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ABSTRACT

The quantification of transcriptomic features is the
basis of the analysis of RNA-seq data. We present
an integrated alignment workflow and a simple
counting-based approach to derive estimates for
gene, exon and exon–exon junction expression. In
contrast to previous counting-based approaches,
EQP takes into account only reads whose alignment
pattern agrees with the splicing pattern of the fea-
tures of interest. This leads to improved gene ex-
pression estimates as well as to the generation of
exon counts that allow disambiguating reads be-
tween overlapping exons. Unlike other methods that
quantify skipped introns, EQP offers a novel way
to compute junction counts based on the agree-
ment of the read alignments with the exons on both
sides of the junction, thus providing a uniformly de-
rived set of counts. We evaluated the performance
of EQP on both simulated and real Illumina RNA-
seq data and compared it with other quantification
tools. Our results suggest that EQP provides supe-
rior gene expression estimates and we illustrate the
advantages of EQP’s exon and junction counts. The
provision of uniformly derived high-quality counts
makes EQP an ideal quantification tool for differen-
tial expression and differential splicing studies. EQP
is freely available for download at https://github.com/
Novartis/EQP-cluster.

INTRODUCTION

In recent years, RNA-seq has become a widely used ap-
proach for expression profiling studies. Usually, the aim
of such studies is to determine the set of differentially ex-
pressed genes between two or more conditions or, in rarer
cases, to analyze the changes in the expressed splicing pat-

terns of genes. In order to address such questions, the reads
delivered by the sequencing machines need to be converted
to expression estimates that can then be used as the basis
for statistical modeling and analysis.

The different steps of a RNA-seq workflow are shown
in Figure 1. In order to generate expression estimates, the
reads are usually aligned to a reference sequence, e.g. the
genome or the transcripts. The information about the over-
lap between the read alignments and the genomic features is
then used to derive the expression values. Two approaches
can be distinguished here. In the first approach, feature ex-
pression estimates are computed by simply counting the
number of reads that overlap with the feature reference se-
quences (1–4). Genes, exons and junctions can be quantified
in this way; however, it is not possible to obtain meaning-
ful transcript expression estimates by counting since reads
that map to the same gene are often shared between differ-
ent transcripts preventing the determination of their tran-
script of origin. This problem is addressed in the second
approach that is based on the use of statistical models and
optimization algorithms to distribute the reads between the
transcripts resulting in transcript expression estimates. The
expression estimate of a gene can then be obtained as the
sum of the expression estimates of its transcript isoforms.

If the goal of an expression profiling experiment is to
identify differentially expressed genes, then gene expression
estimates obviously suffice. For counting-based gene quan-
tification the script htseq-count of the HTSeq framework is
widely used (3); its approach can be considered as a stan-
dard and has been reimplemented in other tools such as fea-
tureCounts (1) and the R package GenomicRanges (4). An
alternative is represented by the recently released Biocon-
ductor package QuasR which provides a complete RNA-
seq workflow in R including read alignment and genera-
tion of gene, exon and junction counts (5). The computa-
tion of gene expression estimates via transcript abundances
is provided by the popular tool Cufflinks (6,7) and numer-
ous other approaches (8–16).
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Figure 1. The major steps of a standard RNA-seq workflow. First, reads in
Fastq format are aligned against reference sequences. Expression estimates
are derived from the alignments. The estimates are then used to identify dif-
ferentially expressed (or spliced) genes, usually by computing fold changes
and P-values.

If the goal of an expression profiling experiment is to
identify differentially spliced genes, then either the direct
use of transcript abundance estimates (7,17–19) or of exon
or junction counts is required (20–25). In contrast to tran-
script abundance estimates, the simpler problem of the gen-
eration of exon and junction counts has received relatively
little attention–the main options for exon counts being the
DEXSeq helper script dexseq-count (20) and, more re-
cently, QuasR. Nevertheless, as we will show, the different
approaches to exon and junction quantification can lead to
significant differences in the reported counts.

Here, we introduce the exon quantification pipeline
(EQP), a new counting-based quantification approach de-
signed to estimate the expression level of genes, exons and
exon–exon junctions in RNA-seq experiments. EQP per-
forms the steps of alignment and quantification to generate
these three types of counts. For the analysis, EQP requires
the sequencing reads (either in Fastq format or pre-aligned
in SAM/BAM format to the reference genome), the genome
of the species in Fasta format, the transcript sequences in
Fasta format, and the corresponding gene, transcript and
exon annotation in a GTF file. We assessed the performance
of EQP on experimental and simulated RNA-seq data sets
by comparing it with the results of different quantification
methods. We show that EQP delivers more accurate gene
expression estimates as well as exon and junction counts
which are well suited to quantify overlapping exons. Alto-
gether, our results showcase the potential of EQP to serve as
a high quality quantification tool for differential expression
and differential splicing studies.

MATERIALS AND METHODS

The exon quantification pipeline (EQP)

EQP consists of two distinct parts: the alignment module
and the quantification module. The workflow of EQP is
designed to provide a high degree of granularity allowing
for the use of distributed computational resources as given,
for instance, by a cluster with a job scheduling system or a
cloud-based infrastructure. It provides the option to split
the Fastq input files into blocks of a user-definable read
number which can then be processed independently; at the
same time, it also filters out reads with too few non-A or
non-T bases to filter out polyA tail reads. Generally, all pro-
cessing operations of EQP are based on a read by read or-

dering – rather than a genome-coordinate based ordering
after the alignment step.

The EQP alignment module

Before EQP can be run, it is necessary to create a number
of auxiliary files that are needed in the alignment module
and for the generation of the counts. As input for the setup
EQP requires a genome Fasta file, a transcript Fasta file and
a GTF file. The main output of the setup step is a file con-
taining the mapping of the genomic exons to the transcripts
in BED format (26) and an exon–exon junction Fasta file.
The latter file contains all possible junctions of exons that
belong to the same gene. More precisely, only the parts of
the exons up to the read length on each side of the junction
are used in the creation of the Fasta file. If an exon is shorter
than the read length, EQP pads junction entries with all pos-
sible upstream or downstream exons (depending on whether
the exon is upstream or downstream of the skipped intron)
in order to avoid imbalanced junction entries. This proce-
dure can lead to a very high number of combinations for
genes with many small exons as several padding steps may
be required on each side until the sum of the exon lengths
exceeds the read length. In EQP such genes are identified
based on a threshold on the number of junction entries and
for these genes short exons are only padded by their direct
upstream and downstream flanking exons.

The EQP alignment module aligns the Fastq files con-
taining the single or paired-end reads against the externally
provided transcript and genome Fasta file as well as the
custom created junction Fasta file using Bowtie2 (27); the
three alignment computations can be run independently,
thus providing an additional opportunity for paralleliza-
tion. For each read and alignment file, the type of align-
ment (single-read or paired-end), the number of alignments
and the sum of the number of mismatches of the alignments
(taken from the optional SAM NM field (28)) are com-
puted. Then the best set of alignments (either the transcript,
junction or genome alignments) is selected based on three
criteria (similar to (29): the alignment type (paired-end is
preferred over single-read), the mean number of mismatches
and the number of alignments; a slight preference is given to
transcript alignments by adding a small penalty per read to
genome alignments. If no paired-end alignment exists, then
the best alignments are chosen separately for each read. The
result of the selection process is a combined SAM file con-
sisting of SAM entries that originate from the three differ-
ent original alignment files. As an optional step, EQP can
generate a genome alignment file containing spliced genome
alignments for all mapped reads which can then be used to
visualize the alignments in a genome browser such as IGV
(30).

The EQP quantification module

The counts computed by EQP are based on weighted reads
where the weight w of a read that aligns n times to the
genome is given as w = 1 / n similar to the treatment of
multi-reads by Cufflinks (6). EQP allows setting an upper
bound B on the number of allowed genomic alignments of
a read. The default is 100 but, for instance, setting B = 1
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Figure 2. The alignment of read R is compatible with the exons E1, E2
and E3 but not with the exons E4, E5 and E6. It is also compatible with
gene G since it is completely contained in the compatible exons of G. Of
the 12 possible exon–exon junctions between exons of G only the junctions
between E1 and E2 and E2 and E3 are compatible with the alignment of
R.

results in counting only uniquely aligning reads and setting
B = 10 in counting quasi-unique alignments (31).

For the computation of the read weights EQP takes the
combined SAM file as input, converts it into a BED file, and
intersects the converted BED file with a BED file containing
the transcript, the genome and the junction coordinates of
the genomic exons using BEDTools (26) – see Supplemen-
tary Information for an example. The resulting intersection
file contains the relevant information to calculate the reads’
spliced genomic alignments.

In EQP a read is counted for a feature, e.g. a gene or exon,
if and only if the induced exon boundaries of its alignment
completely agree (are compatible) with the exon boundaries
of the feature. This is illustrated in Figure 2; a more pre-
cise definition is given in the Supplementary Information.
In particular, compatibility implies that no intron spanned
by the read overlaps with the feature and vice versa.

The compatibility requirement ensures that the counted
reads represent evidence for the fully matured expression of
the feature and excludes reads originating from the sequenc-
ing of pre-mRNA transcripts. This is especially important
for the computation of exon and junction counts as these
are mainly used in the analysis of differential splicing and,
thus, should only capture the mRNA signal.

Based on the intersection BED file and a file contain-
ing the mapping of the genomic exons to genes, exons or
junctions, the respective counts are then computed. Note
that the generation of junction counts (as well as gene and
exon counts) is independent of aligning the reads against
the junction Fasta file. All three types of counts can be gen-
erated from transcript or genome alignments alone. In par-
ticular, EQP allows computing the gene, exon and junction
counts from an externally provided genome alignment file
generated by a splice-aware aligner such as, for instance,
Tophat2 (32) or STAR (33) if a GTF file with the genomic
exon coordinates is provided.

Tools and data sets used for benchmarking

Experimental and simulated RNA-seq data sets were used
to evaluate the performance of EQP by comparing it
with the results of different quantification pipelines. For
the alignment module, we considered SpliceMap (34), the
aligner used in QuasR, the two popular aligners Tophat2
(32) and STAR (33) as well as the genome alignments gen-
erated by EQP; for the quantification step we used the
software packages htseq-count (3), featureCounts (1), Cuf-
flinks2 (7) and QuasR (5) for the generation of gene counts,

dexseq-count (20) and QuasR for exon counts, and QuasR
for junction counts as shown in Figure 3.

The experimental data set consists of RNA-seq data of
the Universal Human Reference RNA (UHRR or SEQC-
A) sample and the Human Brain Reference (HBR or
SEQC-B) sample that were generated in the context of the
RNA Sequencing Quality Control (SEQC) initiative (35).
There are a number of reasons for choosing an RNA-seq
benchmarking data set based on the UHRR and HBR sam-
ples: (i) these two samples have been extensively profiled
and analyzed in the MicroArray and the RNA SEQC ini-
tiatives (36); (ii) RNA-seq data for these samples were pre-
viously used for comparison in the publication of different
RNA-seq quantification tools (14) as well as in an indepen-
dent comparison study of RNA-seq quantification pipelines
(37); (iii) Taqman qRT-PCR data exist for both samples for
1000 genes.

The RNA-seq data set is part of GEO series GSE47774
and consists of paired-end reads of length 100 bp for each
of the two samples with four technical replicates; each of
the replicates was sequenced on eight (multiplexed) lanes of
a HiSeq 2000, yielding ∼10 M reads per lane resulting in
64 Fastq file pairs with more than 80 M reads per replicate
or more than 320 M reads per sample. The Supplementary
Information contains a list of the accession numbers of the
data used. The comparison is based on the processing of
each of the 64 Fastq input file pairs separately. The Taq-
man qRT-PCR data were downloaded from Gene Expres-
sion Omnibus under accession number GSE5350.

The second RNA-seq data set is taken from an indepen-
dent evaluation of RNA-seq quantification pipelines (38). It
was simulated using Flux simulator (39) on reference data
from Ensembl v66 (40). All transcripts of protein coding
genes were simulated to have approximately the same ex-
pression level. A number of different settings for the read
type (single or paired-end), read length and sequencing
depth were used in the simulation. Here, we use the paired-
end data for a read length of 100 bp and sequencing depths
ranging from ∼3 to ∼36 M reads; for each sequencing depth
a data set consists of two samples with four libraries each.

RESULTS

Comparison of the alignment module

We start out with a comparison of the EQP alignment mod-
ule with the aligners Tophat2, STAR and SpliceMap on
the SEQC data set. It should be noted that these aligners
solve a more general problem than EQP, as EQP’s alignment
module is based only on un-spliced alignments against var-
ious reference data sets and, therefore, does not detect any
spliced reads for novel, unannotated exons. For EQP, STAR
and Tophat2 an effort was made to obtain similar alignment
results (allowing up to 100 genomic mapping locations for
one read) and to provide as much auxiliary input from the
reference data sets as possible. For SpliceMap which was
run via the QuasR R interface we used the default align-
ment parameters as provided by QuasR which, in particu-
lar, implies that at most one genomic mapping location is
reported. The exact versions and calls for each aligner are
listed in the Supplementary Information.
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Figure 3. An overview of the data sets (white), the alignment methods (light grey) and the quantification methods (dark grey) used for comparison with
EQP.

Figure 4. Comparison of the EQP alignment module to other aligners.
(A) The percentage of reads of the SEQC samples aligned to the reference
genome (left) and the percentage of reads overlapping exons (right) for the
four aligners EQP (Bowtie2), STAR, SpliceMap and Tophat2. The error
bars are the standard deviation across all 64 input Fastq files. (B) The mean
number of mismatches and the mean number of soft masked bases per
(paired-end) read.

We used human reference data of Ensembl 76 for the
alignment which is the first Ensembl version based on the
GRCh38 genome build; we excluded the alternative scaf-
folds as these would have resulted in a combined genome
Fasta file of more than 35 GB consisting mostly of Ns which
is a challenge for aligner index construction.

Although our main goal is to assess the usefulness and
influence of the different aligners in the generation of ex-
pression estimates, it is still informative to compare some
basic alignment statistics as shown in Figure 4.

EQP and STAR align a very similar number of reads
to the reference (93.9% and 93.6%) whereas Tophat2 and
SpliceMap yield fewer alignments (83.4% and 74.6%). In
terms of reads aligned to exons, the aligners EQP and
Tophat2 are essentially indistinguishable (82.8% and 83.1%)
suggesting an excellent selectivity of Tophat2. STAR gave a
slightly lower number of reads (80.7%) whereas SpliceMap
also maps considerably fewer reads to the exons (67%). The
number of reads aligned to the exons is an important pa-
rameter for the RNA-seq analysis because exonic reads con-
tribute to the generation of gene, exon and junction expres-
sion counts.

The percentage of aligned reads in itself is not a sufficient
measure of alignment quality since high alignment percent-
ages may contain many false positive alignments. There-
fore, it is also important to assess the accuracy of the align-
ments produced by the different alignment algorithms. We

Figure 5. Mean number of introns spanned by at least one, three or five
reads per sample. The error bars are the standard deviation across all 64
input SEQC Fastq files.

consider the mean number of mismatches between the ref-
erence and the reads as a coarse measure for the overall
alignment quality (as reported in the optional SAM NM
field). As shown in the left half of Figure 4B, Tophat2 and
SpliceMap have the least number of mean mismatches (0.46
and 0.44), with EQP having slightly more (0.61) and STAR
being a clear outlier with about twice as many mismatches
as EQP (1.22). Local aligners such as STAR and SpliceMap
soft mask mismatches at the beginning and end of the align-
ments and count only mismatches in the aligned middle
part. For this reason, we also investigated the number of soft
masked bases. As it can be seen from the right half of Fig-
ure 4B, Tophat2 is a global aligner that does not make use
of soft masking, EQP masks ∼0.1 bp per read pair whereas
STAR and SpliceMap mask ∼1% of all aligned bases (1.8
bp and 2.6 bp, resp., of 2 × 100 bp per read pair).

The ability of an aligner to find the location of spliced
reads in the reference is an important feature for the analy-
sis of differential splicing. In Figure 5 the number of introns
that are covered by the different aligners is shown. Tophat2
clearly has the highest sensitivity with over 0.5 M spanned
introns, more than twice the number of introns discovered
by EQP which is the second most sensitive spliced aligner
with 0.23 M introns. However, Tophat2 discovers many in-
trons which are likely to be spurious since over 75% of the
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introns are spanned by less than five reads. For the other
aligners only about 50% of the introns are spanned by less
than five reads indicating a higher accuracy than Tophat2
in agreement with the results reported in (41).

Comparison of computational resources used by the aligners

As a last point we also want to report on the runtime and
memory performance of the different aligners. We ran EQP,
STAR and Tophat2 on six cores in our Linux cluster envi-
ronment with a Sun Grid Engine job scheduling system. In
general, we observed about an order of magnitude speed-
up of STAR over EQP which in turn took about half the
time of Tophat2 (for ∼10 M reads ∼45 min for STAR, ∼5
h for EQP and ∼9 h for Tophat2). Here, the time of EQP
is measured as the sum of the three independent alignment
calls; however, in practice, the alignment calls are often ex-
ecuted in parallel leading to significantly reduced compu-
tation times. SpliceMap was run on a different but com-
parable hardware with eight cores as it could not be in-
tegrated into the job scheduling system of the cluster and
needed about 20–25% more time than Tophat2 – see Supple-
mentary Information for more details. Finally, since EQP,
Tophat2 and SpliceMap are all Bowtie-based, their mem-
ory requirements are 2–4 GB whereas STAR requires more
than 25 GB.

In summary, our results indicate that the EQP alignment
module has the highest sensitivity compared to the other
tested aligners (considering both the percentages of reads
aligned to the reference and to the exons), a high accuracy
(few mismatches on average and no soft masked bases), a
high sensitivity for introns and low requirements on com-
putational resources.

Comparison of gene counts

As mentioned before, we compared the gene counts gen-
erated by EQP to the gene counts of htseq-count, feature-
Counts, QuasR and Cufflinks. In the following, we briefly
present the different tools.

htseq-count is a widely used software and one of the first
tools developed for the count-based quantification of RNA-
seq data. It uses three natural, set-theoretic criteria (called
modes) to assign a read to a feature: (i) if the read has a
non-empty overlap with the feature (called mode union),
(ii) if the read is contained in the feature (called mode
intersection-strict) and (iii) a relaxed containment criterion
(called mode intersection-nonempty). EQP’s evidence-based
counting criterion can be seen as more stringent version
of mode intersection-strict. In all three modes, htseq-count
excludes ambiguous reads (i.e. reads that map to multiple
genes) based on the insightful observation that the fold-
change can be more accurately estimated if only unambigu-
ous reads are counted.

The three counting modes of htseq-count can be con-
sidered as a de facto standard which has been reimple-
mented in the BioConductor package GenomicRanges (4)
as well as the subRead package tool featureCounts (1,42).
featureCounts implements only the mode union, however,
with highly superior speed and more flexible options; for
instance, it is possible to specify whether or not to count

ambiguous reads or multi-mappers. Interestingly, feature-
Counts does not exactly reproduce the results of htseq-
count with mode union due to a difference in the inter-
pretation of the coordinates in the GTF file containing the
genome annotation (1).

QuasR is a recently released, elegant and versatile Bio-
Conductor package which provides a simple R interface to
the complete RNA-seq workflow; this includes QC, read
alignment using either Bowtie or SpliceMap, and quantifi-
cation. Besides RNA-seq it can also be used in a number of
different count-based applications such as ChIP-seq, small-
RNA-seq and bisulfite sequencing. With respect to the func-
tionality of RNA-seq it is the most similar to EQP in that it
also provides gene, exon and junction counts. In fact, many
of the features of EQP were inspired by the Perl-based pre-
decessor of QuasR as, for instance, the weighting of reads
(which is, however, not included in the published version
of QuasR). QuasR’s counting criterion is based on a single
read position that is the first base by default but can be cho-
sen freely. A read is counted for a feature if and only if the
designated aligned read position falls into the feature; this
leads to the elegant property that a gene count in QuasR
equals the sum of its exon counts (if there are no overlapping
exons). QuasR is the only tool which provides read counts
(as opposed to fragment counts) even if paired end data are
supplied.

In stark contrast to the simple counting based ap-
proaches discussed above, Cufflinks2 provides transcript
and gene abundance estimates by employing a highly so-
phisticated statistical inference engine that allows disam-
biguating reads that map to several transcripts; in addition,
it can take biases in library preparation protocols into ac-
count. In this respect Cufflinks2 solves a considerably more
complicated problem than just providing gene counts. In
this comparison, however, we only make use of Cufflinks’
gene abundance estimates and ignore the transcript abun-
dance estimates. Cufflinks2 is also able to assemble and
quantify a set of de-novo transcripts; this mode can be used
if no genome annotation is available or to integrate and ex-
tend an existing genome annotation.

Comparison of gene counts using the SEQC RNA-seq data

We start the comparison of the different tools by consider-
ing the root-mean-square deviation (RMSD) of the log-fold
changes between different lanes and the mean of log-fold
change of the Taqman qPCR data which we consider as a
gold standard for our purposes. The use of fold changes is
motivated by the fact that fold changes are often an impor-
tant parameter in the analysis of RNA-seq data which aim
to determine differentially expressed genes. Usually, this is
combined with a measure of the significance of the fold
change in order to take the biological variability into ac-
count, e.g. a P-value. However, we do not include this sec-
ond measure in our assessment since the SEQC RNA-seq
data consist only of technical replicates with no biological
variability.

To obtain the fold change values the gene counts are first
library-size normalized using DESeq (43) except for Cuf-
flinks2’s FPKM gene abundance estimates which are taken
as is; note that length normalization as used in FPKM is not
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necessary for the computation of fold changes. In the fol-
lowing we use the term CPM (count per million) to denote
the library-size normalized counts (which are scaled to sum
to one million on average). To be able to also assign a fold
change value to sample pairs in which the count(s) in one
(or both) sample(s) are zero we add a pseudo count of 0.1
to the RNA-seq derived CPM counts; see the Supplemen-
tary Information for more details about the computation of
the fold change correlations.

In Figure 6, we illustrate the agreement of the Taqman
data with the results of three RNA-seq quantification meth-
ods. The scatter plots display on the log-fold changes be-
tween SEQC-A and SEQC-B samples for 995 of 1000 Taq-
man genes which could be mapped to Ensembl gene ids.
The plots for the different methods are very similar; some
outliers are present in all three plots suggesting systematic
differences between Taqman and RNA-seq expression mea-
surements. To be able to numerically assess the agreement
of the RNA-seq with the Taqman measurements we use the
RMSD of the Taqman and RNA-seq log-fold changes be-
tween SEQC-A and SEQC-B.

The results of the comparison are summarized in Figure
7. Overall the results of all approaches are quite similar with
the mean RMSD values ranging between 1.2 and 1.34. If we
disregard the results for SpliceMap as outliers, then the first
observation is that the choice of the quantification method
influences the results more than the choice of the aligner
(ANOVA P-value < 2−16 for the quantification and 0.63 for
the alignment methods). This is consistent with the results
reported in (38). The poor performance of SpliceMap can
be partially explained by the fact that we used the QuasR
default option of allowing at most one alignment per read
for SpliceMap whereas we used the EQP default option of
allowing up to 100 genomic alignments for the other align-
ers. For the best quantification methods using STAR leads
to lower RMSD values than using Tophat2 and, in particu-
lar, when considering EQP the results are indistinguishable
from results of EQP’s own alignment method.

The first four columns on the left of Figure 7 are based
on different options for the usage of EQP. With respect to
the comparison of the Taqman fold changes it seems that
the exclusion of multi-mappers or ambiguous reads confers
a slight advantage. Concerning the three modes of htseq-
count, the RMSD values clearly decrease with increasing
the stringency of the read assignment criterion (in the order
of union, intersection-non-empty and intersection-strict).
This is consistent with the fact that EQP yields the lowest
RMSD values since, as mentioned before, the read assign-
ment criterion used by EQP can be viewed as an even more
stringent version of intersection-strict. In general, EQP,
QuasR and htseq-count with mode intersection-strict be-
have very similar across all aligners. Cufflink2 shows the
lowest agreement with the Taqman fold changes even if
Tophat2 is used as an aligner, again consistent with previ-
ous results (37,38). All together, these results indicate that
EQP provides slightly superior or on par gene expression
estimates as compared to the other methods tested – inde-
pendent of the aligner.

A very similar overall picture can be seen if we consider
the coefficient of determination instead of the RMSD val-
ues; see the Supplementary Information.

Comparison of gene counts using simulated RNA-seq data

The simulated RNA-seq data were originally generated by
Fonseca et al. (38) to assess the correlation of the data gen-
erated by the different quantification methods on the count
level. Here, we use the same data set to compare the quan-
tification methods on the count-level as well. It should be
noted that a count-level comparison puts htseq-count at a
disadvantage since its exclusion of ambiguous reads leads
to inferior count correlations.

We performed the comparisons on a reduced set of meth-
ods; in particular, we excluded the SpliceMap alignments
due to the considerable time investment of generating the
alignments without the support of a cluster. We also ex-
cluded the alignments produced by EQP from this compar-
ison as they behave very similar to STAR and Tophat2.

The RNA-seq data were simulated for a range of sequenc-
ing depth consisting of 3 M, 9 M, 18 M and 36 M reads. For
each read depth, there are two samples with four libraries. In
order to use expression values that reflect the relative expres-
sion of each gene as accurately as possible we also length
normalize the CPM counts by dividing by the gene length
(which is computed as the length of the ‘genomic footprint’
of a gene, that is, the number of all genomic bases covered by
some exon of the gene) – again except for Cufflinks’ FPKM
values. As in (38), we use the Spearman correlation to mea-
sure the agreement between the true counts and the expres-
sion estimates.

In Figure 8, we show the results for the library size 9 M
reads which is a number close to the ∼10 M reads for the
SEQC samples considered above. The plots for the other
library sizes (3 M, 18 M and 36 M reads) show very similar
results and can be found in the Supplementary Information.
With respect to the count correlation Cufflinks2 shows the
highest correlation values.

Quantifier execution times

We also assessed the run times of the quantifiers on the
SEQC data (with the exception of QuasR). Though the to-
tal processing time is usually dominated by the alignment
step, it is still interesting to compare the time spent on the
quantification step. If the genome alignment file is provided,
then EQP and featureCounts have a comparable execution
times of about 20–25 min on average, followed by htSeq-
count with 35–40 min (independent of the counting mode).
Cufflinks2 needs considerably more time with a median of
3–3.5 h (see Supplementary Information for more details).

Assessment of exon counts

As mentioned above, we compare EQP’s exon counts with
the counts generated by the dexseq-count helper script in-
cluded in the DEXSeq package (20) and QuasR. One diffi-
culty is that there is no agreement about what an exon count
should represent, leading to different types of counts which
cannot be compared.

The exon counts generated by dexseq-count are based on
a modified exon model in which the entries in the GTF file
are ‘flattened’, i.e. overlapping exons are subdivided into
disjoint intervals called exonic parts which can belong to
more than one exon and are quantified using htseq’s union
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Figure 6. Scatter plots of Taqman mean gene expression fold changes versus the RNA-seq gene count fold changes of the first lanes for the samples
SEQC-A and SEQC-B using the three quantification methods EQP/Bowtie2, htSeq intersection-strict/STAR and Cufflinks2/Tophat2.

Figure 7. The distribution of RMSD values for different quantification methods and aligners. Each box plot reflects 32 values computed between the
Taqman mean gene expression fold changes and the gene count fold changes of sample SEQC-A versus SEQC-B for different lanes of the RNA-seq data.
For EQP we consider four parameter settings: counting reads with up to 100 or up to 10 genomic alignments (EQP and EQP-quasi-unique), with unique
genomic alignments (EQP-unique), and with unambiguous genomic alignments (EQP-unambiguous).

count mode. This elegantly reduces the multitude of pos-
sible splicing events to mostly exonic part skipping events
but can obscure differential exon usage for overlapping ex-
ons and makes the counts more difficult to interpret. QuasR
and EQP on the other hand use whole exons as their basis
for quantification. As a consequence, the counts generated
by dexseq-count and EQP or QuasR are only comparable
for exons that do not overlap with another exon.

As is shown in Table 1, overlapping exons represent a sig-
nificant fraction (up to over 60%) of the overall number of
exons for different organisms. Annotation sources and dif-
ferences in the treatment of these features can lead to con-
siderably different results. However, if we restrict ourselves
to non-overlapping exons, the exon counts of dexseq-count
and EQP agree to a high degree as shown in Figure 9A.

Differences still exist due to the stricter read assignment
rules of EQP and the exclusion of ambiguous reads for
dexseq-count. Since both QuasR and EQP use exons, their

counts can be compared directly as shown in Figure 9B,
with the different count criteria leading to significant dif-
ferences between the counts.

The exon expression values of EQP and dexseq-count de-
pend on both the exon and the read length as a read is
counted for all the exons or exonic parts it overlaps; since in
QuasR the assignment of a read to an exon is based on a sin-
gle position, the exon expression values depend only on the
exon length. In fact, for QuasR the number of potential po-
sitions for the last exon of a gene is actually the exon length
minus the read length; however, since 3′-exons are usually
considerably longer than the currently used read lengths this
does not pose a serious problem. For short exons this means
that the signal generated by EQP and dexseq-count is am-
plified as there are more read alignment positions that po-
tentially lead to an assignment; however, this effect is offset
by the fact that QuasR reports read counts as opposed to
fragment counts.
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Table 1. The number and percent of exons which overlap with another exon and the number and percent of exons which share the left or right boundary
with another exon for different annotation sources and organisms

Annotation
source Organism Num exons Num ov. exons Perc. ov. exons

Num sh. bd.
exons Perc. sh. bd. exons

Ensembl 76 human 597 495 372 779 62.39 347 209 58.11
Ensembl 76 mouse 362 381 167 129 46.11 155 522 42.91
Ensembl 76 rat 216 258 5945 2.74 4699 2.17
Refseq NCBI human 318 929 78 185 24.51 73 295 22.98
Refseq NCBI mouse 343 914 104 542 30.39 98 154 28.54
Refseq NCBI rat 282 271 56 008 19.84 52 396 18.56

Figure 8. Spearman correlation between gene expression estimates and
true gene counts based on the comparison of the eight different libraries
of the simulated data.

Although a direct comparison between the different
counts is problematic, it is still possible to investigate the
sensitivity of the quantification methods on the fold change
level. In Table 2 we show the number of exons or exonic
parts which have an absolute fold change value of at least
two between the samples SEQC-A and SEQC-B averaged
over the 2 × 32 input data sets. Across all aligners used,
EQP reports ∼5–15% more exons to have a fold change of
at least two than either dexseq-count or QuasR – underlin-
ing the importance of the count criteria.

To further illustrate the consequences of the different
exon count criteria, in particular for overlapping mutually
exclusive exons, we use an example based on the STAR
alignments of the first lane of sample SEQC-A in the two
exons E1 and E2 of the gene RAN (Ras-related nuclear
protein; ENSG00000132341) as displayed in Figure 10. A
closer examination of the reads covering these exons shows
that only a handful of reads are consistent with exon E1 (see
the green box in the inset) whereas many reads are compati-

ble with exon E2. This would suggest a higher expression of
exon E2 and a very low expression of exon E1.

As can be seen from Table 3, neither the exon counts of
QuasR nor the counts for the exonic parts of dexseq-count
are consistent with the mutually exclusive use of exon E2
over E1 whereas the count distribution of EQP clearly re-
flects the exclusion of E1.

Finally, EQP’s count criterion also has the advantage that
it allows for a proper definition and detection of ambiguous
reads for exons, that is, reads that are compatible with ex-
actly one exon without losing the vast majority of the reads.
For the SEQC samples more than half of the reads (54.7–
59.4%) can be unambiguously assigned to a single exon.

Junction counts

Junction counts depend to a high degree on the aligner used
since number of spliced reads corresponds directly to the
coverage of junctions. If the junction counts are based on
genomic alignments, then they are usually given as the num-
ber of reads spanning introns between two exons as reported
by QuasR (5,15). However, as shown in Table 1, for many
reference data sets a significant fraction of the exons shares
one (or both) of its boundaries with another exon leading
to ambiguities if only intron-spanning counts are reported.
In EQP all possible combinations of exons that border an
intron are quantified separately which leads to a higher res-
olution for junction expression estimates and allows associ-
ating junction counts directly with pairs of exons. It should
be noted that the junction reads are already included in the
exon counts generated by EQP.

The difference between intron-spanning and junction
counts can also be illustrated using Figure 10. The exons
E1 and E2 share the left boundary but only very few of the
reads spanning the intron to the left of these exons are con-
sistent with E2 whereas most of them are consistent with E1
which is reflected in the reported counts (see Supplementary
Information).

A different approach to generate junction counts is to use
a junction data base similar to the one used in the align-
ment module of EQP (21,44). The reads are aligned against
the junction data base and the junction counts are given
by how many reads align against each junction. One draw-
back of this simple and effective approach is that the align-
ments used for quantifying the junctions are different from
the ones used for the gene and exon counts; this can lead to
additional biases and inconsistencies solely due to the align-
ment differences. Note that, in particular, paired-end read
information is poorly utilized in this approach as the junc-
tion entries typically consist of relatively short sequences,
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Figure 9. Logarithmic exon count scatter plots for the Tophat2 alignments of the first lane of sample SEQC-A with x- and y-axis labels in untransformed
counts. (A) Correlation between EQP and dexseq-count on exons that do not overlap other exons. (B) Correlation between EQP and QuasR on all exons.

Table 2. The mean number of exons or exonic parts that have an absolute fold change value of at least two for different aligners and different quantification
methods

Bowtie2-EQP STAR Tophat2 SpliceMap

EQP 65 316.19 72 247.31 72 361.78 67 752.12
dexseq-count 62 496.12 62 982.22 60 927.31 65 038.12
QuasR 55 141.88 57 653.25 61 340.56 56 502.50

Table 3. The exon counts of EQP and QuasR and the counts for the exonic parts of dexseq-count for the features shown in Figure 10

Exon EQP QuasR Exonic part dexseq-count

E1 4 155 ep1 482
E2 517.5 230 ep2 553

extending at most the read length to either side of the junc-
tion. EQP, on the other hand, generates junction counts
from genomic alignments which are consistent with gene
and exon counts.

DISCUSSION

The generation of expression estimates for genes, exons and
junctions is usually the basis for the analysis of differentially
expressed and differentially spliced genes. In this paper we
present EQP as a new tool to derive gene, exon and junction
counts from the output of a sequencer. EQP covers both
the alignment and the quantification steps of a RNA-seq
workflow. We assess the performance of each of these steps
on RNA-seq experimental data from the SEQC project (35)
and simulated data generated for the comparison of gene
quantification methods reported by Fonsenca et al. (38).

Overall, EQP’s alignment and quantification modules
provide an good combination of speed, accuracy, sensitivity
and the ability to quantify superior expression estimates as
compared to other methods.

EQP’s alignment module has low requirements on the
computational resources and is particularly suited for well-

annotated model species as it strongly depends on high
quality reference data. This module provides highly sensi-
tive and accurate alignments on experimental data gener-
ated from human reference RNA samples. When compared
to other aligners (Tophat2, STAR, SpliceMap), EQP shows
a higher percentage of reads aligned to the reference and to
the exons, lower number of mismatches and no soft mask-
ing. The ability to accurately locate reads on the exons is
one of the most important features for a RNA-seq aligner,
as exonic reads are subsequently used to infer gene expres-
sion levels in the quantification step. The high sensitivity of
EQP’s alignment module is also confirmed by its ability to
find the locations of spliced reads in the reference. This is
supported by the high number of introns spanned by the
reads shown in Figure 5. For this metric EQP is second
only to Tophat2, which, however, discovers many spurious
introns supported only by one read.

As input EQP’s quantification module can use the align-
ments generated by either its own alignment module or by
a different genomic aligner of choice. It uses a novel count
criterion based on the agreement of the splicing pattern of a
read alignment with a feature. It offers a variety of ways to
quantify genes (using weighted or unweighted reads, lim-
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Figure 10. An IGV screenshot of the genomic region of the 5′-prime end of gene RAN (Ras-related nuclear protein; ENSG00000132341). RAN is a Ras
family GTPase involved in multiple cellular functions, including regulation of DNA replication, cell cycle progression, nuclear structure formation, RNA
processing-exportation and nuclear protein importation. It contains the two overlapping mutually exclusive exons 12:130872584-130872617:+ (E1) and
12:130872584-130872629:+ (E2) shown in the third track. The first two tracks show the base coverage and the read alignments generated by STAR of the
first lane of sample SEQC-A. The third track shows the gene annotation with the exons E1 and E2, and the fourth contains the exonic parts (e.g. ep1 and
ep2) used by dexseq-count. The inset shows the first alignments against exon E2 in more detail; the green rectangle in the inset encloses the four alignments
that are also compatible with E1.

iting the number of alignments of a read, allowing or ex-
cluding ambiguous reads) and delivers unified expression
estimates for genes, exons and junctions. In combination
with EQP alignments, EQP’s quantification method pro-
vides fold change values with a higher similarity to Taqman-
based fold changes when compared to results of combi-
nations of different aligners (Tophat2, STAR, Splicemap,
EQP) and quantification methods (htseq-count, feature-
Count, Cufflinks2, QuasR, EQP). QuasR and htseq-count
behave very similar to EQP’s quantification, while Cufflink2
has the lowest agreement with the Taqman RT-PCR re-
sults on the SEQC samples. However, the performance of
Cufflinks2 improves considerably on the simulated data set
probably due to the fact that the simulations do not exhibit
the same biases of a real RNA-seq data set thus facilitating
the estimation of transcript abundance estimates.

The differences between the methods are most pro-
nounced for exon counts for which even the unit to be
measured differs between the tools. EQP and QuasR di-
rectly measure the exons as defined in the GTF file whereas

dexseq-count introduces exonic parts as the measuring unit.
In addition, the three methods use three distinct counting
criteria leading to different properties of the counts. EQP’s
evidence-based counting criterion is well-suited to deal with
overlapping, mutually exclusive exons whereas QuasR and
dexseq-count are less sensitive. This is also illustrated by
the fact that EQP reports considerably more exons with a
fold change of at least two. Moreover, with increasing read
length the (length normalized) exon expression of EQP con-
verges to the sum of the (length normalized) expression of
those transcripts in which the exon is contained; in contrast,
in QuasR more and more reads will be assigned to the first
exons of the transcripts. This difference becomes even more
important if we consider that recent technology advances
are moving toward sequencing of full-length transcript iso-
forms (45) though not yet in high-throughput mode. In
many ways the problem of computing exon counts is sim-
ilar to the problem of inferring transcript abundances due
to the many overlapping exons so that similar approaches
could be applied here as well. Since the problem is much
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more localized and the overlap patterns are simpler for ex-
ons than for transcripts such abundance estimates are likely
to be more robust. Exon abundance estimates derived in this
way could then even be used as an additional input for the
estimation of transcript or gene abundances (46).

SUPPLEMENTARY DATA
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ACKNOWLEDGEMENTS

The authors thank M. Beibel, M. Borowski, F. Nigsch and
S. Bergling for helpful discussions and critical reading of the
manuscript.

FUNDING

Funding for open access charge: Novartis Pharma AG.
Conflict of interest statement. Both authors are employees
and own shares of Novartis Pharma AG.

REFERENCES
1. Liao,Y., Smyth,G.K. and Shi,W. (2014) featureCounts: an efficient

general purpose program for assigning sequence reads to genomic
features. Bioinformatics, 30, 923–930.

2. Schmid,M.W. and Grossniklaus,U. (2015) Rcount: simple and
flexible RNA-Seq read counting. Bioinformatics, 31, 436–437.

3. Anders,S., Pyl,P.T. and Huber,W. (2015) HTSeq––a Python
framework to work with high-throughput sequencing data.
Bioinformatics, 31, 166–169.

4. Lawrence,M., Huber,W., Pagès,H., Aboyoun,P., Carlson,M.,
Gentleman,R., Morgan,M.T. and Carey,V.J. (2013) Software for
computing and annotating genomic ranges. PLoS Comput. Biol., 9,
e1003118.

5. Gaidatzis,D., Lerch,A., Hahne,F. and Stadler,M.B. (2015) QuasR:
Quantify and Annotate Short Reads in R. Bioinformatics, 31,
1130–1132.

6. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., van
Baren,M.J., Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript
assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat.
Biotech., 28, 511–515.

7. Trapnell,C., Hendrickson,D.G., Sauvageau,M., Goff,L., Rinn,J.L.
and Pachter,L. (2013) Differential analysis of gene regulation at
transcript resolution with RNA-seq. Nat. Biotech., 31, 46–53.

8. Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform
expression in RNA-Seq. Bioinformatics, 25, 1026–1032.

9. Li,W. and Jiang,T. (2012) Transcriptome assembly and isoform
expression level estimation from biased RNA-Seq reads.
Bioinformatics, 28, 2914–2921.

10. Nariai,N., Hirose,O., Kojima,K. and Nagasaki,M. (2013) TIGAR:
transcript isoform abundance estimation method with gapped
alignment of RNA-Seq data by variational Bayesian inference.
Bioinformatics, 29, 2292–2299.

11. Nariai,N., Kojima,K., Mimori,T., Sato,Y., Kawai,Y.,
Yamaguchi-Kabata,Y. and Nagasaki,M. (2014) TIGAR2: sensitive
and accurate estimation of transcript isoform expression with longer
RNA-Seq reads. BMC Genomics, 15, S5.

12. Suo,C., Calza,S., Salim,A. and Pawitan,Y. (2014) Joint estimation of
isoform expression and isoform-specific read distribution using
multisample RNA-Seq data. Bioinformatics, 30, 506–513.

13. Wu,Z., Wang,X. and Zhang,X. (2011) Using non-uniform read
distribution models to improve isoform expression inference in
RNA-Seq. Bioinformatics, 27, 502–508.

14. Hu,Y., Liu,Y., Mao,X., Jia,C., Ferguson,J.F., Xue,C., Reilly,M.P.,
Li,H. and Li,M. (2014) PennSeq: accurate isoform-specific gene
expression quantification in RNA-Seq by modeling non-uniform read
distribution. Nucleic Acids Res., 42, e20.

15. Montgomery,S.B., Sammeth,M., Gutierrez-Arcelus,M., Lach,R.P.,
Ingle,C., Nisbett,J., Guigo,R. and Dermitzakis,E.T. (2010)
Transcriptome genetics using second generation sequencing in a
Caucasian population. Nature, 464, 773–777.

16. Turro,E., Su,S.-Y., Goncalves,A., Coin,L., Richardson,S. and
Lewin,A. (2011) Haplotype and isoform specific expression
estimation using multi-mapping RNA-seq reads. Genome Biol., 12,
R13.

17. Shi,Y. and Jiang,H. (2013) rSeqDiff: Detecting differential isoform
expression from RNA-Seq data using hierarchical likelihood ratio
test. PLoS One, 8, e79448.

18. Vitting-Seerup,K., Porse,B., Sandelin,A. and Waage,J. (2014) spliceR:
an R package for classification of alternative splicing and prediction
of coding potential from RNA-seq data. BMC Bioinformatics, 15, 81.

19. Turro,E., Astle,W.J. and Tavaré,S. (2014) Flexible analysis of
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