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Abstract

Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic
malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant
(MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for
empirical antibiotic coverage in these patients may not adequately treat these bacteria. This
expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for
bacterial identification and antimicrobial susceptibility results, have grave implications for these
immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance
mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that
commonly cause infections in patients with hematologic malignancies. We also examine infection
prevention strategies in hematology patients, such as infection control practices, antimicrobial
stewardship, and targeted decolonization. Finally, we assess strategies to improve outcomes of
infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new
rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new
antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam.
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Introduction

Patients with hematologic malignancies are at high risk of Gram-negative bacteremia
because of chemotherapy-induced gastrointestinal mucositis and prolonged periods of
neutropenia. Furthermore, they rely on immediate active antibacterial therapy to prevent
severe morbidity and mortality when infected with Gram-negative bacteria. Unfortunately,
multidrug-resistant (MDR) Gram-negative bacteria are becoming increasingly common
pathogens in this vulnerable population [1-5]. Current guidelines and algorithms for
empirical treatment of febrile neutropenia may not adequately cover MDR Gram-negative
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bacteria and identification of these pathogens by culture typically takes 2-4 days [6]. Thus,
neutropenic patients with an MDR Gram-negative infection may have long delays until they
receive appropriate antimicrobial therapy, which in turn could lead to poor outcomes.

Particularly problematic MDR Gram-negative bacteria that are often resistant to first-line
empirical antibacterial therapies include extended-spectrum p-lactamase (ESBL)-, AmpC B-
lactamase-, and carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa,
Acinetobacter baumannii, and Stenotrophomonas maltophilia. The objectives of this review
are to summarize what is known about the epidemiology and outcomes of infections due to
these MDR Gram-negative bacteria in patients with hematologic malignancies, provide
recommendations for treatment, and outline potential strategies to mitigate the threats posed
by these pathogens.

Extended-spectrum p-lactamase-producing Enterobacteriaceae (ESBL-E)

The Enterobacteriaceae are a family of bacteria that inhabit the gastrointestinal tract and are
the most common causes of Gram-negative bacteremia in patients with hematologic
malignancies [7,8]. Prominent pathogens in this family include Escherichia coli, Klebsiella
pneumoniae, and Enterobacter species. B-lactamases are enzymes that hydrolyze and
inactivate p-lactam antibiotics and are the most common causes of p-lactam resistance
among Enterobacteriaceae. ESBLs are specific B-lactamases (Table 1) that are capable of
hydrolyzing penicillins, extended-spectrum cephalosporins (e.g., ceftriaxone, ceftazidime,
and occasionally cefepime), and aztreonam, but not carbapenems. ESBLS are most
commonly identified in £. coli and Klebsiella species.

There are numerous reports documenting the emergence of bacteremia due to ESBL-E in
patients with hematologic malignancies (Table 2). These reports suggest that in many areas
of the world, ESBL-E comprise 17-37% of all bacteremias due to Enterobacteriaceae in this
population, and that this incidence is increasing [2,4,9]. Risk factors for ESBL-E bacteremia
in patients with hematologic malignancies include recent hospitalizations or antibiotic
exposure, intensive care unit (ICU) admissions, and prolonged durations of hospitalization
and neutropenia [2,10-14].

Reported mortality rates after ESBL-E bacteremia in patients with hematologic
malignancies range from 13%-45% (Table 2) [2,7,10-12,14-16]. The majority of studies note
an increased mortality rate after ESBL-E bacteremia compared to non-ESBL-E bacteremias
in this population [2,7,10,11]. Importantly, inappropriate initial antibiotic therapy in ESBL
infection has repeatedly been shown to be a risk factor for increased mortality [2,10,11,17].

Current guidelines for the management of initial fever and neutropenia in patients with
hematologic malignancies recommend empirical therapy with cefepime, piperacillin-
tazobactam (PTZ), meropenem, or imipenem [6]. Many centers also use ceftazidime for
primary empirical therapy. Although ESBL-E are typically susceptible to carbapenems, the
majority are resistant to ceftazidime, 30-40% are resistant to cefepime, and 5-30% are
resistant to PTZ [18,19]. Even when ESBL-E test susceptible to cefepime or PTZ, clinical
data in non-neutropenic patients suggest that infections due to ESBL-E may not respond as
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well to these agents as compared to carbapenems. A propensity score-matched,
observational study of ESBL-E bacteremias revealed that patients treated with cefepime
were more likely to have a clinical or microbiological failure and 30-day mortality than
those who received carbapenem therapy [20]. With regards to PTZ, a recent observational
study of patients with ESBL-E bacteremia demonstrated a nearly two-fold increase in the
risk of death when PTZ was used empirically instead of a carbapenem, despite the fact all
isolates were susceptible to both PTZ and carbapenems [21].

One potential explanation for the increase in mortality seen with cefepime and PTZ is that
the minimum concentrations of these antibiotics required to inhibit growth of ESBL-E
increase when the number of organisms inoculated is increased [22]. This inoculum effect is
not seen when carbapenems are tested against ESBL-E. Based on current data, carbapenems
remain the preferred agents for the treatment of ESBL-E bacteremias in neutropenic
patients, regardless of reported cefepime or PTZ susceptibility results. Carbapenems should
also be considered as empirical therapies in neutropenic patients known to be colonized or
previously infected with ESBL-E or at institutions where rates of ESBL-E bacteremias are
particularly high.

AmpC B-lactamase-producing Enterobacteriaceae (AmpC-E)

Like ESBLs, AmpC p-lactamases are capable of inactivating penicillins and most
cephalosporins, but not carbapenems. Unlike ESBLSs, they are not effectively inhibited by p-
lactamase inhibitors, such as clavulanate and tazobactam [23]. Enterobacteriaceae that most
commonly harbor AmpC B-lactamases are often referred to as the SPICE organisms
(Serratia marcescens, Providencia, indole-positive Proteus, Citrobacter, and Enterobacter
species). These organisms, particularly Enterobacter species, frequently possess
chromosomal AmpC B-lactamases genes that are often expressed at only a low level.
However, the expression of these enzymes can be markedly upregulated upon exposure to -
lactam antibiotics. Thus, SPICE organisms may initially test susceptible to third-generation
cephalosporins, such as ceftriaxone or ceftazidime, but subsequently develop resistance to
these antibiotics during therapy due to inducible expression of these enzymes [24,25].

Data regarding the incidence of AmpC-E infections in patients with hematologic
malignancies are limited because most clinical microbiology laboratories do not perform
phenotypic or genotypic testing to detect AmpC. However, recent studies demonstrate that
Enterobacter spp. (which typically have AmpC B-lactamases) cause 5-8% of Gram-negative
bacteremias in patients with hematologic malignancies, making them the 4™ most common
cause of Gram-negative bacteremia in this population [1,7,15,26].

As with ESBL-E infections, carbapenems are generally considered the first-line treatment
option for serious infections due to AmpC-E because they are stable to hydrolysis by most
AmpC enzymes and do not exhibit an inoculum effect [27]. However, no randomized trials
have been conducted to definitively determine the optimal therapy [23]. Penicillins and 3'9-
generation cephalosporins, such as ceftriaxone and ceftazidime, should not be used as
targeted therapy to treat these infections, because 8-19% of patients who receive these
therapies for AmpC-E infections will up-regulate AmpC expression and develop resistance
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on therapy [24,25]. Cefepime, a 41-generation cephalosporin, may have a role in the
treatment of AmpC-E infections, as it has relative stability against AmpC B-lactamases
compared to other cephalosporins. Two observational studies of AmpC-E infections showed
no differences in outcomes between patients treated with either carbapenems or cefepime
[28,29]. The role of PTZ in the treatment of serious AmpC-E infections is not well
established. Tazobactam does not efficiently inhibit the AmpC enzyme, but limited
observational data suggest that PTZ has similar effectiveness to carbapenems when AmpC-E
test susceptible to PTZ [30,31]. Fluoroquinolones, which are not affected by AmpC
enzymes, are another option in treating AmpC-E infections. A recent meta-analysis
demonstrated favorable outcomes with fluoroguinolones for this indication [31].

Carbapenem-resistant Enterobacteriaceae (CRE)

Over the last decade, there has been a worldwide emergence of Enterobacteriaceae that are
not only resistant to cephalosporins, but are also resistant to carbapenems. In areas with high
rates of CRE, the most common resistance mechanism is the presence of a carbapenemase,
an enzyme capable of hydrolyzing and inactivating carbapenems and all other g-lactam
agents (Table 1) [32-34]. These enzymes are also stable against commonly used B-lactamase
inhibitors, such as tazobactam, and are most commonly found in Klebsiella pneumoniae.
The genes that encode for carbapenemases are typically located on plasmids, and these
genes can be transferred both within bacterial species and across different species and
genera. These plasmids also frequently carry genes conferring resistance to other antibiotic
classes, such as fluorogquinolones and aminoglycosides, leaving few treatment options.

Different carbapenemases predominate in different geographical areas (Figure 1). K.
pneumoniae carbapenemase (KPC) is common in the United States, South America, Italy,
Greece, Israel, and China, whereas New Delhi metallo-B-lactamases (NDM) predominate in
India and Pakistan, and OXA-48-type carbapenemases predominate in Mediterranean
Europe, North Africa, and Turkey [32,35].

The epidemiology of CRE infections in patients with hematologic malignancies has only
recently been investigated. In the general population, prior exposures to many classes of
antibiotics, not just carbapenems, are risk factors for CRE infection [36-38]. In a study of
neutropenic patients with hematologic malignancies, exposures to -lactam/p-lactamase
inhibitors, trimethoprim-sulfamethoxazole, glucocorticoids, and having a prior culture that
grew CRE were independent risk factors for CRE bacteremia [39].

The overall reported mortality rates after CRE infections in patients with hematologic
malignancies have ranged from 44-72% [32,33,40,41]. Furthermore, the majority of deaths
in these studies were related to the CRE infections. Two factors likely contribute to these
exceptionally high mortality rates. First, it typically takes 2-3 days to detect CRE from blood
cultures using traditional microbiologic methods, and most patients do not receive CRE-
active therapy during this time. Second, the treatment options for CRE infections are
extremely limited because of their extensive resistance profiles.
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Antibiotics that have retained activity against CRE include polymyxins (colistin and
polymyxin B), tigecycline, fosfomycin, and occasionally aminoglycosides. Unfortunately,
each of these options has major limitations (Table 3). The polymyxins have considerable
nephrotoxicity and neurotoxicity, are less effective than p-lactam agents for the treatment of
Gram-negative bacteremia in oncology patients, and resistance to polymyxins is increasingly
identified among CRE [42,43,44]. Tigecycline has low bloodstream and urinary
concentrations and its use has been associated with increased mortality in randomized trials
[45]. Fosfomycin is not available as an intravenous formulation in the U.S., and resistance
can develop quickly on therapy [46]. Similar to the polymyxins, aminoglycosides are limited
by nephrotoxicity and historical data suggest that aminoglycoside monotherapy is associated
with comparatively poor outcomes after Gram-negative bacteremia in neutropenic patients
[47]. Aminoglycosides also carry a risk of otovestibular toxicity. Finally, aminoglycosides
are not reliably active against CRE, as almost all are resistant to tobramycin and
approximately one-half are resistant to gentamicin and amikacin [48,49,50,51].

The optimal therapeutic regimen for CRE infections has yet to be identified, as no large
randomized clinical trials comparing treatment options have been completed. Observational
studies of CRE bacteremia in the general population suggest that combination therapy with
at least two antibiotics to which the infecting organism tests susceptible is more effective
than monotherapy [52-55]. These studies also demonstrate that adjunctive therapy with a
carbapenem, in combination with active agents, may be associated with decreased mortality
despite the presence of carbapenemases. These improved outcomes were generally observed
when high doses and prolonged infusions of carbapenems were used (e.g., 2 gm. of
meropenem infused over 3 hours, every 8 hours) and when the minimum inhibitory
concentration (MIC) of the carbapenem was <8 mg/L [52,55].

Ceftazidime/avibactam is a new agent with potent /n7 vitro activity against KPC-producing,
but not NDM-producing, Enterobacteriaceae. This compound was recently approved in the
U.S. for complicated intra-abdominal and urinary tract infections and represents the first
approved p-lactam/p-lactamase inhibitor with activity against KPC-producing CRE [56].
However, clinical trials that led to approval of this agent enrolled very few patients with
CRE infection or patients with hematologic malignancies [57]. Data are urgently needed to
assess the effectiveness of this promising compound for the treatment of CRE infections,
particularly in immunocompromised hosts, such as patients with hematologic malignancies.

MDR Pseudomonas aeruginosa

In a previous era where empirical antibacterial therapy was withheld until positive culture
results in neutropenic patients with hematologic malignancies, mortality rates after
Pseudomonas aeruginosa bacteremia was 50% after 3 days and 70% after 7 days [58]. Thus,
recommendations for empirical antibacterial therapy in this population have largely focused
on ensuring immediate coverage against 2 aeruginosato improve outcomes in infected
patients [6]. 2 aeruginosa remains the second or third most common cause of bacteremia in
patients with hematologic malignancies [1,7,15,26,59]. Unfortunately, many £ aeruginosa
have now developed resistance to recommended anti-pseudomonal p-lactam agents for fever
and neutropenia. This resistance is mediated by a number of mechanisms (Table 1),
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including the production of B-lactamases, changes to porins that permit passage of p-lactams
through the bacterial outer membrane, and efflux pumps that remove p-lactams and agents
of other antibiotic classes [60]. Although resistance rates vary geographically, a recent
multicenter study of bloodstream infections (BSIs) in patients with hematologic
malignancies in Italy found that only 45% of P, aeruginosa were susceptible to ceftazidime,
58% to piperacillin-tazobactam, and 29% to meropenem [7]. Not surprisingly, outcomes of
patients infected with these MDR strains of 2 aeruginosa were poor (the 21-day mortality
was 42%, compared to 13% for non-MDR strains) and inappropriate empirical therapy was
associated with increased mortality.

Given these resistance patterns and outcomes, empirical therapy for AP aeruginosa infections
in patients with hematologic malignancies should probably include both an antipseudomonal
B-lactam and an aminoglycoside (or a fluoroquinolone if this agent is not being used
prophylactically) prior to availability of susceptibility data. Once susceptibilities are known,
therapy can often be tailored to a single active p-lactam agent, as most observational studies
have not identified a benefit to combination therapy for £ aeruginosa bacteremia in patients
with cancer [47,61]. However, it should be noted that £ aeruginosa develops resistance on
therapy in approximately 10% of cases [62]. This most commonly occurs during treatment
of pneumonia, where the organism burden is highest, and when carbapenems are used as
monotherapy [63,64]. Although in vitro data suggest that combination therapy can prevent
the emergence of resistance, there is currently no clinical data to support this practice
[65,66].

Prolonged infusion of B-lactam agents (dosing the antibiotic over hours instead of over 30
minutes) has also been shown to decrease the emergence of resistance on therapy /n vitro
[67]. Additionally, two single-center observational studies demonstrated decreased mortality
in critically ill patients with Pseudomonas aeruginosa infections after switching from a
standard infusion of PTZ and cefepime to prolonged infusions of these agents [68,69].
Although no randomized clinical trials have been conducted to definitively support this
practice, it is reasonable to use prolonged infusion p-lactam regimens for 2 aeruginosa
infections in patients with hematologic malignancies, provided that venous access is
sufficient.

P, aeruginosa that are resistant to cephalosporins, PTZ, and carbapenems have historically
been treated with polymyxins or aminoglycosides as agents of last resort. However, these
compounds have high toxicity rates and are associated with poor outcomes in oncology
patients with Pseudomonas aeruginosa bacteremia compared to p-lactam agents [43,47].
Two new cephalosporin/B-lactamase inhibitor combinations were recently approved in the
U.S. that offer a potential advance in therapy for patients infected by these MDR A
aeruginosa strains: ceftolozane/tazobactam and ceftazidime/avibactam. Of 2 aeruginosa that
are resistant to ceftazidime, PTZ, and meropenem, approximately 70% are susceptible to
ceftolozane/tazobactam and ceftazidime/avibactam [70,71]. However, these antibiotics have
only been approved in the U.S. for complicated intra-abdominal and urinary tract infections.
Both agents currently lack clinical data for treatment of BSls, infections due to carbapenem-
resistant organisms, or infections in patients with hematologic malignancies. However, given
the major limitations of polymyxin and aminoglycoside monotherapy for the treatment of
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MDR £ aeruginosa infections, their use should be considered when treatment options are
limited.

Acinetobacter baumannii

Acinetobacter baumannii is a Gram-negative coccobacillus that primarily causes infection in
hospitalized and immunocompromised patients [72]. It is classically associated with
hospital-acquired pneumonia, but can also be found in bloodstream, skin, urinary tract, and
intraabdominal infections. The prevalence of A. baumannii infection in patients with
hematologic malignancies is highly dependent on geographical location. Studies from
Western Europe report that A. baumannii causes <2% of Gram-negative bacteremias in this
population [1,3]. In contrast, studies from New York City and Turkey report that 9% and
14%, respectively, of Gram-negative bacteremias in patients with hematologic malignancies
are caused by Acinetobacter species [26,73].

A. baumannii is frequently an extensively drug-resistant pathogen. Like P, aeruginosa, it has
both intrinsic and acquired mechanisms of resistance, including p-lactamases, outer
membrane protein changes, and efflux pumps (Table 1) [74]. An international surveillance
study of over 5,000 A. baumannii clinical isolates demonstrated that only 22% were
susceptible to cefepime, 18% to PTZ, and 36% to meropenem [75]. The most frequently
active agents were minocycline (79% susceptible) and colistin (99% susceptible) for MDR
A. baumannii infections [76].

Given its extensive resistance to first-line therapies for fever and neutropenia, it is not
surprising that A. baumannii bacteremia in patients with hematologic malignances is
associated with exceptionally high mortality rates [77,78]. Carbapenem resistance,
pneumonia as the source of bacteremia, and inappropriate antimicrobial therapy have been
shown to be independent risk factors for mortality in MDR A. baumannii infections [78].
Polymyxin-based combination therapies and minocycline are frequently used to treat these
infections, and ampicillin-sulbactam (only the sulbactam portion has activity) and
tigecycline are also potential therapies [79,80]. However, the optimal therapies for MDR A.
baumannii have not been clearly elucidated.

Stenotrophomonas maltophilia

Stenotrophomonas maltophilia is a globally emerging MDR Gram-negative bacteria that is
frequently found in the environment, such as water, soil, and plants [81]. It is an increasingly
common cause of respiratory tract and other invasive infections in hospitalized patients,
particularly in immunocompromised hosts. It is intrinsically resistant to carbapenems and
thus should be considered as a potential pathogen in patients with hematologic malignancies
who develop sepsis while receiving carbapenem therapy (Table 1). It also frequently carries
other genetic determinants that lead to resistance to other p-lactams, fluoroquinolones,
aminoglycosides, and tetracyclines, and has a propensity to form biofilms on vascular
catheters and prosthetic material [82].

S. maltophilia causes 2-7% of Gram-negative bacteremias in patients with hematologic
malignancies [7,15,83-85]. Neutropenia and having a hematologic malignancy are both risk

Leuk Lymphoma. Author manuscript; available in PMC 2017 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Baker and Satlin

Page 8

factors for S. maltophilia infections [86]. Other notable risk factors include the presence of
an indwelling catheter, broad-spectrum antibiotic exposure, and prolonged hospitalization,
all common occurrences in patients with hematologic malignancies [15,87,88]. Two
observational studies of patients with hematologic malignancies who developed S.
maltophilia bacteremia demonstrated attributable mortality rates of 24% and 38%,
respectively, rates comparable to those of £ aeruginosa bacteremia [89,90]. Severe
neutropenia, pneumonia, and severe sepsis were all independent risk factors for mortality.

Trimethoprim/sulfamethoxazole (TMP/SMX) is the preferred therapy for S. maltophilia
infections and approximately 90% of isolates are susceptible [81,90,91]. Fluoroguinolones,
most commonly levofloxacin, are considered alternatives to TMP/SMX therapy.
Observational studies have shown similar outcomes between levofloxacin and TMP-SMX
for S. maltophiliainfections [92,93]. However, resistance to levofloxacin appears to be
increasing, particularly in the setting of fluoroquinolone prophylaxis, which limits its use as
empirical therapy [93,94]. Other potential treatment options include tigecycline and
minocycline [85,95].

Preventing MDR Gram-negative Bacterial Infections

Infection Control Practices

The limited therapeutic options and poor outcomes associated with MDR Gram-negative
bacterial infections in patients with hematologic malignancies underscore the importance of
preventing these infections. The primary goal of infection prevention efforts is to decrease
the risk of acquiring MDR Gram-negative pathogens among patients who are located on an
oncology ward. Recommended infection prevention strategies that are most pertinent to
preventing acquisition of MDR Gram-negatives are ensuring strict adherence to hand
hygiene, environmental cleaning and decontamination practices, use of contact precautions
for patients known to be colonized or infected with MDR Gram-negative bacteria, and
placing particularly high-risk patients, such as HSCT recipients, in private rooms [96,97].
Although the effectiveness of each of these strategies in preventing MDR Gram-negative
infections on hematologic oncology wards are unclear, they appear to be effective when
implemented together as a bundled intervention [98]. Active surveillance, where patients are
screened for colonization with MDR Gram-negative bacteria and subsequently placed on
contact precautions if found to be colonized, is another tool to decrease transmission. This
approach has been successfully implemented in non-hematology settings to decrease the
incidence of carbapenem-resistant Gram-negative bacteria [99,100]. However, few studies
have attempted to assess the role of active surveillance in preventing transmission of MDR
Gram-negative bacteria on hematology wards.

Antimicrobial stewardship also plays an important role in preventing MDR Gram-negative
bacterial infections in this population. The use of broad-spectrum antimicrobial agents,
particularly p-lactams, is consistently identified as an independent risk factor for MDR
Gram-negative infections in oncology patients [10,32,101]. Effective antimicrobial
stewardship in oncology programs requires close collaborations between oncologists,
infectious diseases physicians, microbiologists, clinical pharmacists, and infection
preventionists [102]. Local epidemiology and multidisciplinary expertise should be utilized
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to develop and implement protocols and treatment algorithms for common scenarios, such as
a febrile neutropenia or sepsis. Other recommended practices are de-escalation of broad-
spectrum antibacterial treatment once a non-MDR pathogen is identified, optimization of
antibacterial dosages, and daily assessments for the need for continued antibacterial therapy
[96].

Screening for Targeted Decolonization

In addition to using active surveillance to place colonized patients on contact precautions,
another potential use of identifying colonized patients is that they may be candidates for
targeted decolonization strategies. The role for decolonization as a means to prevent future
infection in patients screening positive for MDR Gram-negative bacteria is unclear. Given
their predominance in the gastrointestinal tract, selective digestive decontamination (SDD)
using oral aminoglycosides and/or colistin has been best evaluated as means to prevent CRE
infections in colonized patients. The largest cohort study investigating SDD in patients with
CRE colonization, however, only achieved a 44% eradication rate [103]. Importantly, 16%
of isolates treated with monotherapy developed resistance to the oral antibiotic that was
used. This development of resistance following SDD has been documented in numerous
others studies [104-106]. SDD has also not been shown to prevent infections in colonized
oncology patients. In a study of 15 patients undergoing HSCT who were colonized with
carbapenem-resistant Klebsiella pneumoniae (CRKP), eight patients developed post-
transplant CRKP bacteremia despite receiving SDD with oral gentamicin [107]. Given the
already narrow arsenal available to treat MDR Gram-negative infections, the risk of
increasing resistance to the few available treatment options and unclear clinical benefit has
limited the adoption of SDD in hematology units.

Improving Outcomes Once Infected

Screening for Targeted Empiric Antibiotic Therapy

The emergence of MDR Gram-negative bacteria that are often resistant to first-line empirical
therapies warrants consideration of strategies to identify patients with hematologic
malignancies who are at high risk of developing infections due to these organisms. These
patients could potentially have their empirical therapy modified to ensure coverage of the
MDR bacteria that they are at high risk of being infected with.

This strategy appears to offer the most promise for identifying hematologic oncology
patients at high risk of infection with MDR Enterobacteriaceae. In a multicenter prospective
study examining stool samples or rectal swabs from patients with hematologic malignancies
in Germany, 4 (7%) of the 55 patients colonized with ESBL-E developed ESBL-E BSI,
compared to only 1 (0.2%) of 442 patients who were not colonized with ESBL-E [108]. A
multivariate analysis showed that ESBL-E colonization was the most important risk factor
for ESBL-E BSI. Other investigators found that 22% of patients with hematologic
malignancies who were colonized with ESBL-producing £. coli (ESBL-EC) developed
subsequent ESBL-EC bacteremia [109]. A multicenter study of HSCT recipients in Italy
also identified high rates of colonization to infection for CRKP. CRKP colonization was
identified in 1% of autologous HSCT recipients and 2.4% of allogeneic HSCT recipients

Leuk Lymphoma. Author manuscript; available in PMC 2017 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Baker and Satlin

Page 10

[33]. CRKP infection occurred after transplantation in 26% and 39% of colonized
autologous and allogeneic HSCT recipients, respectively.

These data suggest that patients with hematologic malignancies who are colonized with
MDR Enterobacteriaceae have a high risk of developing subsequent infection due to these
organisms. Thus, hematologic oncology centers with high rates of infections due to MDR
Enterobacteriaceae may consider implementing a program of screening for gastrointestinal
colonization with these organisms and modifying the empirical therapy of colonized
patients. However, more data are needed on the benefits and risks of initiating such a
surveillance program before this strategy can be strongly recommended. Another caveat is
that assessing for gastrointestinal colonization may not be an effective method to identify
patients at high risk of 2. aeruginosa infection. In one study of allogeneic HSCT recipients,
the majority of patients who developed P, aeruginosa infection were not found to be
previously colonized by assessing fecal samples, suggesting that many of these infections
originated outside of the gastrointestinal tract [110].

Rapid Identification

Another important strategy to improve outcomes of patients with hematologic malignancies
who are infected with MDR Gram-negative bacteria is to implement new technologies in the
clinical microbiology laboratory to more rapidly identify these pathogens. This in turn could
lead to shorter delays in administration of effective antimicrobial therapy. Two real-time
multiplex PCR systems were recently approved in the U.S. that detect a variety of bacteria
and yeast, plus important resistance determinants, directly from positive blood culture
bottles. Both systems, the Verigene® Gram-Negative Blood Culture Test (Nanosphere,
Northbrook IL, USA) and the FilmArray Blood Culture Identification Panel (Biofire
Diagnostics, bioMérieux, Salt Lake City, UT, USA), detect the most common Gram-negative
pathogens, including £. coli, K. pneumoniae, Enterobacterspp., P aeruginosa, and A.
baumannii. Both systems also detect the KPC gene that confers carbapenem resistance
among Enterobacteriaceae in the U.S. and many other countries. Additionally, the Verigene
platform detects other carbapenemase genes and the most common ESBL gene, CTX-M.

Use of these systems should decrease the time to identification of most Gram-negative
bloodstream pathogens from 24-72 hours after culture positivity to 2 hours. They would also
permit rapid detection of CRE bacteremia, which should lead to more timely therapy for
these lethal infections. However, these assays are unlikely to provide susceptibility
information for 2 aeruginosa or A. baumanniithat are detected and they do not detect
Stenotrophomonas maltophilia. Clinical data to assess the impact of the use of these systems
on clinical outcomes are also limited. One randomized study that was conducted on all
positive blood cultures in a clinical microbiology laboratory showed that use of the
FilmArray system decreased the use of broad-spectrum antimicrobials, but had no impact on
mortality or length of stay [111]. More data are needed to better understand the potential
benefits of these powerful tools in providing more timely appropriate therapy to patients
with hematologic malignancies and ultimately improving outcomes in these patients.
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Conclusions

This review summarizes the current understanding of the epidemiology, recommended
treatments, outcomes, and preventative strategies for infections due to MDR Gram-negative
bacteria in patients with hematologic malignancies. Given the expanding nature of this threat
and this particularly vulnerable patient population, there is a critical need to identify the
optimal strategies to prevent these infections and improve the outcomes of patients with
these infections.
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Figure 1.
Global distribution of the most prominent carbapenemases in each country.
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