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Potential pitfalls of mass 
spectrometry to uncover mutations 
in childhood soft tissue sarcoma: A 
report from the Children’s Oncology 
Group
Lin Xu1,*, Raphael A. Wilson1,*, Theodore W. Laetsch1, Dwight Oliver2, Sheri L. Spunt3, 
Douglas S. Hawkins4 & Stephen X. Skapek1

Mass spectrometry-based methods have been widely applied – often as the sole method – to detect 
mutations in human cancer specimens. We applied this approach to 52 childhood soft tissue sarcoma 
specimens in an attempt to identify potentially actionable mutations. This analysis revealed that 25% 
of the specimens harbored high-confidence calls for mutated alleles, including a mutation encoding 
FLT3I836M that was called in four cases. Given the surprisingly high frequency and unusual nature of 
some of the mutant alleles, we carried out ultra-deep next generation sequencing to confirm them. We 
confirmed only three mutations, which encoded NRASA18T, JAK3V722I and METR970C in three specimens. 
Beyond highlighting those mutations, our findings demonstrate potential pitfalls of primarily utilizing 
a mass spectrometry-based approach to broadly screen for DNA sequence variants in archived, clinical-
grade tumor specimens. Duplicate mass spectrometric analyses and confirmatory next generation 
sequencing can help diminish false positive calls, but this does not ameliorate potential false negatives 
due in part to evaluating a limited panel of sequence variants.

Sequenom MassARRAY (Sequenom, San Diego, CA) is one of most popular high-throughput technologies 
to detect mutations in DNA samples. Compared to next generation sequencing (NGS) platforms, this mass 
spectrometry-based assay purports to provide rigorous genetic characterization with lower cost1,2, making it ideal 
for genome-wide association studies (GWAS)3,4 and clinical diagnosis5,6. Mutations detected by this approach 
are generally considered to be highly reliable. Indeed, we used an in-house text-mining algorithm in a search of 
PubMed entries to select 200 publications in which MassARRAY findings were not subjected to further valida-
tion. When closely scrutinizing 60 that we chose to represent a spectrum of peer-reviewed journals, we confirmed 
the lack of secondary validation in all and the lack of replicate testing by MassARRAY in the majority (Table S1). 
The approaches in those reports may have been justified by extensive preliminary validation of the assay to detect 
a limited number of variant alleles in each laboratory. Here, we utilized MassARRAY in a different way: to broadly 
screen for sequence variants in DNA extracted from formalin-fixed, paraffin-embedded (FFPE) childhood tumor 
specimens, with plans for secondary validation of variant alleles by using next-generation sequencing.

We studied 52 FFPE tumor specimens representing 18 different types of pediatric sarcoma or related soft tis-
sue neoplasm (Table S2) collected as part of the Children’s Oncology Group (COG) D9902 Soft Tissue Sarcoma 
Biology and Banking Study. The de-identified DNA specimens were processed according to the MassARRAY 
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guidelines, and the OncoCarta v1.0 and v3.0 panels were employed to interrogate 365 actionable mutations in 33 
cancer-related genes in all 52 specimens. The MassARRAY Typer software identified 15 high confidence mutations 
in 13 cases, as well as a larger number of lower confidence calls. The high confidence calls included FLT3I836M (called 
in four cases) and two different mutant BRAF and STK11 alleles in three and two cases, respectively (Table S3).  
We conducted targeted ultra-deep sequencing (averaged 1368×​ after removing PCR duplicates) to verify 14 of the 
mutations in those cases with sufficient remaining DNA. We were only able to confirm 3 of the 14 mutations tested 
(NRASA18T, JAK3V722I and METR970C) (Table S3). The three validated mutations were found in cases with high or 
low DNA concentration, A260/280 ratio, and mutant allele frequency (Fig. 1). We calculated the false discovery  
rate (FDR), which is the proportion of positive test results that are false discoveries. In our studies, mass spec-
trometric detection of this panel of variants in DNA extracted from FFPE material was associated with a high 
rate of false positives (FDR =​ 79%). Although we point out that the FDR appeared worse when the mutant allele 
frequency was 30% or less (FDR =​ 92%), the small number of cases limits our ability to conclude that the high 
FDR might be due to specific factors like low DNA concentration or chemical contaminants that might interfere 
with mass spectrometry.

To confirm and begin to understand the basis for the high rate of false positives, we conducted follow-up 
studies. First, we repeated our analysis of the ultra-deep sequencing data with a range of thresholds that allowed 
less stringent criteria for mapping and base quality (Table S4). Despite this, we were not able to unmask addi-
tional mutations in the sequencing data, and the same three mutations were consistently identified. Second, we 
found that the three verified mutations (NRASA18T, JAK3V722I and METR970C) were not biased toward cases with 
lower or higher average coverage in sequencing data when compared to those with unverified mutations (t-test, 
P =​ 0.47). Finally, we considered whether the high rate of false positives was due to inaccuracy imposed by the 
Typer software used to make the high confidence calls. We invited an independent clinical laboratory scientist 
with expertise in clinical-grade, mass spectrometry-based mutation detection to review the spectra from our 
initial studies. Blinded to our ultra-deep sequencing results, the manual expert reviewer dismissed four of the 
14 high confidence calls as having “low reliability” (Table S3). However, this manual review did not improve the 
FDR, which was 79% (11 of 14) before and 80% (8 out of 10) after the review (Table S3). While some of the false 
positives could have been caused by adducts (especially K+ adducts) (Figure S1A), we point out that the PCR 
products had been treated with an ion-exchange resin prior to mass spectrometry to reduce this possibility. Many 
of the non-validated calls had no adduct potential because the mass difference separating the mutant and wild 
type peak was not sufficiently close to the mass shift caused by known adducts (Figure S1B–D). In those cases, 
cytosine deamination caused by FFPE fixation or decomposition products from other assays multiplexed into the 
same well may have contributed.

We explored whether the DNA concentration and “quality” (i.e., from frozen or fixed material) might influ-
ence the rate of false positives in mass spectrometry-based mutation calling using two human sarcoma cell lines 
(RD and JR1). We prepared DNA with high (10 ng/μ​l) and low (0.2 ng/μ​l) concentration (HC and LC, respec-
tively), and without and with exposure to 4% paraformaldehyde to model good and poor “quality” (GQ and PQ, 
respectively). We evaluated all four combinations (HC +​ GQ, LC +​ GQ, HC +​ PQ, and LC +​ PQ) in duplicate 
using the OncoCarta v1.0 and v3.0 panels, according to the manufacturer’s guidelines. As listed in Fig. 2 and 
Table S5, 13 high-confidence mutations, including six instances of NRASQ61H, were identified in these 16 samples.

We attempted to verify the mutation calls in both cell lines using whole-exome and whole-transcriptome 
sequencing. Focusing on the mutated loci, whole-exome sequencing depth averaged 63×​ for RD cells and 76×​ 
for JR1 cells, and whole-transcriptome depth averaged 252×​ and 189×​ for RD and JR1, respectively. Among 
the 13 high-confidence mutations in eight different genes called using mass spectrometry, only the NRASQ61H 
mutation was confirmed by both whole-exome and whole-transcriptome sequencing. Consistent with our 

Figure 1.  All fourteen mutations identified by MassARRAY are plotted based on their allele frequencies, 
DNA concentrations and A260/280 values. Three (NRASA18T, JAK3V722I and METR970C) out of fourteen mutations 
identified by MassARRAY were validated by ultra-deep sequencing data (marked by red arrows). Note that 
there were twelve DNA samples that contain these fourteen mutations. For two cases in which two mutations 
were within the same DNA sample, the peak with lower allele frequency was buried by the one with higher allele 
frequency in the figure.
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observations from actual tumor specimens, mass spectrometric mutation calls were associated with a relatively 
high FDR: 37.5% and 80% for good and poor quality DNA, respectively, and 54% overall (Fig. 2 and Table S5). 
Replicate testing, not typically utilized with mass spectrometry-based analyses as noted above, would eliminate 
those false-positive variants in this analysis but also might compromise sensitivity to detect true mutant alleles 
(Fig. 2). DNA “quality” also seemed to influence the sensitivity of mass spectrometry to detect real mutations: 
the NRASQ61H allele was identified in 5 of 8 replicates with high quality, and only 1 of 8 replicates with low quality 
DNA (Table S5). Furthermore, mass spectrometric detection of low frequency mutant alleles was always false 
when it indicated a mutant allele frequency of 30% or less, a finding similar to the false discovery rates in the 
first experiment (Fig. 1). DNA concentration did not appear to influence the FDR (50% vs. 57% in HC and LC, 
respectively) or sensitivity to detect a true mutation (37.5% in both in HC and LC).

Finally, we addressed whether our ultra-deep sequencing assay lacked the sensitivity to detect what we deemed 
to be false-positive variants, which mass spectrometry detected at an average allele frequency of 14.8% (range: 
6.4–27.3%) (Table S3). To address this concern, we took advantage of the fact that two different single nucleotide 
variants are found in NRAS in the RD and Rh30 rhabdomyosarcoma cell lines (Fig. 3A). We extracted DNA from 
the two cell lines cells, which were either freshly frozen (FF) or fixed in 4% paraformaldehyde to mimic FFPE 
specimens, and we empirically determined the amount of each DNA sample that would lead to equivalently 
amplified DNA fragments (Fig. 3B). RD DNA was serially diluted in Rh30 DNA (i.e., RD =​ 100%, 50%, 25%, 
12.5%, 6%, 3% and 0%). We applied the same NGS approach previously applied to the tumor specimens to try to 
detect the RD- and Rh30-associated variants in the mixed DNA samples (average read depth after removing PCR 
duplicates: 1271×​). The proportion of reads for each variant allele, relative to wild type, approximated the pro-
portion of the DNA known to contain that variant (Fig. 3C). Importantly, we always detected the mutant allele by 
sequencing, even when the true allele frequency was as low as 3.1% in DNA extracted from either frozen or fixed 
samples (Fig. 3C and Table S6). This threshold is lower than the lowest variant allele called by mass spectrome-
try but not confirmed by our next generation sequencing (Table S3). Hence, the discordance that we observed 
between the variants called by mass spectrometry and DNA sequencing does not seem likely to be driven by low 
sensitivity of the NGS assay. In contrast to our approach in this analysis, using a small amount of starting material 
(e.g., 1 ng genomic DNA) in a multiplexed PCR amplification might limit diversity in the amplified DNA used for 
sequencing, thereby compromising assay sensitivity.

In summary, we can draw a number of conclusions from our analysis of a relatively large panel of childhood soft 
tissue sarcoma specimens: First, we did find potentially actionable mutations in a small number of childhood soft 
tissue sarcoma specimens (3 of 52) using this commonly-employed mass spectrometry-based assay as a screen, 
and the putative variants were confirmed with a complementary NGS approach. The low number of actionable 

Figure 2.  All thirteen mutations identified by MassARRAY are plotted based on their allele frequency, 
DNA concentration and quality in replicate analyses of RD and JR1 cells. Among all these, only NRASQ61H 
mutations were validated by whole-exome and whole-transcriptome sequencing (marked by yellow boxes).
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variants may underscore the emerging theme about the paucity of such mutations in childhood neoplasms7.  
Our findings also highlight the importance of genome-wide sequencing approaches or, when applying 
panel-based sequencing, utilizing those that are developed for childhood cancer. Two groups recently reported 

Figure 3.  (A) Schematic diagram shows DNA sequence variants in the human NRAS gene in either the RD 
or the Rh30 rhabdomyosarcoma cell lines. Forward and reverse primers used to amplify the genomic DNA 
for NGS are denoted by red and green arrows. (B) Photograph of ethidium bromide-stained 2% agarose gel 
shows semi-quantitative analysis of PCR amplification of one of the products noted in (A), confirming equal 
representation of each of the two sources of input DNA used for mixing experiment. (C) Graphs displaying the 
relative frequency of calls by NGS for each variant allele in DNA samples containing DNA from RD and Rh30 
cells. The variant RD allele could be detected by NGS even when present 3.1% of the total DNA (arrow).
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somatic mutations identified by whole exome sequencing in several types of sarcoma from adult patients8,9. Only 
2 of the 169 mutations identified in those reports are represented in the OncoCarta panels. Yet, even for mutations 
included in the OncoCarta panels, the low sensitivity in our mass spectrometry-based studies could have limited 
their detection, especially in cases exposed to formaldehyde-based fixative. Beyond the low sensitivity, our analy-
sis revealed a surprisingly high FDR in this analysis of DNA extracted from archived FFPE material from a wide 
range of childhood soft tissue sarcomas and other solid tumors. The high FDR may be at least partly attributed 
to lower “quality” DNA (i.e., exposure to formaldehyde-based fixative), which also seems to compromise the 
aforementioned sensitivity. Hence, we suggest that researchers should be cautious about primarily using a mass 
spectrometry-based approach to broadly survey for mutations in DNA from FFPE material without either repli-
cate testing or secondary validation with a complementary approach.

Methods
DNA Extraction.  Formalin-fixed, paraffin-embedded (FFPE) tissue samples primarily representing 
non-rhabdomyosarcoma soft tissue sarcoma (NRSTS) were identified at the Children’s Oncology Group (COG) 
Biopathology Center at Nationwide Children’s Hospital. The cases had been submitted to the Biopathology Center 
as part of the COG D9902 Soft Tissue Sarcoma Biology/Banking study, and informed consent for specimen use 
was obtained prior to sample submission. The Institutional Review Board at the University of Texas Southwestern 
Medical Center reviewed and approved this research project (IRB # STU 102011-034); and all of the research 
work was accomplished in accordance with these approved guidelines.

Hematoxylin and eosin–stained slides were reviewed for each case by a pathologist to confirm diagnosis 
and assess tumor composition and necrosis. 50 of the 52 sample blocks were composed of >​70% tumor tis-
sue and 49 contained <​30% necrosis. Between 3 and 60 15-micron sections were used to obtain 2 μ​g of DNA 
per sample. DNA was extracted from FFPE blocks of 52 NRSTS cases using the Qiagen EZ1 DNA Tissue kit 
(Qiagen, Valencia, CA), according to the manufacturer’s specifications. DNA concentration was measured by the 
PicoGreen fluorescence assay (Life Technologies, Grand Island, NY). A260/280 measurements were taken to assess 
nucleic acid purity using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). The de-identified 
DNA samples were further analyzed in the Skapek laboratory.

MassARRAY analysis.  All 52 cases were assayed using the Sequenom MassARRAY OncoCarta v1.0 and 
v3.0 panels (Sequenom, San Diego, CA), according to manufacturer’s specifications, to examine 365 unique muta-
tions in 33 cancer-related genes. Briefly, 20 ng of DNA per well was PCR amplified using predesigned, multi-
plexed primers in 96-well plates; treated with shrimp alkaline phosphatase; and processed with extension primers 
to be extended by a single base at the corresponding nucleotide mutation sites. The processed DNA was then 
desalted using Sequenom Clean Resin, spotted onto a SpectroCHIP array using the MassARRAY Nanodispenser, 
and assessed by MALDI-TOF mass spectrometry using the MassARRAY Analyzer 4. The data were analyzed 
in Typer 4.0.20 software (Sequenom) using the Oncomutation Report command with a frequency cutoff of 5% 
for the mutant peak to generate a Z-Score and OncoReport confidence level. To verify mutation calls, find calls 
missed by the OncoReport program, and eliminate likely false positives called by OncoReport, the spectra for 
each assay were manually examined and evaluated as recommended by the OncoCarta Manual Analysis Guide 
and Quick Guide for OncoCarta Analysis (Sequenom). In particular, the high and medium confidence calls 
from OncoReport were independently reviewed and scored by a clinical pathology laboratory scientist who was 
blinded to any additional information on the tumor specimens.

Targeted ultra-deep sequencing.  To validate the potential mutations identified by MassARRAY, we per-
formed deep sequencing of the genomic regions containing the mutations. One case (PASNLT) could not be 
included in the validation set due to insufficient remaining DNA. Primers were designed to amplify approxi-
mately 150 bp segments (range 118 bp–329 bp) of DNA surrounding the mutations using SeqBuilder (DNASTAR, 
Madison, WI) and Primer-BLAST10 software (Table S7). For each reaction, 1 ng of input DNA underwent 35 
cycles of PCR (20 sec denature, 15 sec anneal, 15 sec extend) using the KAPA HiFi (high fidelity) Hot Start DNA 
polymerase (KAPA Biosystems, Wilmington, MA). Each reaction was carried out independently, as opposed 
to being multiplexed. The PCR products were loaded and run on a 0.8% agarose, 0.0005% ethidium bromide 
gel, the bands of interest cut out with a clean, sterile razorblade on a long-wavelength (365 nm) UV box (3UV 
Transilluminator, UVP, Upland, CA), and extracted using the QIAquick Gel Extraction Kit (Qiagen), accord-
ing to manufacturer’s specifications. Library preparation and sequencing were carried out at the McDermott 
Next Generation Sequencing Core. Briefly, DNA concentration was measured using a Qubit Fluorometer 
(Life Technologies). Library preparation was carried out using the KAPA HTP Library Preparation Kit (KAPA 
Biosystems) with Illumina TruSeq adapters (Illumina, San Diego, CA) at a 1:2 dilution and seven cycles of PCR. 
The library was quantified using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and the samples 
were sequenced on a HiSeq 2500 (Illumina) with 100 bp paired-end reads.

To assess the detection limits of this assay, we studied two variants in NRAS, one each found in either the RD 
or Rh30 rhabdomyosarcoma cell line. We serially diluted the RD DNA in Rh30 DNA and PCR amplified approxi-
mately 200 bp segments of DNA surrounding each sequence variant, using the same methods as described above. 
The products from the two reactions were gel purified, combined, and sent to the NGS Core for sequencing.  
To approximate the effect of formalin fixation, RD and Rh30 cells were pelleted into two tubes per cell line (1 ×​ 106 
cells per tube) and either flash frozen in liquid nitrogen or fixed with 4% paraformaldehyde (PFA) for 15 minutes, 
then washed three times in PBS, prior to DNA extraction.
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Whole exome and transcriptome sequencing of human tumor cell lines.  DNA and RNA were 
extracted from RD and JR1 human rhabdomyosarcoma cell lines using the Blood & Cell Culture DNA Mini Kit 
(Qiagen) and Trizol (Life Technologies), respectively, according to manufacturer’s specifications. Whole exome 
and transcriptome sequencing were carried out at the McDermott Next Generation Sequencing Core as described 
above, with the exception of library preparation, which was performed using the Nextera Rapid Capture Kit 
(Illumina) for whole exome and the TruSeq Stranded Total RNA LT Sample Prep Kit (Illumina) for whole tran-
scriptome sequencing, according manufacturer’s specifications.

Whole-exome, whole-transcriptome and targeted ultra-deep sequencing data analysis.  All 
raw sequencing reads were mapped to the human reference genome (hg19) using the Burrows-Wheeler 
Aligner11. Picard was used to convert SAM files to BAM files and remove PCR duplicates (http://broadin-
stitute.github.io/picard/). Our analysis pipeline also realigned the sequence reads to obtain more accurate 
quality scores and then recalibrated the base qualities by GATK12 before variant calling. Variant calling was 
done by directly measuring the number of supporting reads for A, T, G and C on the genomic loci con-
taining MassARRAY-identified mutations. Our computational pipeline compared variants against common 
polymorphisms present in the dbSNP 138 and 1000 Genomes databases, as well as COSMIC version 73, 
a database of cancer somatic mutations. Several gene transcript annotation databases (Consensus CDS, 
RefSeq, Ensembl and UCSC) were used to determine amino acid changes. All BAM files and programming 
scripts are available upon request.

Statistical analysis.  Based on Dziuda et al.13 and Myatt et al.14, false discovery rate (FDR) is equal to 
the ratio between the number of false positive mutation calls identified by NGS data and the number of all 
positive mutation calls identified by MassARRAY. No correction for multiple testing is needed for calcu-
lating this FDR value. In addition, unpaired T test was used for comparing average coverage between three 
verified mutations and other unverified mutations. P <​ 0.05 was considered to be statistically significant in 
this study.
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