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An experimental phylogeny to benchmark ancestral
sequence reconstruction
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Ancestral sequence reconstruction (ASR) is a still-burgeoning method that has revealed

many key mechanisms of molecular evolution. One criticism of the approach is an inability to

validate its algorithms within a biological context as opposed to a computer simulation. Here

we build an experimental phylogeny using the gene of a single red fluorescent protein to

address this criticism. The evolved phylogeny consists of 19 operational taxonomic units

(leaves) and 17 ancestral bifurcations (nodes) that display a wide variety of fluorescent

phenotypes. The 19 leaves then serve as ‘modern’ sequences that we subject to ASR analyses

using various algorithms and to benchmark against the known ancestral genotypes and

ancestral phenotypes. We confirm computer simulations that show all algorithms infer

ancient sequences with high accuracy, yet we also reveal wide variation in the phenotypes

encoded by incorrectly inferred sequences. Specifically, Bayesian methods incorporating rate

variation significantly outperform the maximum parsimony criterion in phenotypic accuracy.

Subsampling of extant sequences had minor effect on the inference of ancestral sequences.
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A
ncestral sequence reconstruction (ASR) is the process of
analyzing modern sequences within an evolutionary/
phylogenetic context to infer the ancestral sequences at

particular nodes of a tree1. These ancient sequences are most
often then synthesized, recombinantly expressed in laboratory
microorganisms or cell lines, and then characterized to reveal the
ancient properties of the extinct biomolecules2–6. This process has
produced tremendous insights into the mechanisms of molecular
adaptation and functional divergence7. Despite such insights, a
major criticism of ASR is the general inability to benchmark
accuracy of the implemented algorithms. It is difficult to
benchmark ASR for many reasons. Notably, genetic material is
not preserved in fossils on a long enough time scale to satisfy most
ASR studies (many millions to billions of years ago), and it is not
yet physically possible to travel back in time to collect samples.

To overcome these limitations, we exploited an under-utilized
yet effective procedure to develop a phylogeny in the laboratory8.
The benefits of the procedure are at least twofold: (1) we can
accelerate the process of evolution that generates the vertical
inheritance of genetic information necessary for the functional
divergence of encoded phenotypes and (2) we have a known
record of the ancestral genotypes and phenotypes throughout the
experimental phylogeny. The goal of the phylogeny is thus to
create an opportunity to evolve sequences within a controlled
framework that adds biological reality given practical limitations.
We elected to build the phylogeny using a single monomeric
red fluorescent protein (FP), since it is known that FP colour
phenotypes are readily modified by a tractable number of

amino acid replacements9,10. The experimental phylogeny
then provides us with an opportunity to benchmark the
performance of algorithms that infer ancient sequences. In
particular, we were interested in determining the accuracy
of algorithms when inferring ancestral phenotypes since
computer simulations have shown that these algorithms infer
ancient genotypes with reasonably high accuracy11–13. Our
benchmarking exercise focused on Bayesian versus maximum
parsimony (MP) algorithms, the effect of rate variation when
modelled as a discrete gamma distribution14, subsamples of taxa
to infer ancestral sequences, and species-tree-aware versus
unaware approaches within the Bayesian framework15,16.

Our study confirms that all ASR algorithms correctly infer the
vast majority of residues in ancestral sequences. Yet, these
algorithms differ in the amino acid identities of the small number
of sites that are incorrectly inferred. Here we demonstrate that
these incorrectly inferred residues can indeed influence
the protein phenotypes of the encoded ancestral sequences and
that various parameters incorporated into evolutionary models
affect these incorrectly inferred sites.

Results
Evolving the experimental phylogeny. We built the FP
phylogeny from a single gene using random mutagenesis PCR
(Fig. 1). Each round of PCR produced numerous variants, or
descendants, of which only one was retained for the next round of
random mutagenesis, unless a bifurcation was being incorporated
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Figure 1 | Phylogram of the experimental phylogeny initiated from a single red FP gene. Scale bar represents amino acid replacements per site per unit

evolutionary time. The colour of each branch reflects the colour-class phenotype (emission) of the node protein for internal branches or the leaf protein for

tip branches (except for the branch connecting node 33 to leaf 7 that transitions through an orange intermediate). Nodes and tips are numbered for

reference. Nonsynonymous and synonymous substitutions are shown along each branch, respectively. The experiment began near node 21 with a single red

FP gene and proceeded by random-mutagenesis PCR.
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into the tree, in which case two variants would be allowed to
progress (Supplementary Fig. 1). To best create biological context,
the branch lengths, the number of synonymous and nonsynon-
ymous substitutions, base frequencies, and phenotypic diversity
followed that of natural FP sequences17. In total, the phylogeny
contains 19 operational taxonomic units (leaves of the tree) that
serve as ‘modern’ sequences and 17 ancestral bifurcations (nodes of
the tree) that serve as true or known ‘ancient’ sequences. The
phylogeny contains a total of 833 mutations (461 synonymous and
372 nonsynonymous), with a small percentage of these
experiencing homoplasy, but no insertion/deletion events
(Supplementary Table 1). Transitions were more abundant than
transversions, 64% versus 36%, respectively. Most branches were
evolved under purifying selection except when selecting for
modifications in the phenotypic emission properties of the FPs.
Colour properties of the evolved proteins included variations of
red, orange, yellow, green and blue (Supplementary Fig. 2). The
order and distribution of colour emission phenotypes for FP
proteins were mapped onto the phylogeny (Supplementary Fig. 3).

Inferring ancient sequences. The 19 leaf-sequences were
collected and subjected to ASR analyses. The sequences were
analysed using MP and Bayesian algorithms, and for the Bayesian
approach18,19, we analysed the effects of incorporating rate
variation (gamma distribution [!] versus no gamma distribution,
or rate heterogeneity versus rate homogeneity) and the effect
of accounting for possible gene duplication, horizontal transfer,
or gene loss events (so-called species-tree-aware trees, as
implemented in PhyloBayes)16. Figure 2 shows the results from
five different ASR analyses across all nodes of the phylogeny as a
function of the number of incorrectly inferred ancestral amino
acids. This figure shows the expected pattern that all ASR
procedures perform well for more derived nodes, while all

procedures perform worse for more basal nodes. In terms of
raw percentage of correctly inferred residues, most
procedures recapitulated reality (Supplementary Table 2). The
Bayesian approaches that incorporated rate variation using a
species-tree-unaware tree were the most accurate (PAML_! and
FastML_!, Supplementary Table 3a,c), then Bayesian without
rate variation (PAML), followed by MP, and finally by Bayesian
with rate variation and species-tree-aware tree using PhyloBayes
(PHYLO_!). PAML and FastML were expected to perform
analogously since they are similar implementations of the
Bayesian algorithm. Total accuracy for the five procedures
ranged between 97.88 and 98.17% (Supplementary Table 2),
thus reflecting the general sequence accuracy of ASR algorithms.

Characterizing the evolved and inferred protein phenotypes.
Despite the overall sequence accuracies of the five procedures, we
questioned whether the phenotypes associated with the
incorrectly inferred ancestral sequences are themselves incorrect.
We synthesized, expressed and purified each incorrectly inferred
ancestral protein at each node of the tree for each procedure to
determine whether there was variation in the phenotypes for the
incorrect proteins compared with the true ancestral phenotypes.
These 34 proteins were phenotypically characterized in terms of
their extinction coefficients (e), quantum yield (F) and brightness
(product of e and F) (Supplementary Table 3a,b). Properties of
the resurrected ancestral proteins were compared with the true
ancestral proteins to determine the percent error in phenotypes.
Figure 3 shows that significant variation in phenotypic error
exists between the five procedures. PAML_! and FastML_! had
significantly less error than PAML without rate variation and
PHYLO_! at the 95% confidence interval, and less error than MP
at the 99% level when characterizing extinction coefficients.
Conversely, PHYLO_! generated significantly lower error
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Figure 2 | Number of incorrectly inferred amino acid sites for each node of the phylogeny. The 19 leaf sequences from Fig. 1 were subjected to ASR

analyses using Bayesian (PAML, FastML, PhyloBayes) with or without rate variation modelled as a gamma distribution (!), as well as parsimony (MP). The

inferred sequences were then compared to the true ancestral sequences from the 17 ancestral nodes in Fig. 1. Dark brown bars are PAML with a gamma

distribution, light brown bars are FastML with a gamma distribution, yellow bars are PAML without gamma, light grey bars are PhyloBayes with a gamma

distribution, and dark grey bars are maximum parsimony. Colour code is irrespective of FP colour emission phenotype.
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compared with MP for quantum yield at the 95% level, with the
other three Bayesian procedures only slightly worse than
PHYLO_!. The brightness phenotype demonstrated that
PAML_! and FastML_! carried over their significantly lower
error compared to MP at the 99% level, and that PAML without
rate variation and PHYLO_! displayed similar amounts of error
less than MP. None of the five procedures displayed significant
error for emission wavelengths, and as seen in Supplementary
Table 3a, little error was displayed for excitation wavelengths.

Discussion
We have applied brute-force random-mutagenesis and
guided-selection to generate an experimental phylogeny of
synthetic FPs to recapitulate evolutionary processes that govern
natural FPs17. This phylogeny contained ample phenotypic
diversity analogous to most gene families subjected to ASR
studies. Despite best efforts, we anticipate that experimental
bias exists within the phylogeny to some degree, but we should
not be paralysed since natural molecular systems routinely
display bias (for example, GþC, transitions, base composition
and so on) and parameter-based models account for such bias.
The experimental phylogeny allowed us to verify that ASR often
generates correct ancestral phenotypes even when the wrong
ancestral sequences have been inferred in our FP system
(Supplementary Table 3a,c). We anticipate that such accuracy
would hold true for other laboratory-evolved gene families
since there is no reason to think that FP evolution involves
an extraordinary mechanism per se. However, improvements
can still be made to these phylogenetic algorithms. In particular,
we tested known limitations of these algorithms by purposely
invoking homoplasy into the experimental phylogeny. The
five procedures performed generally well with reversions, and
parallel and convergent amino acid replacements, as long as they
occurred along sufficiently long branches (Supplementary Fig. 1).

This was not the case for one scenario though. Ancestral node 32
(An32) accumulates an amino acid replacement (Y120C) that
causes the colour phenotype to switch from red to green by An34
(Supplementary Fig. 1). The reversion of C120Y then occurs
along the short branch giving rise to a red An35. None of the
five procedures could account for this mode of homoplasy,
thus they all predicted that An34 was red. Notably, this is the
only incorrectly inferred protein displaying emission in a separate
colour class than the true ancestor. Interestingly, all five
procedures predicted sequences that encode the correct colour
emission for An35 yet all of these sequences encode the highly
incorrect quantum yield carried over from An34 (Supplementary
Table 3a). This result demonstrates that protein properties
encoded by incorrect sequences can propagate throughout
nodes connected by short branches—a caution for ASR studies.
Notwithstanding such known difficulties of homoplasy, all five
procedures performed admirably despite the phylogeny
experiencing dramatic phenotypic changes. For instance, the
branch connecting An33 and leaf 7 switched from red to
orange to green colour phenotypes, but all five procedures
correctly inferred the colour phenotype despite each incorrectly
inferring four amino acid sites (Figs 1 and 2, Supplementary
Table 3a). Similarly, all five procedures correctly inferred the
colour phenotype of An24 despite that only one of the four
descendent leaves had the same colour phenotype as the ancestor
(and despite that the five procedures incorrectly inferred 1–3
amino acid sites; Figs 1 and 2, Supplementary Table 3a).

Taxon sampling in phylogenetics has been greatly debated over
the past 20 years20. Central to this debate is whether
sub-samplings of taxa lead to inferences of incorrect
phylogenies. Computer simulations and large data sets of
angiosperms have supported the conclusion that robust taxa
samples are superior than smaller subsamples of taxa20,21, while
others have argued against this conclusion22,23. To address the
issue of sub-sampling of taxa in the inference of ancestral
sequences (but not the topology itself), we generated two diverse
subsamples from our 19 leaf sequences. Our analysis focused on
the last common ancestor (most ancient divergence, An21 from
Fig. 1) of the phylogeny since this sequence is theoretically the
most difficult to correctly infer. One subsample incorporated
every other sequence along the continuum of leaf sequences,
while the other subsample consisted of closely related groups of
leaf sequences (Supplementary Fig. 4). Both of these subsamples
utilized half the number of leaf sequences and inferred a sequence
for the last common ancestor of the two reduced phylogenies.
Each of the two ancestors differed at only a single position when
compared with the 10 incorrect residues inferred using the entire
19 sequences with WAG_! (at An21). The single amino
acid position that differed from each subsample analysis
experienced sufficient homoplasy throughout the assembly of
the experimental phylogeny yet was not associated with
phenotypic change. Although these sub-sampling analyses focus
on the effects of using half of the leaf sequences to infer the last
common ancestor, and showed little effect, additional sub-
samplings should be explored to gain additional insights into the
effects of subsamples in ASR studies20.

Overall, our experimental phylogeny has allowed ASR
algorithms to be benchmarked for the first time against
biologically encoded sequences. Our analyses focused on amino
acid reconstructions since they performed slightly worse
than DNA- and codon-based analyses (98.4% and 98.3% of sites
correctly inferred, respectively, Supplementary Table 2). These
analyses confirm computational predictions regarding the
accuracy of ASR but extend our understanding of the algorithms
by revealing the phenotypes associated with incorrectly inferred
ancestral sequences. All of the tested ASR algorithms and
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procedures work generally well in terms of capturing the true
ancestral phenotype even when the true ancestral genotype is not
fully recapitulated. This finding should give the ASR field
confidence that ancestral phenotypes are encoded correctly even
if some residues are incorrectly inferred—assuming such sites do
not drive phenotypes. Our experimental phylogeny has also
allowed us to determine nuances of ASR analyses. For instance,
incorporating rate variation using a discrete gamma distribution
had little effect on the total number of incorrectly inferred amino
acids (71 with gamma versus 72 without gamma, Supplementary
Table 2), however, the positions of these incorrectly inferred sites
differed, and more interestingly, the encoded phenotypes
differed substantially in terms of brightness error between the
two procedures (42% with gamma versus 51% without gamma,
Supplementary Table 3c). Intriguingly, our analyses did not find a
strong correlation between the number of incorrectly inferred
residues versus the errors in the measured phenotypes. Since
more-ancient nodes often contain more incorrectly inferred
residues11,13, this suggests that more-ancient nodes are not
necessarily encoding furtherly biased phenotypes. Further, our
analyses demonstrated that incorporating a species-tree-aware
procedure had the same overall effect as not incorporating rate
variation. This is not to say that species-tree-aware procedures
inherently mislead, rather, our experimental phylogeny was void
of gene loss/gain/duplication so a PhyloBayes analysis would be
over-parameterized for our dataset. But our results do suggest
that a species-tree-unaware procedure is more appropriate in the
absence of gene loss/gain/duplication or lineage sorting. Finally,
our analyses demonstrate that Bayesian procedures produce more
accurate ancestral phenotypes than the MP criterion, regardless of
the Bayesian parameters tested. This is not a general abomination
against parsimony, as it performed quite accurately for many
nodes in the phylogeny. Rather, if the goal is to generate the most
accurate ancestral phenotypes possible, then ASR studies on gene
families that have evolved (at least) analogously to our laboratory
FP system would benefit most from Bayesian procedures.

We anticipate that providing assurance on the accuracy of ASR
will allow the field to move forward in novel ways, such as the
synthesis of complete ancestral genomes24–26, development of
mechanistic models of protein evolution27,28, contribute to the
debate about alternative ancestral sequences11,13,18 and to support
synthetic biology approaches that exploit ASR for applied
purposes29–31.

Methods
Evolving the experimental phylogeny. The following two primers were used for
PCR mutagenesis: FP Random Forward (50-CTGGTCGGCCATATGGCGTCTT
CTGAAGACGTTATC-30) and FP Random Reverse (50-CGGATCCTCGAGCTA
TTACGCACCGGTAGAGTG-30). Random mutagenesis of mRFP1 was performed
using the GeneMorph II Random Mutagenesis Kit (Stratagene). Each reaction was
performed in 50ml and consisted of the following: 425–625 ng template plasmid,
0.25 ml forward primer, 0.25 ml reverse primer, 1 ml of 40 mM dNTP stock, 5 ml
10� Mutazyme II reaction buffer, 1 ml Mutazyme II DNA polymerase. PCR was
performed using the following conditions: initial incubation at 95 �C 2 min then
95 �C 30 s, 59 �C 30 s, 72 �C 1 min, repeat � 29, final incubation at 72 �C 10 min.
PCR products were purified using Qiagen PCR clean up kit following the
manufacturer’s protocol. Purified mutagenesis PCR DNA was digested in a 50 ml
reaction at 37 �C between 16–48 h and included the following: FP DNA, 1 ml XhoI,
1 ml NdeI, 5 ml Buffer 4, 0.5 ml BSA. Digested DNA was cleaned up using Qiagen’s
PCR clean up kit following the manufacture’s protocol. The digested and cleaned
FP mutant genes were ligated into pET-15b (Novagen) according to the following
protocol: 100 ng digested pET-15b Vector, 20 ng digested FP gene, 0.5 ml T4 Ligase,
1–2 ml 10� T4 Ligase Buffer in a 10–20 ml reaction. Plasmids containing mutated
mRFP 1.0 were transformed into expression host E. coli BL21(DE3). Eight to
twenty colonies expressing FP genes were selected and sequenced (GeneWiz).
Sequence data were analysed using CLC Bio software version 4.1.2. The average
PCR FP variant contained 1–4 base substitutions per round of random mutagenesis
given the conditions above (conditions optimized for this mutation load). One
mutant was retained after each round of mutagenesis and used for subsequent
rounds of random mutagenesis. Mutants were selected to balance the frequency of

synonymous and nonsynonymous substitutions along branches of the experi-
mental gene phylogeny. In some instances, two mutants were retained after a
round of mutagenesis to bifurcate the phylogeny. The experimental phylogeny was
initiated by replacing seven amino acid positions known to affect emission
phenotype32 (Supplementary Fig. 1), all other mutations were random. All leaf and
internal node amino acid sequences are proved (Supplementary Note 1).

Ancestral sequence reconstruction. The 19 ‘modern’ sequences at the tips
(leaves) of the FP phylogeny were used to computationally reconstruct infer
ancestral sequences at all internal nodes of the tree using the evolved (known)
topology. Marginally reconstructed ancestral sequences were inferred using
Bayesian approaches that incorporated the WAG amino acid replacement matrix
(PAML, FastML and PhyloBayes [CAT]), with or without rate variation as
modelled by a discrete gamma distribution (four rate categories), and ancestral
sequences were also inferred with the MP criterion (as implemented in PAML).
DNA and codon-based analyses were performed only in PAML using HKY85þ
GC and M0(F3x4), respectively. ProtTest v3.2 was used to analyse the various
models according to the AIC criterion (AIC weight was 100% for WAG_!)33.

Protein expression and purification. FP variants were transformed into
BL21(DE3) bacterial cells. Transformed cells grew overnight at 37 �C on LB-agar
supplemented with 50mg ml� 1 carbenicillin. A single colony was inoculated and
grown overnight in 5 ml LB/carbenicillin. The next day, the culture was used to
inoculate LB/carbenicillin using a 3:100 ratio. Cells were induced at OD600 of
0.55–0.9 with isopropyl b-D-1-thiogalactopyranoside (IPTG) to a final concentration
of 100mM. Cultures continued to grow for 4–6 h at 37 �C and were then harvested by
centrifugation and stored at � 80 �C. Cell pellets were lysed with BugBuster
(Novagen) and purified by Ni-NTA agarose (Qiagen) in elution buffer containing
500 mM imidazole per manufacturer’s protocol. Imidazole was removed from the
protein samples via buffer exchange using 20-kDa concentrators (Pierce) or dialysis
into 50 mM Tris buffer pH 7.5. Purity of protein sample was assessed by SDS–PAGE.

Protein characterization and spectroscopic studies. Absorption spectra of
purified protein were recorded on a Varian Cary 50 ultraviolet–visible spectro-
photometer (Supplementary Fig. 5). Excitation and emission spectra were recorded
on a Varian Cary Eclipse fluorescence spectrophotometer. All measurements were
performed in quartz cuvettes at ambient temperature and purified protein sample
was diluted in 5 mM Tris/HCl (pH 7.5). Quantum yield experiments were performed
as described34,35 and variant proteins were compared to equally absorbing solutions
of mRFP1 for red emitting variants, TagGFP2 for yellow and orange emitting
variants, or TagBFP for green and blue emitting variants. Quantum yield values were
computed using a|e UV–vis-IR Spectral software. Extinction coefficients were
determined as described10. Molar extinction coefficient values were calculated using
the maximum absorbance at wavelength of maximum excitation.

The relative errors between the inferences across all nodes for each procedure
versus the true ancestors were determined for extinction coefficient, quantum yield
and brightness. Bootstrap analysis were performed; the actual sum of the
differences in relative error for each node between two methods was first
determined. Then, a distribution of sums of differences in relative error for each
node between any two procedures was made for 100 bootstrap replicate data sets
generated by assigning error values from the appropriate nodes of the original data
set with replacement. The percentile of the actual sum of differences in relative
error in the distribution was determined and reported.

Data availability. All relevant data are available from the authors by request.
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