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Abstract

Background: Recent developments in molecular pathology and genetic/epigenetic analysis
of cancer tissue have resulted in a marked increase in objective and measurable data. In
comparison, the traditional morphological analysis approach to pathology diagnosis, which
can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though
the advent and popularization of digital pathology has provided a boost to computer-aided
diagnosis, some important pathological concepts still remain largely non-quantitative and
their associated data measurements depend on the pathologist’s sense and experience. Such
features include pleomorphism and heterogeneity. Methods and Resuilts: In this paper, we
propose a method for the objective measurement of pleomorphism and heterogeneity, using
the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-
occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are
captured into a co-occurrence matrix, followed by the application of analysis functions such
as Haralick features. In the pathological tissue image, through image processing techniques,
each nucleus can be measured and each nucleus has its own measureable features like nucleus
size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In
GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most
important point is how to define the neighborhood of each nucleus.VVe define three types of
neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature
functions.In each image pleomorphism and heterogeneity are then determined quantitatively.
For our method, one pixel corresponds to one nucleus feature, and we therefore named
our method Cell Feature Level Co-occurrence Matrix (CFLCM).We tested this method for
several nucleus features. Conclusion: CFLCM is showed as a useful quantitative method for
pleomorphism and heterogeneity on histopathological image analysis.
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INTRODUCTION
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Digitization of histological slides has gained wide usage P ’
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after the commercialization of whole slide imaging (WSI)
scanners. On the computer side, many free software tools
for analyzing these images have become available on the
Internet. Digital pathology is still in a developing stage,
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and many problems need to be solved, for example,
standardization of image data format, color balance,
resolution level, data compaction, etc., There are many uses
of digital histology images: Archiving, research, pathology
education, ! telepathology,*”' and the development of
computer-aided diagnosis  (CAD) = systems./*!) Except
for simple archiving, computer-processing  of
histopathological images follow a similar process.!'*'7 The
first step is the standardization of the color balance!™ and
resolution. Then, a region of interest (ROI) is selected.
Next, an analysis of the image is performed that segments
and measures target objects such as nuclei and glands.
11019211 The accuracy of the segmentation step has a great
impact on the accuracy of all subsequent processes, and
segmentation itself will be dependent on image quality
and standardization. The next step after segmentation
is feature measurement. In this step, raw pixel data are
changed into quantitative and objective features which
can then be used by statistical analysis and/or machine
learning techniques. During the measurement process,
over one-hundred features may be extracted from each
segmented object. Some features have a biological or
intuitive meaning such as nucleus size, roundness, contour
length, and staining luminance. Some other features,
such as fractal dimension or texture features, are difficult
to interpret biologically and medically; however, these
features have been shown to carry important information
for analysis and diagnosis sometimes. In particular, for
CAD, the emphasis is often put on the accuracy of final
diagnosis, while the interpretability of the features is less
important. Conversely, some features commonly used by
pathologists may not be used by the computer because
they are too subjective and ambiguous in their definition.

most

In breast cancer grading, the Nottingham Iistologic
Score system (the Elston-Ellis modification of the
Scarff-Bloom-Richardson grading system) is widely used.
In that grading system, three factors are scored: Gland
formation level, nucleus pleomorphism, and mitotic
cell counting. Each factor is scored from one to three
for a maximum total score of nine. Gland formation
and nucleus pleomorphism are widely used concepts
in pathology, not only in breast cancer but also in any
other cancer diagnosis. Unfortunately, these features are
subjective and consequently the scoring varies among
pathologists. Historically, mathematical approaches for
tissue section analysis including graph analysis have been
conducted since the late 1970s,2%) showing that the
challenges of analyzing histologic patterns are not new.
In this paper, we aim to create quantitative measurement
methods for pleomorphism as well as for its close cousin,
heterogeneity. The emphasis is on developing a robust
and simple technique that can be applied with little
computational cost.

Pleomorphism denotes the variability in the size, shape,

http://www.jpathinformatics.org/content/7/1/36

and texture of cells and/or nuclei in a micro-environmental
area. On the other hand, morphological heterogeneity
is the difference between micro-environmental areas.
Pleomorphism and heterogeneity are not direct
measurement concepts such as nucleus size, roundness,
and shape, but rather relationship concepts between
segmented objects such as texture analysis. For example,
in intra-nucleus chromatin texture analysis, the gray-level
co-occurrence matrix (GLCM) is a commonly used
statistical algorithm. ">/ In our approach, we use a
co-occurrence matrix method, applied to ecach cell
profile data, so our algorithm is named cell feature
level co-occurrence matrix  (CFLCM). For clinical
data analysis, CFLCM provides features that may be
combined with other features, such as CellProfiler
output data. CFLCM parameters (co-occurrence
matrix size, neighborhood search area, etc.) may be
adapted to different image conditions or tissue types.
The CFLCM method explained in this technical note is
easy to implement and provides important features with
significant information about the tissue conditions.

MATERIALS AND METHODS

Samples

We analyzed a total of 23 specimens: 20 invasive breast
cancer and 3 breast ductal carcinoma in situ (DCIS)
obtained from formalin-fixed, paraffin-embedded (FFPE)
blocks. All samples were diagnosed and surgically obtained
at Shinshu University Hospital. This study was performed
according to the Ielsinki Declaration and was approved
by the Ethics Committee of Shinshu University Iospital.

Tissue preparation and whole slide scanning

All FFPE samples were sectioned with a thickness of
4 wm. After hematoxylin and cosin (H and E) staining
according to the standard method, all slides were scanned
using a WSI scanner (Nanozoomer 2.0-HT slide scanner;
Hamamatsu Corp., Hamamatsu, Shizuoka, Japan)
at X20 and were stored as tag image file format files on
a computer system.

Analytical image selection

From the WSI images, several ROI were selected
manually for analysis. Each ROI size is 2048 by 2048
pixels, corresponding approximately to 1 mm? We
also create micro-ROIs by splitting evenly each ROI
into 9 micro-ROIs, thus extending the analysis to

31 x 9 =279 ROIs.

Since the main purpose of this paper is to confirm the
effectiveness of the CHLCM algorithm, we positioned
the ROIs manually at the sites of typical tissue structural
areas. One should note that this approach is not suited to
deliver quantitative clinical measures of heterogeneity as
the size and position of these ROls strongly influences the
statistics of measured features. Algorithms will need to be
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developed to appropriately select ROIs for given organs,
cancer types, and purpose of heterogeneity measure. Such
algorithms are beyond the scope of this paper.

Segmentation and cell (nucleus) features
measurement

For each ROI image, a nucleus extraction (segmentation)
process is performed. For this process, we used two
free software programs, “llastick,”® “Fiji,”®! as well
as our original analysis tool.?! These software packages
cach have their own advantages and disadvantages
depending on staining and tissue condition; we selected
the most reasonable segmentation for ecach ROI image
[Figure la and b]. The next step is the creation of a
mask image in which all nonnucleus areas are set to
zero [Iigure lc] and are multiplied with the original
image [Figure 1d]. The resulting masked image is then
input into “CellProfiler,”™ a free software package for
quantitative analysis of pathology images, to measure
cell features. Note that for stromal cells, arcas of
lymphocyte invasion are excluded. The original Il and E
stained images are changed to gray-level and masked
images [Supplementary Figure la and b]. CellProfiler
outputs the image with the nuclei selected for feature
measurement, as well as a part of the table of measured
features [Supplementary Figure lc]. The features consist
of 16 nucleus shape-related features, 12 nucleus texture
radius distribution features, 52 GLCM texture features
and nucleus position coordinate data.

GLCM is a popular texture analysis technique in
image analysis. The original image is first converted
into a gray level bitmap. Then, for each pixel and for
cach neighboring pixel (direction), their respective
intensity level is measured, and the corresponding
co-occurrence entry into a two-dimensional level matrix
is incremented [Figure 2a]. The matrix size depends on
the number of gray levels considered (for the standard
256 levels, the resulting matrix has a size of 256 x 256).
Usually, 4 directions (0 =0, 45, 90, and 135) are
considered and a total of 4 co-occurrence matrices are
generated [Figure 2b]. Finally, from all co-occurrence
matrices, a set of metrics are calculated that are referred
to as IHaralick features [Supplementary Figure 2].

http://www.jpathinformatics.org/content/7/1/36

Cell feature level co-occurrence matrix

GLCM  matrices are obtained from intensity-level
co-occurrences  between  neighboring  pixels.  We
extend this concept to segmented nuclei and propose
to measure the co-occurrence of features between
neighboring nuclei. We employ three different methods
to select the neighboring nuclei: Nearest, circle, and
lattice [Figure 3]. The “Nearest” method sclects as
neighbor the nearest nucleus measured by the Euclidian
distance between their centers of gravity [Figure 3a].
When the distance to the nearest nucleus is larger than
five times the average nucleus diameter, we define that
nucleus as having no neighborhood. With this method,
one nucleus is selected as the neighborhood nucleus and
this process is performed for all nuclei on the ROI image
to create the CFLCM.

The “Circle” method selects as neighbors, all nuclei
located within a radius of five times the average nucleus
long axis [IFigure 3b]. The “Lattice” method [Iigure 3c]
selects as neighbors all nuclei within the same lattice
tile. The square lattice is created at intervals of twice
the average nuclear long axis. Since both “Lattice” and
“Circle” methods obtain several nuclei as neighbors,
the averages of their features are used for the CFLCM
creation. From each of the three co-occurrence matrices,
we calculate the Haralick features as described in
Supplementary Figure 2.

The results shown here were obtained with a CFLCM
co-occurrence matrix size of 256, and 79 features
were measured by the following CellProfiler Modules:
MeasureObjectsSizeShape, MesureTexture, and
MeasureObjectRadialDistribution.  From  all  those
features, we selected the following 4: nucleus size,
Roundness, GLCM Contrast, and GLCM entropy,
because they allow an intuitive understanding the
CFLCM results. Regarding for calculation of the Iaralick
features, we used MATLAB, R2016a.

RESULTS

Testing on artificial patterns and easy case tissues
Before applying to actual case images, we tested the
methods with artificially generated patterns emulating

Figure |I: Nuclei extraction process: for measuring nuclei features, intermediate images on the computer system are shown. (a) Original
H and E image (b) extraction and segmentation of nuclei (c) binary mask image showing inside and outside of nuclei area (d) final masked

image for input to CellProfiler nuclei measurements
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the distributions of nucleus sizes. Figure 4 shows
two artificially generated images which have the same
averages and standard deviations (StdDev) of nucleus
area sizes. Figure 4a shows so-called “front formation”
patterns that have clear boundaries. Such a pattern is
typical for boundaries between two components, such as
neoplastic lesions and normal lesions, and it is often used
as evidence for the diagnosis. In contrast, Figure 4b is a
representative pattern for the center of malignant tissues.
Using statistical parameters such as average and StdDey,
it is difficult to discriminate between these two patterns.
However, CFLCM nearest (contrast) values for nucleus
size are 33 and 2065, respectively, for the two patterns,
demonstrating the great discriminatory power of this
technique. This shows the importance of applying the
new method and not just relies on first-order statistical
measurements.

Figure 5 is a typical sample of invasive breast cancer
tissues. Figure 5a is low to intermediate grade and
Figure 5b is high-grade pleomorphism. CFLCM nearest
(contrast) values for nucleus size are 76.4 and 149.3,
respectively. However, CFLLCM nearest (contrast) values
for roundness are almost the same: 3313.8 and 3252.9,
respectively. Figure 5a and b have marked differences of
nucleus size but not of roundness. In general, for human
eyes, nucleus size pleomorphism and heterogeneity can
be detected intuitively, but other parameters such as

0=0°
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Figure 2: Gray-level co-occurrence matrix: Explanation of gray-level
co-occurrence matrix process. (a) From intensity level of gray
scale (left) to co-occurrence matrix creation (right) (b) various
directions for gray-level co-occurrence matrix measurement
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roundness or intra-nucleus texture-based differences may
be difficult to assess.

Measured data for actual case tissues

At the nuclei level, “CellProfiler” provides 52 features.
Applying 3 methods of sclecting a neighborhood
nucleus (nearest, circle, and lattice) to create 3 CFLCM
matrices and extracting 14 Haralick functions from each
of them, a total of 52 x 14 x 3 =2,184 plecomorphism
and heterogeneity features were generated. We choose
to focus on five nuclei-level features: Two morphologic
features (nucleus size and nucleus roundness) and 3
GLCM texture features (contrast, homogeneity, and
entropy). We also select 4 Haralick functions to extract
features from the 3 CFLCM matrices: Second angular
moment, contrast, homogeneity, and entropy [fl, {2, 5,
and {9, respectively, in Supplementary Figure 2]. This
way we consider a set of 5 X 3 X 4 = 60 features.

Representative case images for DCIS and Invasive are shown
in Figures 6 and 7, respectively. In each figure, (a) shows the
selected ROI positions on the WSI image and (b) shows
the corresponding selected ROI images. Each ROl size is
2048 x 2048 pixels (corresponding to an area of about
1 mm?). To check micro-environmental pleomorphism and
heterogeneity, we split the ROI images into 9 micro-ROI
images (size 682 X 0682 pixels) [Figure 8].

Nucleus features average and standard deviation
As an initial statistical evaluation, we analyze the
correlation  between average and StdDev for several
nucleus-level features over a ROL. On Figure 9, we plot
the nucleus size for the full size ROIs (top row) and the
micro-ROIs (bottom row). In all cases, the nucleus size
StdDev i1s strongly correlated to the nucleus size average.
The plots for all morphologic and texture features
for both full ROIs and micro-ROIs can be found on
Supplementary Figures 3 and 4. For intra-nucleus texture
features (GLCM contrast, entropy and homogeneity),
StdDev shows weak correlation to its average. However,
for roundness (0 is perfect circle, 1 is line shape), StdDev
shows a strong negative correlation.

Evaluation of neighborhood selection and feature
extraction methods

Figure 10 shows nucleus size pleomorphism/heterogeneity
features for the three neighborhood selection methods
(nearest, circle, and lattice) based co-occurrence matrix

Figure 3: Neighborhood selection methods:Three methods of neighborhood selection, (a) nearest (b) circle and (c) lattice
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and applied Haralick functions contrast [Supplementary
Figure 2, f2]. Entropy [Supplementary Figure 2, {9]
versus StdDev is shown in Supplementary Figure 5.
Although there are small differences in absolute values,

Figure 4:Artificial pattern diagrams:The patterns, which have the
same average and standard deviations, exhibit significant differences
in cell feature level co-occurrence matrix measurements. (a) Circles
of different sizes are distributed according to which 9-sub-square
they belong to (b) circles of different sizes are distributed randomly

http://www.jpathinformatics.org/content/7/1/36

we notice that the CFLCM nearest and CFLCM circle
methods produce very similar values. In Table 1, we report
the correlation coefficient values for average, StdDey,
CFLCM nearest (contrast), CFLCM circle (contrast)
and CFLCM lattice (contrast) versus nucleus size,
roundness, intra-nucleus texture GLCM (contrast) and

a M{" 2y et % 2 D & N e

Figure 5: Typical images: Low to intermediate and high grade
samples on pleomorphism of breast cancer. (a) Low to Intermediate
grade breast cancer (b) high grade invasive breast cancer

Figure 6: Ductal carcinoma in situ case: Analysis target position map and region of interest images on ductal carcinoma in situ case (a)
yellow squares show the selected positions of region of interests (b) the selected region of interests at higher magnification.The numbers

on each region of interest correspond to those on image (a)
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Figure 7: Invasive case: Analysis target position map and region of interest images on Invasive case. (a) Yellow squares show the selected
positions of region of interests (b) the selected region of interests at higher magnification. The numbers on each region of interest

correspond to those on image (a)

Figure 8: Micro-region of interests: For the purpose of measuring
heterogeneity and pleomorphism at a micro-environmental level,
we split region of interests evenly into 9 micro-region of interests

intra-nucleus texture GLCM (entropy) on all measured
ROIs. Again, we notice that CFLCM nearest and circle
show a high correlation for each parameter. Hence, the
remaining evaluation will focus on the CFLCM nearest
method and using the contrast feature.

Evaluation of nearest (contrast) features for
nucleus shape and intra-nucleus texture data
Figure 11 shows a plot of CFLCM nearest (contrast)
feature versus StdDev of nucleus size for invasive breast
cancer cases and DCIS cases (2048 pixels-based ROIs).
The plot shows that the CFLCM nearest (contrast)
feature is able to separate the invasive cases from the
DCIS cases almost perfectly, while the nucleus size
StdDev is clearly not able to do so. To quantify this result,
we perform linear discriminant analysis (LDA) on both
features and obtain coefficients of 0.384 for nucleus size
StdDev and of 1.487 for the CFLCM nearest contrast
feature.

The result of LDA showed that the linear discrimination
coefficient of StdDev and CFLCM nearest (contrast)
values are 0.384 (P = 0.1122) and 1.487 (P < 0.001),
respectively. These results mean that StdDev could not
discriminate these histological differences sufficiently; on
the other hand, our CFLCM method discriminates these
histological differences clearly.

DISCUSSION

Digital  histopathology’s  merits are  preservability,
shareability, but most of all it is changing diagnosis from
subjective to quantitative and objective. However, there
are differences between computer measured features
and those of a pathologist. Computer-measured features
are direct, objective reflection of measured data (e.g. a
nucleus area is 250 pixels), while the pathologist’s
features are product of her observations and past
experience, making them more relative and subjective in
nature. Furthermore, the definition of some widely used
pathological features is often ambiguous. For example,
the agreement among pathologists for the pleomorphism
feature of the Nottingham criteria for breast cancer has
been shown to be relatively low.?*!

Cancer tissues have some heterogeneity. Higher
heterogeneity cases can lead to poor prognosis and
lead to drug resistance.””**! Recent publications show
that heterogeneity is no longer only understood to be a
morphological finding, but they extend the concept to
include genetic heterogeneity based on next generation
sequencer  data,’) and  phenotypic  heterogeneity
determined by  immunohistochemistry  staining.*
Gerlinger et al. provided evidence of genetic intra-tumor
heterogeneity of renal carcinomas based on multi-region
genetic analysis.®! In results of comprehensive molecular
analysis of human breast tumors, authors demonstrated
the existence of four main breast cancer classes and
hypothesized that heterogeneity occurs within the major
biological subtypes of breast cancer.’* Morphological
heterogeneity is an important piece of the puzzle, even if
often described by pathologists with unprecise words such
as “ugly” or “tidy,” because the traditional morphological
analysis approach to pathology diagnosis can connect
molecular big data analysis with clinical diagnosis. In this
study, we describe an objective measurement method
for morphological heterogeneity and hope it will help
shine some quantitative light on this very subjective
feature. When creating diagnosis assistance systems,
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reducing false positive and false negative rates are
primary concerns. However, providing assistance to the
pathological thinking process is also a key factor. Using
the novel approach of CFLCM, we quantify a concept
derived from pathologists’ accumulated
making it objective and measurable.

experience,

We consider several levels of heterogeneity: Inter-case,
intra-case, and micro-environmental. A higher CFLCM
necarest (contrast) value means higher heterogeneity.
However, inter-case heterogeneity should be compared
with a range of ROIs because each case has its own
bascline measurement value. Intra-case heterogeneity
is obtained by comparing ROIls of the same case, for
example, in the DCIS case, ROIs number 1, 2, and
9 show larger heterogeneity values. Heterogeneity is
a comparative concept while the detection of outlier
ROIs is a simple classification task. Micro-environmental
heterogeneity (internal heterogeneity of one fixed area
ROI) is shown in Figure §, DCIS #1 and Invasive
#1 ROI [Figures 6 and 7, respectively] each with 9
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micro-ROIs. DCIS #5 micro-ROI, and invasive case
#1 micro-ROI show large heterogeneity and both
areas contain necrotic tissue. A wide variation of
micro-environmental heterogeneity values within a ROI
1s a robust indication of high heterogeneity.

We have presented a method for the objective measurement
of pleomorphism and/or heterogeneity. Our method is
simple and effective; furthermore, the implementation and
running costs are very small. However, many important
factors remain to be studied. Selecting a ROI size,
position and/or what kind of nucleus feature (nucleus
size, roundness, or intra-nucleus texture, etc.) are used
for analysis are crucial issues. For the human eye, nucleus
size based pleomorphism/heterogeneity can be evaluated
intuitively, but other parameters such as intra-nucleus
texture are extremely difficult to evaluate. Our method
shows that several nuclear features can be used to compute
pleomorphism/heterogeneity features. Recent developments
in digital pathology include many quantitative analysis
techniques. However, most software and tools are using
first order statistics of nuclei morphology, making these
approaches similar to cytological analysis. Pathological tissue
samples contain a lot more information than first-order
measurements from nuclei. The relation between a nucleus
and its neighboring nuclei contains important information
and we provide in this paper a way to quantify it. Many
challenges remain to be solved; in particular, the accuracy
of the underlying nuclei segmentation is a fundamental
problem. The sclection of the nuclei features for our
CFLCM approach is also an issue that deserves more study.
Finally, the power of our CFLCM features needs to be
further established by a larger clinical study. However, we
believe this work to be an important first step in establishing
the uscfulness of quantitative heterogeneity features.
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Supplementary Figure |: CellProfiler intermediate images and results. (a) segmented nuclei image (b) marked green nuclei are targets
of measurement, marked pink nuclei are ignored (c) CellProfiler measurements of target nuclei
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Supplementary Figure 2: Haralick functions for co-occurrence matrix
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Supplementary Figure 3: average versus standard deviation scatterplots for each full region of interest (2048 x 2048 pixels) (a) nucleus
shape features (nucleus size and roundness) (b) Intra-nucleus features gray-level co-occurrence matrix (contrast, entropy and homogeneity)
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Supplementary Figure 4: average versus standard deviation scatterplots for each micro- region of interest (682 x 682 pixels) (a) nucleus
shape features (nucleus size and roundness) (b) intra-nucleus features gray-level co-occurrence matrix (contrast, entropy and homogeneity)
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Supplementary Figure 5:Three neighborhood selection methods by contrast and entropy functions for ductal carcinoma in situ 2048 pixels

region of interests




