛ.
(Inset) The neighborhood around the average dissipation values is shown in
greater detail.
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The formulation of stochastic optimal control as a path integral
control problem (25, 51–53) has a particularly close connection to
our work, in that importance sampling of trajectories can be used
to iteratively refine a protocol toward the optimum (22, 24). A
distinct feature of our approach is the systematic sampling of
protocols, as opposed to the more limited goal of strictly optimizing
them. By simultaneously sampling trajectories and protocols with a
well-defined bias, we identify low-dissipation protocols without the
challenging task of converging trajectory-space averages for any
particular protocol, as is required in iterative optimization methods.
Protocols harvested by our procedure, in contrast to those en-
countered in an optimization, quantitatively reflect the diversity of
low-dissipation protocols.
Scrutinizing near-optimal protocols complements the search for

optimality in several ways. In simple model systems that can be
optimized exactly, minimum-dissipation protocols are known to
involve features that are singular or may be impractical to imple-
ment (14). In such cases, the collection of near-optimal protocols
becomes a natural target for design. Even when the optimal pro-
tocol may be physically achieved, its form does not directly indicate
which features of a driving history are essential to its success, and
which are irrelevant. In our approach, relevant features can be
readily identified through their limited variability in the protocol
ensemble, as illustrated by the cloud of protocols in Fig. 1B.
Finally, we note that efficient but suboptimal nonequilibrium

transformations are almost certainly the norm in biology at many
scales. Indeed, the evolutionary dynamics of biological adapta-
tion might be viewed as an importance sampling on the space of
protocols, roughly akin to the sampling methods developed in
this paper. The surprising, often eccentric strategies used to
perform simple tasks in biology are, perhaps, indicative of the
myriad options provided by an ensemble of protocols evolving
under a complex set of constraints.

Materials and Methods
We sample the joint space of trajectories and protocols using Markov chain
Monte Carlo methods. Each point in this space consists of a protocol and N
independent trajectories subject to that protocol. With tunable bias λ, the
Markov chain samples the distribution in Eq. 6. We restrict the space of pro-
tocols with a view toward experimental practicality. For the 2D Ising example,
we impose two such restrictions. First, to allow only slowly varying protocols,
we parameterize our protocol space by the values of temperature and ex-
ternal field at 11 evenly spaced times. We call the values at these special times
the control points. Between any two neighboring control points, the tem-
perature and field strength are linearly interpolated. Second, we require that
−1≤h≤ 1 and 0≤ T ≤ 8 for all control points to mimic that physical appara-
tuses can tune controls over bounded ranges. Limiting the protocol space in
these ways can be viewed as a regularization scheme that simplifies the re-
presentation problem of optimal control theory (24). We note, however, that
the protocol entropy depends on our choice of regularization. If, for example,
we were to use many more control points with the same tobs, then we would
introduce many additional protocols with high-frequency features. Conse-
quently, SðωÞwould grow more rapidly, following Eq. 4. Fig. S1 highlights this
dependence on the number of protocol degrees of freedom.

Each Monte Carlo move first attempts to adjust the protocol by moving a
single control point by a random displacement in the temperature–field
plane. The move is constructed to be symmetric, meaning the probability of
selecting any displacement vector equals the probability of a displacement
of the opposite sign. Using this trial protocol, N new trajectories are simu-
lated using a sequence of Glauber single spin flips. Conventionally, each step
of the Glauber Ising dynamics chooses a random spin, which is flipped to
generate a trial configuration. To enable more efficient noise-guided tra-
jectory sampling, we use a modified Glauber dynamics: the trial configura-
tion is given by setting the randomly selected spin to either the up or the
down state without reference to its prior state (36). The move is futile

when the selected spin is already in the trial configuration. Because one-
half of the moves are futile on average, the Monte Carlo time is rescaled
by a factor of 2 compared with ordinary single-spin flip Glauber dynamics.
Following each move, the probability of running that step backward is
computed, enabling an explicit calculation of the dissipation of each tra-
jectory. The new protocol and trajectories are conditionally accepted with
probability min½1,   expð−λΔωÞ�, where Δω is the difference between the
sample means under the original and trial protocols.

The protocol entropy is calculated, up to a constant offset lnΩ0, using
a weighted average over the protocols collected by the Monte Carlo
procedure:

SðωÞ= ln

"
Ω0

Z
dΛðtÞ Psampled½ΛðtÞ�

Æe−λω=NæNΛ
δðω− ÆωæΛÞ

#
. [12]

From a set of M sampled protocols, fΛ1,Λ2, . . . ,Λα, . . . ,ΛMg, we therefore
estimate the following:

SðωÞ= ln

"
Ω0

M

XM
α=1

δ
�
ω− ÆωæΛα


Æe−λω=NæNΛα

#
. [13]

Operationally, this amounts to collecting a histogram of values of ÆωæΛ with
each entry weighted by the corresponding value of Æe−λω=NæNΛ. To generate
Fig. 2, each of these weights is computed by estimating the exponential
average from 1,000 independent trajectories. In practice, SðωÞ is constructed
using the multistate Bennett acceptance ratio (MBAR) method to combine
samples collected with N= 20 and with several different values of the bias
ranging from λ= 0 to λ= 1. The offset lnΩ0 is chosen such that SðωÞ is zero at
its maximum.

The protocol entropy can be computed much more efficiently when the
Gaussian approximation may be used to evaluate the exponential average.
To evaluate the validity of this approximation for the Ising dynamics, we
compute the actual dissipation distributions by sampling trajectories with a
fixed protocol. These trajectories are importance sampled using harmonic
biases, which restrain the dissipation to fluctuate around a specified value. By
choosing several different harmonic biases, trajectories were biased into both
tails of the dissipation distribution, which was reconstructing using theMBAR
method (43).

When the Gaussian approximation is appropriate, it is wasteful to use a
large value of N. Low-dissipation protocols may be sampled with an effective
biasing strength γ = λð1− λ=NÞ using various combinations of N and λ, and a
small N reduces the computational expense, as demonstrated in Fig. S2.
However, when N is too small or λ too large, the Monte Carlo acceptance
probability drops precipitously, a fact elaborated upon in Supporting In-
formation, particularly in Fig. S3. Sampling efficiency is poor under these
conditions because the Markov chain favors a collection of rare trajectories
with dissipation below the mean (and often below zero). This issue can be
partially alleviated by introducing replica exchange moves—random swaps
exchanging replicas with different biasing strengths λ. The implementation
of this procedure naturally mirrors the use of replica exchange to surmount
kinetic traps when sampling low-temperature molecular configurations.
Further performance enhancements are obtained when trial trajectories are
generated with random numbers (noises) that correlate with the noises of
the previous collection of trajectories. An implementation of this noise-
guided sampling is described in detail elsewhere (36, 54). The noise guidance
technique is not strictly required to perform the protocol sampling, but in
Fig. S4 we show that it can provide significant practical benefits. Fig. S5
shows further practical improvements.
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