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Heparanase and cancer progression: New directions, new promises
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ABSTRACT
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that
enhance tumor growth, angiogenesis and metastasis. Much of the impact of heparanase on tumor progression is
related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support
tumor progression. Heparanase expression is enhanced in almost all cancers examined including various
carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently
demonstrated that upregulated heparanase expression correlates with increased tumor size, tumor angiogenesis,
enhanced metastasis and poor prognosis. Notably, heparanase is ranked among the most frequently recognized
tumor antigens in patients with pancreatic, colorectal or breast cancer, favoring heparanase-based immunotherapy.
Development of heparanase inhibitors focused on carbohydrate-based compounds of which 4 are being evaluated
in clinical trials for various types of cancer, includingmyeloma, pancreatic carcinoma and hepatocellular carcinoma.
Owing to their heparin-like nature, these compounds may exert off target effects. Newly generated heparanase
neutralizing monoclonal antibodies profoundly attenuated myeloma and lymphoma tumor growth and
dissemination in preclinicalmodels, likely by targeting heparanase in the tumormicroenvironment.

KEYWORDS
Heparanase; immunotherapy;
lymphoma; neutralizing
monoclonal antibody; tumor
microenvironment

Heparanase and cancer

Heparan sulfate (HS) proteoglycans (HSPGs) are ubiquitous mac-
romolecules associatedwith the cell surface and extracellularmatrix
(ECM) of a wide range of tissues.1 The HS chains bind to and
assemble ECM proteins, thus playing important roles in ECM
integrity, barrier function and cell-ECM interactions.1 HSPGs not
only provide a storage depot for heparin-binding molecules (i.e.,
growth factors, chemokines, enzymes) in the tumor microenviron-
ment, but also decisively regulate their accessibility, function and
mode of action. It is therefore not surprising that a HS degrading
enzyme (i.e., heparanase) is critically involved in tumor growth,
angiogenesis and metastasis. Mammalian cells express a single
dominant functional heparanase, an endoglycosidase that cleaves
HS, leading to disassembly of the ECM and release of HS-bound
bioactive molecules, thereby affecting tumor progression, angio-
genesis and inflammation.2-4 The heparanase mRNA encodes a
65 kDa pro-enzyme that is cleaved by cathepsin L into 8 and
50 kDa subunits that non-covalently associate to form the active
enzyme.5 Heparanase is up-regulated in essentially all human
tumors examined, most often associating with reduced patients’
survival post operation, increased tumormetastasis and higher ves-
sel density.2,6,7 A causal role of heparanase in tumor metastasis was
demonstrated by the increased lung, liver and bone colonization of
cancer cells following over-expression of the heparanase gene, and
by a marked decrease in the metastatic potential of cells subjected
to heparanase gene silencing.8 Recent studies emphasize the
involvement of heparanase in exosome formation,9 activation of

the immune system,10,11 autophagy12 and chemo-resistance,12,13

further highlighting its significance in mediating the crosstalk
between tumor cells and the tumor microenvironment and in dic-
tating the tumor response to stress and host factors. The pro-
tumorigenic effect of heparanase is attributed primarily to its HS
degrading activity, facilitating cell invasion and ‘priming’ the tumor
microenvironment. This notion is reinforced by in vivo studies
indicating a marked inhibition of tumor growth in mice treated
with heparanase-inhibiting heparin-like compounds (i.e., Ronepar-
stat D SST0001, Necuparanib D M402, PI-88 D Mupafostat,
PG545) now in phase I/II clinical trial in cancer patients.14 In addi-
tion, enzymatically inactive heparanase promotes signal transduc-
tion, including Akt, STAT, Src, Erk and EGF-receptor
phosphorylation,15,16 highlighting the notion that non-enzymatic
activities of heparanase may play a significant role in heparanase-
driven tumor progression. Moreover, heparanase expression by
tumor cells leads to upregulation of multiple genes (i.e., VEGF,
HGF, RANKL, MMP-9, Tissue factor) that promote aggressive
tumor behavior.2,15,17 Altogether, it appears that heparanase is a
master regulator of the aggressive phenotype of cancer, an impor-
tant contributor to the poor outcome of cancer patients and a
prime target for therapy.

Heparanase neutralizing antibodies

As noted above, 4 carbohydrate-based heparanase inhibitors
have reached clinical trials. These compounds apparently work
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by binding to the heparin/HS-substrate binding domain of the
enzyme, thus blocking its accessibility to natural HS substrates.
Owing to their heparin-based nature, these compounds can
bind, in addition, to many heparin-binding proteins in vivo
(which could be good or bad) leaving open the question as to
how much of their anti-tumor effect is due specifically to block-
ing heparanase activity. Monoclonal antibodies against cancer
related targets have met with considerable success due to their
specificity and long half-life in humans, yet none have been
tested clinically against heparanase. In previous studies we have
identified 3 potential heparin-binding domains of heparanase.18

Particular attention was given to the Lys158-Asp171 heparin
binding domain (designated HBD1) since a peptide corre-
sponding to this sequence physically interacts with heparin and
HS with high affinity and inhibits heparanase enzymatic activ-
ity.18 We have followed this rationale and generated a panel of
monoclonal antibodies (mAbs) attempting to target the interac-
tion of heparanase with its HS substrate. Our recent PNAS
paper focuses on 2 mAbs (9E8, H1023) that neutralize hepara-
nase enzymatic activity.19 Moreover, both antibodies also sub-
stantially decreased the cellular uptake of latent heparanase, a
HS-dependent mechanism that limits extracellular retention of
the enzyme and thereby enables intracellular processing of the
latent enzyme into its active form.19 Thus, the newly generated
antibodies not only neutralize the enzyme extracellularly, but
also diminish heparanase levels inside the cell.

Both the 9E8 and H1023 mAbs markedly inhibited cellular
invasion and tumor metastasis, the hallmarks of heparanase
function. Moreover, both mAbs inhibited the spontaneous
metastasis of ESb lymphoma cells from the subcutaneous pri-
mary lesion to the liver.19 Importantly, treatment with mAb
9E8 or mAb H1023, as a single agent, attenuated the growth of
human CAG myeloma and Raji lymphoma tumors, and even
greater inhibition was observed by combining the 2 mAbs
together (Fig. 1),19 in agreement with the notion that combin-
ing 2 different mAbs increases the inhibitory outcome. Not sur-
prisingly, mAb 9E8, or mAb H1023 are not cytotoxic to
lymphoma, glioma, myeloma or breast carcinoma cells. This

implies that the mAbs do not exert a direct effect on tumor cells
but rather affect the tumor microenvironment. This is best
demonstrated in Raji cells that lack intrinsic heparanase activity
whereas tumor xenografts produced by these cells exhibit typi-
cal heparanase activity.19 Thus the ability of mAbs 9E8 and
H1023 to attenuate the growth of these tumors is due to neu-
tralization of heparanase contributed by the tumor microenvi-
ronment. Importantly, evidence accumulating in recent years
shows that targeting the tumor microenvironment (i.e., VEGF),
may unexpectedly result in accelerated metastasis and more
aggressive disease.20 In contrast, our results indicate that hepar-
anase targeting uniquely inhibits both tumor growth and
metastasis, thus offering new opportunities and a safer mode to
obstruct the tumor microenvironment.

Heparanase and cancer immunotherapy

The novel heparanase-neutralizing mAbs described above are
expected to exert high specificity, enabling solely the targeting of
heparanase enzymatic activity and hence revealing its involvement
and therapeutic significance in tumor progression as well as other
pathologies, including inflammation.21 The last decade critically
revealed the decisive role of the tumor microenvironment, and
more specifically inflammatory responses, in different stages of
tumor development and metastasis.22 The presence of inflamma-
tory cells in the tumor mass has recently turned beneficial, due to
the ability to re-direct memory T-cells against cancer cells, a notion
that hasmet with tremendous clinical success.23

Interestingly, heparanase was ranked among the most fre-
quently recognized tumor antigens in patients with pancreatic,
colorectal or breast cancer.24,25 Importantly, while causing the gen-
eration of high frequencies of specific CD4 and CD8 memory T
cells, heparanase did not induce spontaneous regulatory T cell
responses in cancer patients.26 Owing to the absence of T-suppres-
sor cells, anti-heparanase immunotherapy is expected to be pro-
longed and more efficient than that induced by other tumor
associated antigens (TAAs). Chen et al selected 5 predicted epito-
pes and demonstrated cytotoxic T lymphocytes (CTL) responses

Figure 1. NOD/SCID mice (n D 5) were inoculated (iv) with luciferase labeled Raji- Burkitt’s lymphoma cells. Mice were untreated (Con) or treated with mAb 9E8 or mAb
H1023 (400 mg/mouse every other day) as single agents (not shown), or both together. Tumor growth was evaluated and quantified by IVIS imaging.
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that were specific for heparanase-positive tumor cells.27 Impor-
tantly, peptides derived from the mouse heparanase enzyme
offered the possibility of not only immunizing against tumors, but
also treating tumor-bearing hosts successfully.25 In related studies,
Zhang et al. applied a multiple antigen peptides (MAP) strategy
and demonstrated that MAPs containing B cell epitope peptides
derived from the human heparanase protein are capable of induc-
ing a high titer of neutralizing antibodies in sera, indicating the fea-
sibility of using MAPs to improve the immunogenicity of peptide
vaccines targeting heparanase.25 Using an endoplasmic reticulum
retrieval signal, Zhou et al. designed heparanase epitope vaccine
and reported that vaccination with dendritic cells pulsed with the
modified peptide elicited a robust, specific CTL response.28 The
vaccine also significantly inhibited tumor growth and prolonged
the lifespan of experimental mice indicating that this strategy could
be used to improve the immunogenicity of heparanase CTL epi-
tope peptides.28 The above described considerations support the
use of heparanase-based immunotherapy in combination with
heparanase inhibitors and/or cytotoxic drugs.25

In a different set of experiments, it was recently reported
that in contrast to freshly isolated T lymphocytes, hepara-
nase is downregulated during in vitro - expanded T cells.
Consequently, CAR-T cells engineered to express hepara-
nase showed improved capacity to degrade the ECM, which
promoted tumor T cell infiltration and antitumor activity.29

The use of this strategy may enhance the antitumor activity
of CAR-redirected T cells in individuals with stroma-rich
solid tumors. Thus, while heparanase promotes tumor initi-
ation, growth, and chemoresistance and is therefore consid-
ered a valid target for anti-cancer drugs, it can also be
exploited to direct cytotoxic T-cells to attack tumors and to
initiate anti-cancer immune responses.29

Concluding remarks

While the involvement of heparanase in growth and metas-
tasis of solid tumors (i.e., carcinomas and sarcomas) is well
documented, its function in hematological malignancies
(except myeloma) was not investigated in depth. Our study
provides evidence that heparanase is expressed by human
follicular and diffused non-Hodgkin’s B-lymphomas, and,
moreover, that heparanase inhibitors restrain the growth
and dissemination of tumor xenografts produced by human
lymphoma cells, likely by targeting heparanase in the tumor
microenvironment.19 Importantly, there is only a single
enzymatically active form of heparanase and its inhibition
is associated with little or no side effects. Notably, the crys-
tal structure of the heparanase protein has recently been
resolved,30 promoting rational design of structure-based
heparanase-inhibiting small molecules. These together with
the existing compounds and the newly developed hepara-
nase neutralizing antibodies will be applied in combination
with approved therapies for the treatment of cancer, inflam-
mation and other heparanase mediated disorders.
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