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The energetics of membrane-protein interactions determine pro-
tein topology and structure: hydrophobicity drives the insertion of
helical segments into the membrane, and positive charges orient
the protein with respect to the membrane plane according to the
positive-inside rule. Until recently, however, quantifying these
contributions met with difficulty, precluding systematic analysis of
the energetic basis for membrane-protein topology. We recently
developed the dsTβL method, which uses deep sequencing and
in vitro selection of segments inserted into the bacterial plasma
membrane to infer insertion-energy profiles for each amino acid
residue across the membrane, and quantified the insertion contri-
bution from hydrophobicity and the positive-inside rule. Here, we
present a topology-prediction algorithm called TopGraph, which is
based on a sequence search for minimum dsTβL insertion energy.
Whereas the average insertion energy assigned by previous exper-
imental scales was positive (unfavorable), the average assigned by
TopGraph in a nonredundant set is −6.9 kcal/mol. By quantifying
contributions from both hydrophobicity and the positive-inside rule
we further find that in about half of large membrane proteins polar
segments are inserted into the membrane to position more positive
charges in the cytoplasm, suggesting an interplay between these
two energy contributions. Because membrane-embedded polar res-
idues are crucial for substrate binding and conformational change,
the results implicate the positive-inside rule in determining the ar-
chitectures of membrane-protein functional sites. This insight may
aid structure prediction, engineering, and design of membrane pro-
teins. TopGraph is available online (topgraph.weizmann.ac.il).
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The plasma membrane is a complex physical environment
comprising a hydrophobic core and a polar exterior, which is

more negatively charged on its cytoplasmic side (1). Two hallmarks
of membrane proteins are hydrophobic segments that span the
membrane core, and positive charges at the membrane–cytoplasm
interface (the positive-inside rule; ref. 2); these features drive in-
sertion and orient segments relative to the membrane plane,
respectively. Furthermore, recent work has shown that positive
charges placed close to engineered segments can drive mem-
brane insertion even of marginally polar segments (3, 4), sug-
gesting a role for the positive-inside rule in insertion, and
emphasizing the importance of accurate models of membrane-
protein energetics for protein engineering and for understanding
the physical basis of membrane-protein topology.
Topology prediction is a stringent test of our models of membrane-

protein energetics. The most parsimonious membrane-topology pre-
dictor would locate the membrane-spanning segments and determine
their orientations by a sequence search for minimum insertion energy.
To achieve that, however, the insertion energy scale must at a mini-
mum exhibit two properties: (i) to drive membrane insertion, the
hydrophobic amino acids must make large contributions to insertion;
and (ii) to orient the protein with respect to the membrane plane,
positively charged residues must be strongly favored in the cytoplasm
over the extracellular space. These properties, however, were not
observed in previous insertion scales (5–9); instead, topology pre-
dictors have relied on machine learning, and used experimentally

determined membrane-protein structures to train predictors with
hundreds of fitting parameters (10–15). Although the accuracy of
these predictors is high (80–90%; refs. 10–16), statistics-based pre-
dictors cannot be used to systematically investigate the interplay be-
tween different energy contributions to topology. Moreover, such
methods are less useful than energy-based methods in predicting to-
pology in targets that lack homology to previously characterized
proteins (16), and cannot be used to design new proteins.
In a landmark study, von Heijne and coworkers measured trans-

locon-mediated apparent membrane-insertion energetics of hydro-
phobic segments engineered into the leader peptidase (Lep) protein,
and derived an insertion scale for every amino acid across the
membrane (9, 17). Elofsson and coworkers subsequently incorporated
this scale into a hidden Markov model-based topology predictor (10,
18). Although this predictor is a substantial improvement over the
statistics-based methods in reducing the number of fitted parameters,
the authors noted significant uncertainties; for instance, the Lep scale
reported only a small driving force of 0.5 kcal/mol for membrane
insertion of the most hydrophobic residues, Leu and Phe, compared
with at least 2 kcal/mol in other scales (7, 19), leading Elofsson and
coworkers to observe that the Lep scale assigns positive (unfavorable)
insertion energies to a large fraction of membrane-spanning segments
(10). Furthermore, although it is established that protein orientation
with respect to the membrane plane is determined by the positive-
inside rule, the Lep measurements reported only a small bias of
around 0.5 kcal/mol in favor of Arg and Lys in the cytoplasm
compared with the extracellular domain (20), and thereby could
not be used to predict orientation. To overcome these problems, the
predictor relied on corrections, parameter fitting, and empirical
rules in addition to the Lep energetics.
To derive higher-confidence insertion energetics we recently

developed an experimental method, called deep sequencing
TOXCAT-β-lactamase (dsTβL), and measured apparent insertion
free energies (ΔGapp

insertion) into the bacterial plasma membrane for
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each of the 20 amino acids at 27 positions across the membrane
(21). The dsTβL scale was in good agreement with what theory
and previous experiments suggested; for instance, the hydropho-
bicity at the membrane core was in line with biophysical mea-
surements (22) and 3–4 times larger than measured with Lep (23).
Furthermore, dsTβL reported large asymmetries (∼2 kcal/mol) for
the localization of the positively charged residues Arg and Lys in
the cytoplasmic side relative to the extracellular side of the
membrane. Here, we develop a topology predictor, called Top-
Graph, which uses dsTβL to assign insertion energies to segments
of a query protein and search for the topology of minimum in-
sertion energy. We test TopGraph on experimentally determined
topology databases. We further analyze large membrane domains
of transporters, which have been challenging for statistics-based
predictors, and describe cases where the positive-inside rule ap-
parently drives the insertion of polar segments into the membrane.

Results
Assessing Topology-Prediction Accuracy. We used three published
datasets to test topology-prediction accuracy. First, prediction accu-
racy of membrane-span locations was assessed using the Reeb
dataset, which is based on a nonredundant set of 188 high-resolution
structures (with a pairwise sequence-identity cutoff of 20%; ref. 16).
For each of the query sequences in the Reeb dataset we defined
“overlap10” to represent whether the correct number of membrane-
spanning segments was predicted, and whether at least 10 residues
of each predicted segment overlapped with an inserted segment in
the experimentally determined structure. Second, to assess ori-
entation-prediction accuracy we used a set of 609 Escherichia coli
inner membrane proteins, for which the location of the C terminus
(cytoplasmic or periplasmic) was experimentally determined (24).
Third, we assessed discrimination of soluble and membrane-
spanning proteins using an annotated nonredundant set (<30%
pairwise sequence identity) of 3,400 soluble proteins and 311
membrane proteins of known structure (13, 25). We compared the
performance of TopGraph and TOPCONS, a topology predictor
that uses the consensus of five statistical predictors (13, 26), in
these three tests, and additionally analyzed the overlap10 perfor-
mance of the Lep scale on the Reeb dataset.

A Graphical Algorithm for Membrane-Topology Prediction. We set
ourselves the goal of predicting membrane-protein topology based on
insertion energies and without invoking statistical inference to predict
insertion propensities. Given a query sequence we start by using a
sliding window to extract all subsequences of lengths 21–30 amino acid
residues. The dsTβL scales (21) do not report on secondary-structure
propensity nor on the existence of signal peptides, which are often
cleaved post translationally. We therefore eliminate all signal peptides
predicted by TOPCONS (13) and any subsequence that is predicted to
be nonhelical (27), as well as subsequences that contain several
charged or polar residues (SIMethods). To the remaining segments we
assign apparent insertion free energies according to the dsTβL scale
(21) in each of the two orientations relative to the membrane (locating
the C-terminus either in the cytoplasm or outside). Because seg-
ments vary in length, we estimate the location z of every amino acid
position i in the segment relative to the membrane midplane:

zðiÞ= 30
n
i− 15, [1]

where n is the total number of residues in the segment and i is
the amino acid position relative to the segment’s start; z(i)
ranges from −15 to +15 Å, for cytoplasmic and extracellular
locations, respectively. The segment’s apparent insertion free
energy is then given by:

ΔGapp
insertion =

Xn

i=1
ΔGzðiÞ

AA , [2]

where ΔGzðiÞ
AA is the apparent insertion free energy for amino acid

type AA at location z(i) according to dsTβL.

Before running predictions, we modified the dsTβL profiles
for the positively charged residue Lys and for the hydrophobic
residues Val, Leu, Ile, and Met (Fig. S1 and Table S1). Specifically,
in the original dsTβL report (21), Val, Leu, and Met showed slightly
nonsymmetric profiles, whereas the other hydrophobics, Ile and
Phe, were close to symmetric, as expected. We therefore changed
the hydrophobic residues’ profiles so that all were symmetric, and
maintained the insertion energy at the membrane midplane as in
the original dsTβL scales. Furthermore, the energy contribution of
Lys at the cytoplasmic side of the membrane in the original dsTβL
scale was slightly positive (+0.2 kcal/mol), thereby penalizing lysine-
containing membrane-spanning segments. We therefore modified
the Lys profile to be slightly negative (−0.1 kcal/mol) at the cyto-
plasm interface. These corrections increase the deviation between
the polynomial functions used to fit the dsTβL data, but the most
extreme deviation is only 0.84 kcal/mol (Leu at the membrane–
cytoplasm interface; Fig. S1 and Table S1). In preliminary pre-
diction runs we noticed that these changes do not affect prediction
accuracy significantly.
We represent subsequences in the query and their apparent

insertion energies as a graph, where nodes N stand for each
subsequence (Fig. 1A). Nodes Ni and Nj are connected with a
directed edge Ni→Nj if and only if Ni precedes and does not
overlap with Nj in the query sequence and the two segments are
inverted with respect to one another; that is, one segment’s
N terminus is cytoplasmic, and the other’s C terminus is cyto-
plasmic. In addition, a virtual source node is connected to all other
nodes, and every edge is weighted according to its successor node’s
ΔGapp

insertion (Eq. 2); that is, the weight of edge Ni→Nj is the insertion

A

B

Fig. 1. Schematic representation of the graphical topology-prediction al-
gorithm TopGraph. (A) Cylinders represent sequence segments (nodes in the
graph) in either insertion orientation. Curved gray arrows represent edges
connecting nodes; curved black arrows denote the minimum-energy path.
Faded cylinders represent nodes not in the minimum-energy path. (B) A
constraint (dashed lines) eliminates all edges bypassing it, guaranteeing, by
construction, that only segments satisfying the constraint are chosen. Insets
show final predicted topology.

Elazar et al. PNAS | September 13, 2016 | vol. 113 | no. 37 | 10341

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605888113/-/DCSupplemental/pnas.201605888SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605888113/-/DCSupplemental/pnas.201605888SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605888113/-/DCSupplemental/pnas.201605888SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605888113/-/DCSupplemental/pnas.201605888SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605888113/-/DCSupplemental/pnas.201605888SI.pdf?targetid=nameddest=ST1


energy of the segment represented by Nj plus the contributions
from positive residues (Lys, Arg, and His) within a five amino acid
stretch C terminal to Ni, and similarly, five amino acids N terminal
to Nj (SI Methods). In this graphical representation, the minimum-
energy path starting from the source predicts not only the location
of membrane-spanning segments, as in previous predictors, but also
the orientation of the protein with respect to the membrane and the
length of each inserted segment. To search for the minimum-energy
path we use the Bellman–Ford algorithm (28), which takes under
10 s to find minimal paths on a representative 265 amino acid
protein using a standard CPU.
Constraints on the locations of membrane-spanning segments

within the query can improve prediction accuracy. In the bench-
mark below we test the unconstrained prediction as well as two
types of constraints: from multiple-sequence alignments (MSA) of
homologous sequences, and from the TOPCONS predictor (13).
To maintain the validity of the apparent insertion energies we do
not use information other than from the query sequence itself to
assign segment energies; rather, we use the information from
MSAs or from TOPCONS only to determine where membrane
spans are likely to be located, and compute the query’s insertion
energy by optimizing the inserted segments’ precise locations and
orientations within a stretch that includes five positions on either
side of the segment determined using the MSA or TOPCONS.
TopGraphMSA conducts the search in two steps: it first predicts
membrane-spanning locations using the MSA, and subsequently
uses this information as location constraints in a search for
minimum-energy paths in the query sequence (Fig. S2). In Top-
GraphTOPCONS, by contrast, the locations of membrane-spanning
segments are predicted using TOPCONS (13), and are then
used to constrain the locations of membrane-spanning seg-
ments in a search for minimum-energy paths in the query (Fig.
1B). Alternative predictors could be used to constrain the
locations of membrane-spanning segments with no loss in
generality.
All three TopGraph variants predict the locations, lengths,

orientations, and insertion energies of the query sequence. We
note, additionally, that the graphical representation lends itself
to imposing other types of constraints, which may be inferred
from experimental or computational data; for instance, if a
certain segment Nk is known to span the membrane, all edges
Ni→Nj that bypass Nk may be eliminated (Fig. 1B). Conversely,
nodes representing segments that are known not to cross the
membrane may be eliminated, and prior data regarding the
orientation of the protein in the membrane can be used to select
the lowest-energy path through the graph in the known orien-
tation. The ability to define a variety of topological constraints
could aid the study of membrane proteins with incomplete
structural data, such as on probe accessibility or proteolysis re-
sistance (29), and we implemented a webserver providing free
access to TopGraph including such manually constrained pre-
diction (topgraph.weizmann.ac.il).

Prediction Accuracy Increases with Use of Prior Data. The purist
TopGraph predictor, with no use of prior data predicts the lo-
cations of membrane segments in single-span proteins with high
accuracy (94%; Fig. 2A). This high accuracy is not surprising
given that the dsTβL scale is based on experimental data on a
single-span membrane protein (21). Multispan membrane pro-
teins are accordingly predicted less accurately, and above four
segments prediction accuracy drops to 46%; the overall pre-
diction accuracy across the entire set is 78%. When either of the
two lowest-energy predicted paths is compared with the known
topology, prediction accuracy increases from 70% to 80% for
proteins with two to four membrane spans, and more modestly
for larger membrane domains. The preprocessing filters that remove
signal peptides, highly charged and nonhelical segments make a
substantial contribution to prediction accuracy by eliminating, on
average, two-thirds of the segments with ΔGapp

insertion < 5 kcal/mol
in each target sequence (Fig. S3). Nevertheless, prediction ac-
curacy is high even in proteins, in which less than 20% of the

sequence is eliminated by these filters; specifically, all of
these proteins are predicted correctly according to the overlap10
metric.
For comparison, we replaced the dsTβL profiles with those

from the Lep study (9) and tested prediction accuracy using the
same algorithm as used for dsTβL (Fig. 2A). Bernsel et al. pre-
viously noted that the average energy assigned to single-spanning
domains by the Lep scales is only slightly negative (approximately
−0.3 kcal/mol) and that segments in multispanning domains are
assigned positive energies on average (10), TopGraphLep prediction
accuracy is correspondingly modest (56%) for single-spanning do-
mains; it drops to 20% for proteins with two to four membrane
spans, and there are nearly no correct predictions (3%) for larger
membrane domains, with 34% overall prediction accuracy. These
results are consistent with previous observations that the Lep in-
sertion energetics are small for hydrophobic residues (9, 10, 17–19,
21, 30); because single-span membrane domains are typically more
hydrophobic than multispan domains (10), the Lep scale predicts
location more accurately in the former than in the latter.
We hypothesized that TopGraphMSA may improve prediction

accuracy relative to the purist TopGraph. The basis for this hy-
pothesis is that homologous proteins are likely to have the same
topology. Furthermore, although any given membrane protein
must encode sufficiently favorable membrane-insertion free en-
ergy, individual segments in any protein may have lower insertion
propensity than aligned segments in homologs. TopGraphMSA

retains TopGraph’s high accuracy in single-pass membrane pro-
teins (95%) and indeed improves on unconstrained TopGraph,
reaching 61% accuracy for membrane proteins with more than

A

B C

Fig. 2. Topology-prediction benchmark. (A, Left) Fraction of proteins where
all predicted membrane spans overlap with experimentally observed mem-
brane-spanning segments over at least 10 residues (overlap10) and there are no
additional predicted segments. The number of proteins in each group is noted
above the bars; dashed lines represent accuracy when considering either of the
two best-energy predictions. (Right) Orientation-prediction accuracy of the
C-terminal position (cytoplasmic or extracellular). (B) Distribution of insertion
energies in individual membrane-spanning segments. Natural TMs reports the
insertion-energy distribution of membrane-spanning segments annotated by
the structure-based PDBTM (31). (C) Experimentally determined structure (PDB
entry: 4K1C; ref. 42) annotated according to the TopGraphMSA prediction: thin
ribbon, extramembrane; thick ribbon, membrane spanning; two membrane-
spanning segments with minimal and maximal predicted lengths are colored in
turquoise and purple, respectively, and their lengths are noted.
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four spans and overall prediction accuracy of 84% (Fig. 2A).
Furthermore, when considering either of the two lowest-energy
paths, prediction accuracy improves to 87%, on par with
TOPCONS (89%). TopGraphTOPCONS shows nearly identical
performance to TopGraphMSA with overall prediction accu-
racy of 89%.

Energy-Based Prediction of Protein Orientation with Respect to the
Membrane Plane. The dsTβL scale differs from other scales in
showing large asymmetries for the localization of the positively
charged residues, Arg, Lys, and His, in the cytoplasm compared
with the extracellular space (21); this asymmetry is a prerequisite
for energy-based prediction of membrane-protein orientation.
Indeed, TopGraph correctly predicts orientation in 84% of the
proteins in a benchmark of 609 bacterial proteins of experi-
mentally determined orientation (24); overall accuracy is 82%
and 90%, for TopGraphMSA and TopGraphTOPCONS, respectively,
compared with 90% for TOPCONS (Fig. 2A).
The three TopGraph variants output apparent insertion free

energies that are based on the dsTβL scale (21). Applied to the
Reeb dataset (16), nearly all segments (99%) predicted using the
purist TopGraph exhibit negative apparent insertion energies with a
mean of −6.9 kcal/mol (Fig. 2B). Using the more accurate pre-
dictors TopGraphMSA and TopGraphTOPCONS the mean shifts
to −6.4 and −5.7 kcal/mol, respectively, and 95% of segments
exhibit negative insertion energies. We computed the per-segment
insertion free energies of verified membrane-spanning segments,
by constraining locations to those observed in membrane–protein
structures (31), and derived a very similar distribution of in-
sertion energies (Fig. 2B), and further found that 98% of the
membrane spans had apparent insertion energies below +5 kcal/mol.
Our analysis suggests that individual membrane spans, even in
large domains in which intersegment interactions can drive in-
sertion, must encode sufficiently high insertion propensity. These
insertion energies are in agreement with theoretical treatments,
which predict an average of approximately −5 kcal/mol for
membrane insertion of a single segment (1, 32). The values stand,
furthermore, in contrast to the analysis of membrane segments
using the Lep insertion scale (9), which computes average in-
sertion energy of +0.8 kcal/mol (10).
The relatively large magnitude of per-helix insertion energies

predicted by TopGraph implies that it may discriminate soluble
from membrane-spanning proteins. Indeed, in a set of 3,400
proteins (13), we find that a cutoff of ΔGapp

insertion = −3 kcal/mol
correctly discriminates membrane from soluble proteins with
sensitivity of 96% and specificity of 93% (Table S2), comparable
to other predictors (10, 33). We note that on average 99% of the
sequence in soluble proteins is eliminated by the secondary-
structure and polar-residues filters (Fig. S3), drastically simplifying
prediction. We further find that individual membrane-spanning
segments differ from segments in soluble proteins in that a large
majority encode both hydrophobicity and orientation preference
(the positive-inside rule; Fig. S4).
Most previous membrane-topology predictors search the se-

quence with a fixed-length window (typically ∼21 amino acid posi-
tions); TopGraph, by contrast, optimizes the lengths of the inserted
segments. Fig. 2C and Fig. S5 show several TopGraphMSA predic-
tions for large membrane domains plotted on their molecular
structures, demonstrating that TopGraphMSA accurately locates
membrane spans even in proteins with large extramembrane do-
mains. Furthermore, the predictor correctly assigns long and short
membrane-spanning segments within the same protein. Accurate
length assignment could in the future aid ab initio structure
prediction in membrane domains (34–36).

The Positive-Inside Rule Can Drive Insertion of Polar Segments in
Large Membrane Domains. Many transporters and receptors have
membrane-embedded polar and charged residues, suggesting
that a purely energy-based predictor, such as TopGraph, might
not assign membrane topology correctly in these cases. We
nevertheless found that TopGraphMSA correctly predicted the

locations of experimentally validated membrane-spanning seg-
ments, even if they were assigned positive insertion energies.
Indeed, out of 20 proteins of 6 or more membrane-spanning
segments in the Reeb dataset (16), for which TopGraphMSA

produced correct predictions, 13 had at least one segment of mar-
ginal hydrophobicity (ΔGapp

insertion > −1.5 kcal/mol), and of these,
8 had at least one polar segment (ΔGapp

insertion > 0 kcal/mol). Fur-
thermore, in nine cases at least 20% of the polar segment was ex-
posed to the membrane environment; therefore, in many cases
polar segments are not fully shielded from the surrounding hydro-
phobic lipid in the native structure (Table S3).
To investigate how TopGraphMSA correctly predicts topology

even in these challenging cases we compared its lowest-energy
prediction to a simulated topology, in which the polar segment
was computationally constrained to be excluded from the
membrane and the lowest-energy topology was recalculated
(Table S3). In 63% of the cases we found that the exclusion of a
polar segment led to significant worsening in the total apparent
insertion energy (increase of 2.6–8.5 kcal/mol relative to the
unconstrained topology). We therefore looked for sequence
features outside the polar segment that would explain this gap,
and found that by excluding the polar segment from the mem-
brane, the distribution of Lys and Arg residues across the entire
protein became roughly balanced between cytoplasm and ex-
tracellular space; in the unconstrained TopGraphMSA prediction,
by contrast, the majority of Lys and Arg residues were near the
cytoplasm, where they would be favored by the positive-inside
rule (ref. 2; Fig. S6). Accordingly, most of the energy gap be-
tween the correct prediction from TopGraphMSA and the simu-
lated topology, where the marginally hydrophobic segment is
excluded from the membrane, was due to contributions from Lys
and Arg residues.
A representative example is provided by the homotrimeric

11-transmembrane (TM) archaeal ammonium transporter (PDB
entry: 2B2F; ref. 37). In this protein, forcing the polar segment TM7
(ΔGapp

insertion = +1.9 kcal/mol) out of the membrane increases the total
apparent insertion energy by 8.5 kcal/mol (Fig. 3). Visual inspection
shows that the correct topology positions 14 positive charges in the
cytoplasm and 3 in the extracellular space, whereas the topology that
excludes TM7 has a more balanced distribution of positive charges (9
and 8, respectively). Indeed, Lys and Arg residues make a large
contribution (13.7 kcal/mol) to the difference in insertion energy
between the correct and simulated topology. We conclude that
the distribution of charges across the entire membrane domain

Ginsertion
app Ginsertion

app

A B

Fig. 3. Case study demonstrating that the positive-inside rule may favor
membrane-insertion of polar segments. (A) The insertion of the marginally
hydrophobic segment TM7 (red) positions a greater number of positive
charges (turquoise) inside the cell compared with a hypothetical situation
where the segment is forced out of the membrane (bottom). KRextra and
KRintra denote the number of extra- and intracellular Lys and Arg residues.
(B) Molecular structure (PDB entry: 2B2F; 37) annotated according to inser-
tion prediction: TM7 in red; positive charges in turquoise.
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may drive membrane insertion of weakly hydrophobic or polar
segments.

Topology Prediction in a Transporter Family of Unknown Structure:
Na+/H+ Exchanger as a Case Study. Current topology predictors are
trained on known membrane protein structures. We find, for in-
stance, that most sequences (88%) in the Reeb dataset (16) exhibit
>40% sequence identity to sequences used for training at least one
of the predictors used by TOPCONS (Fig. S7). To analyze a case,
on which these predictors had no opportunity to train, we com-
pared TOPCONS and TopGraphMSA predictions for sequences
belonging to the mammalian Na+/H+ exchanger (NHE) family.
Several structures of functionally related proteins to NHE family
members are available; the most homologous is the bacterial
antiporter NhaA (PDB entry: 1ZCD; ref. 38), which is, however,
of only ∼10% sequence identity to NHE family members (38,
39), and NHE family members are indeed of low homology
relative to any of the sequences in the TOPCONS training sets.
Due to the importance of the NHE family in pH regulation and
the implication of NHE mutants in human disease (40), ad-
vanced structure–bioinformatics tools together with expert su-
pervision were used to suggest the topology and 3D models for
two members: NHE1 and NHE9 (39, 40) on the basis of the
NhaA structure. These studies agreed on key topological fea-
tures: all NHE family members place the C terminus in the cy-
toplasm and comprise 12 membrane-spanning segments in the
region excluding the first 50 amino acid residues (thereby ex-
cluding the posttranslationally cleaved N-terminal signal peptide
and possibly an additional membrane-spanning segment predicted
in some NHE family members).
TopGraphMSA predicts NHE9’s topology correctly relative to the

NHE9 model structure, finding all 12 membrane spans and placing
the C terminus in the cytoplasm (ref. 40; Fig. 4). TOPCONS, by
contrast, fails to recognize five NHE9 membrane spans, and in-
correctly predicts that the C terminus lies outside the cytoplasm.
NHE1 presents a more difficult case for TopGraphMSA and although
the C terminus is positioned correctly and 11 of the 12 membrane
spans are accurately predicted, TM5, which is buried within the core
of the NHE1 model structure (39), is missed. Although this segment
is assigned marginally favorable insertion energy (ΔGapp

insertion =
−0.8 kcal/mol), the secondary-structure prediction algorithm used by
TopGraph mistakes TM5 for being nonhelical. TOPCONS also
misses TM5 and additionally misses TM7 (Fig. S8). Our analysis is
restricted to only two proteins, and we note that an alternative to-
pology and a 3D model for NHE1 were put forward (41); we nev-
ertheless find it encouraging that TopGraph can predict topology
more accurately and largely in agreement with expert-guided mod-
eling in these challenging cases of low sequence homology to known
structures; improvements in secondary-structure prediction algo-
rithms would further improve TopGraph accuracy. In specific cases,
such as NHE1, that lack high-homology structures, but where a large
body of experimental data are available, for instance on probe ac-
cessibility, topology prediction may be constrained with these data to
improve accuracy.

Discussion
Despite four decades of research on membrane-protein ener-
getics, experimental insertion scales lacked sufficient accuracy to

predict membrane-protein topology directly from sequence. Instead,
predictors have been dominated by statistical models fitted to ex-
perimental data. Although statistical predictors are accurate, the use
of statistics raises two objections: first, given the low counts and high
redundancy among membrane proteins of known structure, training
and testing sets often cannot be satisfactorily segregated (16), and
such studies might overestimate the expected prediction accuracy for
proteins with no homology to known structures. Although this
concern may be alleviated with future accumulation of experimental
data, the second objection is more fundamental: statistics-based
methods cannot be used to tease apart the different energy contri-
butions to topology and have limited use in 3D structure prediction
and design—modeling tasks that require accurate energetics. Our
recent experimental measurement of apparent insertion energetics
using the dsTβL assay quantified the positive-inside rule and agreed
with hydrophobicity measurements (21); this higher accuracy
allowed us to formulate a prediction algorithm without relying on
statistics derived from known membrane-protein structures. The
TopGraph analysis shows that prediction accuracy is on par with
the consensus predictor TOPCONS. Furthermore, the NHE case
study suggests that TopGraphMSA has an advantage over statistical
predictors in large membrane domains of low homology to
known structures, where the statistical predictors have had no
opportunity to train. Additionally, we noted several cases in
which the lengths of the predicted segments agreed with ex-
perimental structures, a property which may aid 3D structure
prediction.
TopGraph allowed us to quantitatively examine aspects of

membrane-protein topology. We found that the majority of mem-
brane spans in experimental structures were assigned negative ap-
parent insertion energies and favorable orientation preferences (the
positive-inside rule), suggesting that even in large membrane
domains, spans must individually encode sufficiently favorable
interactions with the membrane for insertion and orientation
(Fig. S4). We additionally noticed that more than a third of large
membrane domains have polar segments away from their termini
that are nevertheless inserted to locate a greater number of
positive charges in the cytoplasm. To be sure, a relationship
between insertion and the positive-inside rule was recently noted
by von Heijne, Elofsson, and coworkers, who showed that posi-
tive charges could drive the insertion of proximal segments (3, 4).
Our results generalize this observation and suggest that the
distribution of charges across the entire protein, rather than only
in the proximity of polar segments, may drive the insertion of
polar segments located away from the protein’s termini. Whereas
the orientation bias from a single positive charge (∼2 kcal/mol)
(21) is smaller than the average net contribution from the in-
sertion of a typical membrane-spanning segment (5–7 kcal/mol),
the fact that a large membrane domain may have a dozen or
more positive charges distributed across the entire protein pro-
vides a large and previously unnoted driving force for inserting
polar segments. Although polar residues in membrane proteins
are often linked to crucial functional features, such as oligo-
merization, substrate binding, and conformational change, high
polarity undermines membrane insertion. We therefore spec-
ulate that the positive-inside rule has an important role in de-
termining the architectures that underlie membrane-protein
function. This insight may in the future help design altered or

Fig. 4. NHE9 topology prediction. NHE9’s topology was predicted using TopGraphMSA and TOPCONS, and compared with an experimentally constrained
model (40). Red/blue ellipses represent membrane-spanning segments within the sequences. TopGraph finds all membrane spans, and correctly assigns
orientation, whereas TOPCONS misses five segments, and the C-terminal position. Only positions 43–500 are shown. See Fig. S8 for a similar analysis of NHE1.
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new membrane-protein functional sites. TopGraph may be
used to test hypotheses on the relative insertion propensities of
natural and engineered proteins. Furthermore, our observa-
tions of high prediction accuracy recommend the dsTβL scale
as the implicit-solvent term in structure prediction, design, and
dynamics of membrane proteins.

Methods
Removing Signal Peptide, Highly Charged, and Nonhelical Segments. Signal
peptides, nonhelical segments, and polar/charged subsequences were pre-
filtered as described in SI Methods.

N- and C-Terminal Sequence Contributions. The ΔGapp
insertion for every sub-

sequence is supplemented by the contribution of Arg, Lys, and His in sub-
sequent five residues, as described in SI Methods.

Multiple-Sequence Alignments. Multiple-sequence alignments are generated
as described in SI Methods.

Topology Prediction Using MSA-Based Location Constraints. The use of MSA-
based constraints is described in Fig. S2 and SI Methods.

Source Code. The source code is available at https://github.com/FleishmanLab/
membrane_prediction. See SI Methods for more details.

TOPCONS and Lep-Based Predictions. The acquisition of data from the TOPCONS
server and the Lep insertion scales is described in SI Methods.

Data Acquisition. The acquisition of the dataset is described in SI Methods.
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