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Abstract

Background
Innate immune responses are fine-tuned by small noncoding RNAmolecules termedmicro-

RNAs (miRs) that modify gene expression in response to the environment. During acute

infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic

communication. The purpose of this study was to characterize the baseline population of

miRs secreted in EVs in the airways of young children (airway secretorymicroRNAome)

and examine the changes during rhinovirus (RV) infection, the most common cause of

asthma exacerbations and the most importantearly risk factor for the development of

asthma beyond childhood.

Methods
Nasal airway secretions were obtained from children (�3 yrs. old) during PCR-confirmed

RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with

polymer-based precipitation and global miR profiles generated using NanoStringmicroar-

rays. We validated our in vivo airway secretorymiR data in an in vitro airway epithelium
model using apical secretions from primaryhuman bronchial epithelial cells (HBEC) differ-

entiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified

(nasal and bronchial) signature airway secretorymiRNAome and changes duringRV infec-

tion in children.
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Results
Multiscale analysis identified four signaturemiRs comprising the baseline airway secretory

miRNAome: hsa-miR-630, hsa-miR-302d-3p,hsa- miR-320e, hsa-miR-612. We identified

hsa-miR-155 as the main change in the baseline miRNAome duringRV infection in young

children.We investigated the potential biological relevance of the airway secretion of hsa-
mir-155 using in silicomodels derived from gene datasets of experimental in vivo human
RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented
pathway in the upper airways of individuals infected with RV.

Conclusions
Comparative analysis of the airway secretorymicroRNAome in children indicates that RV

infection is associated with airway secretion of EVs containingmiR-155, which is predicted

in silico to regulate antiviral immunity. Further characterization of the airway secretory
microRNAomeduring health and disease may lead to completely new strategies to treat

and monitor respiratory conditions in all ages.

Introduction
Immune responses are fine-tuned by small RNA molecules termedmicroRNAs (miRs) that
modify gene expression in response to the environment. miRs comprise a large family of highly
conserved, short, non-codingRNAs that regulate post-transcriptional gene-silencing through
inhibition of translation or promotion of mRNA degradation.[1]miRs regulate approximately
60% of protein encoding genes.[2] They exist in body fluids, including saliva, nasal secretions,
sputum, urine, breast milk, and blood.[3] To maintain their stability in extracellular body fluids,
they are released in membrane-bound extracellular vesicles (EVs). miR-containing EVs are
deemed important for genetic exchange and communication between cells.[4] Specifically, extra-
cellular miRs are known to regulate key steps in cell proliferation, differentiation and migration
and to play an important role in immune responses to infections, autoimmunity and cancer.[4]

Respiratory immune responses are fine-tuned by miRs. Resident and migrating lung
immune cells such as macrophages, dendritic cells (DC), lymphocytes and airway epithelium
and smooth muscle cells undergo post-translational regulation of immune-related genes via
miRs.[5] Numerous miRs have been reported to have physiological roles in maintaining tissue
homeostasis and normal development in the airways and the lung.[6, 7] There is compelling
evidence demonstrating that several miRs also play pivotal roles in fine-tuning important path-
ogenic pathways including the regulation of the effector function of T helper (Th) 2 cells in
allergic asthma,[8] the regulation of host defense immune responses,[9] and the repair and
remodeling of the airways.[5] Despite the importance of miRs in the genetic regulation of the
respiratory system, there is paucity of data describing the baseline population of miRs secreted
in EV in the human airways (airway secretorymiRNAome). The importance of investigating
the airway secretorymiRNAome is that it may have a powerful role in regulating cell-to-cell
genetic communication through the entire respiratory system (from the nose to the small air-
ways), particularly given the stability and mobility of EVs (and its miR cargo) in extracellular
body fluids.[3, 10] Moreover, the dynamic regulation of the airway secretorymiRNAome
maybe a key mechanism during environmental exposures and acute infections, instances in
which cell-to-cell communication is crucial to synchronize host immune defense and inflam-
matory signaling pathways.
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The purpose of this study was to characterize the baseline population of miRs secreted in
EVs in the airways of young children (airway secretorymicroRNAome) and examine the
changes during rhinovirus (RV) infection. RV is the most common cause of asthma exacerba-
tion in children and adults[11] and RV-induced wheezing illnesses during the first 3 years of
life are the strongest risk factor (10 times increased odds) for the development of asthma
beyond childhood.[12]Our central hypothesis was that RV infection in young children elicits
distinctive signatures in the airway secretorymicroRNAome that may modulate the balance
betweenTh1 antiviral immunity and Th2 pro-asthmatic responses during early life. The
impact of our research is that it highlights the untapped potential of investigating the human
airway secretorymiRNAome during health and disease and it provides new insights into the
potential immune regulatory role of virally induced miR secretion, which may ultimately
enhance our knowledge on the early origins of asthma and may identify new strategies to treat
and monitor a myriad of respiratory disorders in all ages.

Materials andMethods

Nasal washing collection and study subjects
Nasal airway secretions were collected in patients�3 yr. of age with PCR-confirmed RV infec-
tion (n = 10). All subjects were enrolled during the hospital admission for RV infection. Con-
trols were age-matched children (n = 10) with non-detectable virus by PCR testing. Clinical
and demographic variables were obtained by reviewing electronic medical records and pre-
sented in S1 Table. Sample was obtained while they were undergoing diagnostic nasal lavage
(respiratory virus detection by PCR) at Children's National Medical Center.[13] RV positive
(RV-infected group) or negative virus status (control group) was confirmedby a viral multiplex
PCR panel for 12 targets (rhinovirus, RSV A, RSV B, HMPV, parainfluenza 1–3, influenza A
and B, H1N1, H1N3, Adenovirus) used for clinical purposes (Luminex, TX, USA). We used a
standard nasal lavage technique consisting of gently washing the nasal cavity with 3–4 mL ster-
ile normal saline as previously described.[13]The Institutional ReviewBoard (IRB) of Chil-
dren’s National Medical Center, Washington D.C. approved the study and granted a waiver of
informed consent given that this research involved materials (data, documents, records, or
specimens) collected solely for non-research purposes (clinical indications).

Extracellular vesicles isolation and characterization
Nasal exosomes were isolated with a polymer-based precipitation method (ExoQuick—System
Biosciences,Mountain View, CA) according to manufacturer’s protocol.[14] Isolated exosomes
were characterized by Western Blot (WB) using the harbor transpanin CD63 as exosomal
marker. Anti-CD63 WB primary antibodies (System Biosciences,Mountain View, CA) were
used at a 1: 1,000 dilutions and the HRP secondary antibody at 1: 20,000 dilutions. Exosomal
quantification was performedwith a commercially available kit (ExoCET method—System
Biosciences,Mountain View, CA) that directly measures.[15] Exosomal particle size analysis
was performedwith a Dynamic Light Scattering (DLS) instrument (Zetasizer, Malvern Instru-
ments, UK) and Nanoparticle Tracking Analysis (NTA) software (Malvern Instruments, UK)
using the Stokes Einstein equation to calculate exosomal hydrodynamic diameters.[16]

ExtracellularmicroRNA profiling
The RNA contained in extracellular vesicles/exosomes was isolated and purified using a phe-
nol-free lysis buffer and rapid spin columns (SeraMir kit System Biosciences,Mountain View,
CA). We performedRNA separation, detection and quantitation with the Agilent Small RNA
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Kit and a Bioanalyzer instrument (2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA).
The global microRNAs (miRs) profile was obtained using NanoString human microarrays
(human V2 miRNA array>800 probes, Nanostring Technologies, Seattle, WA). To account
for differences in hybridization and purification, data were normalized to the average counts
for all control spikes in each sample using a proprietary bioinformatics software (nSolver™
Analysis Software 2.5, Nanostring Technologies, Seattle, WA). Briefly, we calculated a back-
ground level of expression for each sample using the mean level of the negative controls plus
two standard deviations of the mean. MiRNA expressing less than two standard deviations
from the mean were set to 0 expression. Those miRNAs that were considered non-zero expres-
sion, were normalized using a scaling factor based on the top 100 expressing miRNAs across all
samples. For each sample, the average of the geometricmeans of the top 100 expressing miR-
NAs across all samples was divided by the geometricmean of each sample.[17]

Isolation of secreted extracellular vesicles from air-liquid interface
differentiated human bronchial epithelial cells
Nasal miRs data were contrasted with normal airway epithelial secretions obtained in vitro
from the apical side of air-liquid interface (ALI)-differentiated human bronchial epithelium.
[18] Human bronchial epithelial cells (HBEC) were purchased from Lonza, Walkersville, MD
(Catalog number CC-2540, Lonza Inc., Switzerland). HBEC were amplified on collagen-coated
T-75 flasks as previously described,[19] then plated apically on type IV collagen coated 12 well
transwell plates (Fisher Scientific, Pittsburgh, PA), grown submerged for 7–10 days until 100%
confluence. Apical media was removed and cells differentiated at air-liquid interface (ALI).
After 20 days at ALI, cells were gently washed 4 times with PBS apically and baso-laterally and
protein-free BEBM was added to the basal side. Apical secretions were removed and extracellu-
lar vesicles isolated and characterized as described above. Small RNA separation, detection and
quantitation was performedwith the Agilent Small RNA Kit chip (2100 Bioanalyzer, Agilent
Technologies, Santa Clara, CA) and miRs profiled using NanoString human microarrays (800
probes) (Nanostring Technologies, Seattle, WA).

Bioinformatics and Statistical analysis
Biological network analysis was conducted using the identified baseline airway extracellular
microRNAs (baseline airway miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-
miR-612.) and the hsa-mir-155 targets overlapping the GSE11348 dataset (describedbelow)
with the use of QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN RedwoodCity, CA,
www.qiagen.com/ingenuity). Overrepresented pathways were defined as those containing
more targets than expected by chance, as calculated by the right-tailed Fisher’s exact test. Dif-
ferences between groups were analyzed using unpaired T or Mann-Whitney U tests. A p-value
<0.05 was considered significant.

hsa-miR-630,hsa-miR-302d-3p,hsa- miR-320e, hsa-miR-612 and hsa-
mir-155 Targets
The miRTarBase release 4.5 (http://mirtarbase.mbc.nctu.edu.tw/index.php) was used to iden-
tify predicted targets of hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612 and hsa-
mir-155. Briefly, miRTarBase is a database of miRNA-target interactions (MTIs). This database
is manually curated and enriched for MTIs validated experimentally by reporter assay, western
blot, microarray and next-generation sequencing experiments.[20] The selection included tar-
gets for Homo sapiens -5p sequences. This list was used to identify hsa-miR-630, hsa-miR-
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302d-3p, hsa- miR-320e, hsa-miR-612 for biological network analysis as described above. In
addition, hsa-mir-155 targets were used in combination with gene expression validation data-
sets to model the effect of RV infection in vivo as described below.

Microarray Analysis of Gene ExpressionOmnibus GSE11348
To evaluate the effect of rhinovirus infection in human airway epithelium, the GSE11348 data-
set was retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The GSE11348
is a study of gene expression profiles during in vivo human rhinovirus infection.[21]Gene-
spring version 12.6 (Agilent Technologies, Santa Clara, CA) was used to analyze the dataset.
The.CEL files were normalized using the RMA summarization algorithm with baseline trans-
formation to median for all samples. Following microarray data pre-processing a one-way
ANOVA test with the Tukey's honestly significance difference test was applied to identify dif-
ferentially expressed transcripts between pre-infection, 8 hours and 48 hours post-experimen-
tal rhinovirus infection. Results of the ANOVA were corrected for multiple hypothesis testing
(Benjamini-Hochberg). Statistical significancewas defined as a false discovery rate (FDR)
<5%. Transcripts with�1.2-fold change between conditions were selected for further analyses
describedbelow.

hsa-mir-155 Targetome in experimental in vivo human rhinovirus
infection
R software (R: A Language and Environment for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna, Austria) was used for data analysis. R stats package version 3.0.1
was implemented. A custom script was used to overlap the hsa-mir-155 miRTarBase tran-
scripts above with the output following analyses of the GSE11348 dataset using the gene sym-
bol according to the genome reference consortium human reference 38. Predicted hsa-mir-155
were identified to characterize their temporal behavior following experimental RV infection.

Results

Determinationof the baseline secretoryairway miRNAome
In order to characterize the effect of RV infection in the airway secretion of extracellularmiRs,
we first determined the global profile of miRs secreted in extracellular vesicles/exosomes under
basal conditions, which we refer here as the baseline secretory airway miRNAome. Because
miRs have extensive regulatory functions in the airway, particularly in the development and
function of the airway epithelium, [6, 7] we anticipated that a set of extracellular miRs would
be secreted at high levels under normal conditions in all subjects studied. The importance of
identifying the baseline secretory airway miRNAome is that it may serve as homeostatic back-
ground to investigate the presence of new extracellularmiRs during pathological conditions. In
our case, we were interested in the newly secreted miRs during RV infection.

Our first step was to isolate extracellularmiRs from the nasal secretions of 10 children with-
out acute viral respiratory infection (controls). Fig 1 shows the workflow utilized including
standard extracellular vesicles/exosome isolation with a polymer-based centrifugation method
(Exoquick) and characterization based on particle size (DSL Nanotracking), AChE activity
(ExoCET assay) and immune markers (CD 63; Fig 1B) as previously described.[16]We next
isolated small RNA and confirmed the presence of miRs using Agilent Bioanalyzer (Fig 1C).
Isolated small RNA was used to profile extracellular miRs with a NanoString panel
containing> 800 human targets. The top 20 miRs more abundant (and present in all subjects)
are presented in Table 1. S2 Table contains the total baseline extracellularmiRs. To visualize
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better the baseline airway secretorymiRNAome we built scattered plots that highlight the pop-
ulation of extracellularmiRs significantly above background (> 3 SD from mean miR counts;
Fig 2). This analysis identified 7 candidate miRs that were clearly above all the other miRs: hsa-
miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612, hsa-miR-378e, hsa-miR-25-3p, hsa-
miR-188-5p.

Given that in vivo nasal washes reflect a mixed secretion (naso-oropharynx) that it is sus-
ceptible to contamination by environmental particles (either in the nose or introduced during
the collection),we decided to validate our in vivo airway exosomal miRNAome findings using
an in vitro model of the human airway epithelium. Analogous to what we have previously
describedwith the airway secretome[19, 22] and directional immune profiling,[18] for these
experiments we cultured human bronchial epithelial cells (HBEC) differentiated at ALI and
collected apical secretions to obtain a representative “clean” sample of the unified (nasal and
bronchial) airway secretorymiRNAome. Next, we profiled extracellular vesicles/exosomes in
the apical secretions of ALI-differentiated bronchial epithelium and overlapped these data with
our in vivo findings. As shown in Fig 3, we found astonishing similarities between the in vivo
and in vitro airway miRNAome. In fact, the top 4 extracellularmiRs found initially in nasal
secretions (hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612.) were also found in

Fig 1. Isolationof extracellular vesicles (EV) from nasal secretions. A)Workflow of isolationmethod. B)
Dynamic Light Scattering (DLS) Nanoparticle Tracking analysis identified secretedEVmostly in the 50–150 nm
range. C) ExoCET (AChE activity assay) and D) CD63 western blotting of the isolated vesicles indicated that we
had successfully isolated exosomes. E) Representative result from small RNA Bioanalyzer confirming the
presence of miRs in the isolated EVs.

doi:10.1371/journal.pone.0162244.g001
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abundant top levels in our in vitro airway epithelial model (scattered plots and Venn diagram
in Fig 3). We concluded that these four miRs are the main signature of the baseline airway
secretorymiRNAome, which is found constitutively in the nasal secretions of young children.
Notably, although this baseline airway secretorymiRNAome was present at high concentra-
tions in all subjects, the specific composition varied among individuals (Fig 3) indicating that
this homeostatic population of miRs has a dynamic range among different subjects and per-
haps overtime within individuals. Bioinformatics analysis of the predictive targets of the airway
secretorymiRNAome (enriched for epithelial expression) showed cellular assembly, organiza-
tion, development and repair as top functions (Fig 4A). Moreover, Ingenuity pathway analysis
(IPA) of these miRs identified several targets involved in epithelial remodeling and mesenchy-
mal differentiation via regulation of protein kinase B (Akt), transforming growth factor beta
(TGFβ), mitogen-activated protein kinase (MAPK) signaling. The identified overrepresented
networks with IPA can be visualized in Fig 4B. Collectively, these results re-enforced the notion
that the baseline extracellular miR secretion may play in role in the homeostasis of the airways
modulating key pathways involved in the differentiation, repair and remodeling of the airways.
[5–7]

Effect of RV infection in the airway secretorymicroRNAome
We next examined the airway secretorymiRNAome profiles in children with PCR-confirmed
RV infection (n = 10). As expected,we identified abundant levels of hsa-miR-630, hsa-miR-
302d-3p, hsa- miR-320e, hsa-miR-612 (baseline miRNAome) in the nasal airway secretions of
all children (Fig 5). S3 Table contains all the airway extracellular miRs identified in the nasal
secretions of children with RV infection. As shown in the summarized scattered plots, we did
not identify significant differences in the relative abundance of the baseline miRNAome during

Table 1. Top 20 baselinenasal airway extracellular miRs (n = 10 children).

Gene Name Target Sequence miRNA counts

Mean SD

hsa-miR-630 AGUAUUCUGUACCAGGGAAGGU 930 98.8

hsa-miR-302d-3p UAAGUGCUUCCAUGUUUGAGUGU 682 292

hsa-miR-320e AAAGCUGGGUUGAGAAGG 502 69.5

hsa-miR-612 GCUGGGCAGGGCUUCUGAGCUCCUU 425 122

hsa-miR-188-5p CAUCCCUUGCAUGGUGGAGGG 315.2 223.4

hsa-miR-378e ACUGGACUUGGAGUCAGGA 303.5 96.5

hsa-miR-25-3p CAUUGCACUUGUCUCGGUCUGA 282.3 91.4

hsa-miR-1827 UGAGGCAGUAGAUUGAAU 260.6 110

hsa-miR-222-3p AGCUACAUCUGGCUACUGGGU 216 122.3

hsa-miR-144-3p UACAGUAUAGAUGAUGUACU 213.2 18.5

hsa-miR-125b-5p UCCCUGAGACCCUAACUUGUGA 203.1 139.8

hsa-miR-631 AGACCUGGCCCAGACCUCAGC 201.8 120

hsa-miR-192-5p CUGACCUAUGAAUUGACAGCC 201.7 108.2

hsa-miR-297 AUGUAUGUGUGCAUGUGCAUG 191.7 117.8

hsa-miR-495 AAACAAACAUGGUGCACUUCUU 189.6 117.2

hsa-miR-601 UGGUCUAGGAUUGUUGGAGGAG 189.2 57.6

hsa-miR-371a-3p AAGUGCCGCCAUCUUUUGAGUGU 175 96.4

hsa-miR-548ad GAAAACGACAAUGACUUUUGCA 168.8 79.3

hsa-miR-570-3p CGAAAACAGCAAUUACCUUUGC 167.9 81.3

hsa-miR-548x-3p UAAAAACUGCAAUUACUUUC 165.7 76

doi:10.1371/journal.pone.0162244.t001
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RV infection (Fig 5), although children infected with RV trend to have higher hsa-miR-320e
levels and lower hsa-miR-612 counts. In contrast, we identified the unequivocal new presence
of hsa-miR-155 during RV infection. hsa-miR-155 levels were clearly above the background,
being as high as those seen in the baseline miRNAome (Fig 5A and Fig 5B). It is noteworthy
that hsa-miR-155 was not present at these levels in any of the subjects without RV infection.
Another difference in the miRNAome composition of children infected with RV was the pres-
ence of hsa-miR-21, (Fig 5), which was also present at significantly high levels. However, in
contrast to hsa-miR-155, which was exclusively linked to RV infection, hsa-miR-21 was also
part of the baseline extracellularmiRs secreted by differentiated airway epithelium in vitro
(Fig 3).

Dynamic regulation of mir-155 targetomeduring experimental in vivo
humanRV infection
To evaluate the potential regulatory effect of hsa-miR-155 on the airway transcriptome during
in vivo RV infection, the GSE11348 dataset was retrieved from the GEO database (http://www.
ncbi.nlm.nih.gov/geo/). The GSE11348 is a study of gene expression profiles during in vivo
human RV infection.[21] This study of nasal epithelial scrapings before and during

Fig 2. Nasal extracellular miRs profiles at baseline.Scattered plot of the nasal extracellular miRs profile of 10 childrenwithout detectable viral
respiratory infection (baseline airway secretory miRNAome). SD = Standard deviation.

doi:10.1371/journal.pone.0162244.g002
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Fig 3. Multi-scaleairway secretorymiRs profiling comparing in vivonasalmiRs vs. in vitromiRs isolated from the apical secretions of
ALI-differentiatedhuman bronchial epithelial cells (HBEC).Venn diagram identified 4 overlapping extracellular hsa-miR-630, hsa-miR-302d-
3p, hsa-miR-320e,hsa-miR-612 (red squares; baseline airway epithelialmiRNAome). Stacked normalizedbars show individual baseline airway
epithelialmiRNAome profiles (n = 10 children)

doi:10.1371/journal.pone.0162244.g003
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experimental RV infectionwas relevant to cross-validate in silico our observations seen on
nasal secretions from children infected with RV. We focused on the targetome analysis of hsa-
miR-155, given our current observations and recent evidence demonstrating the antiviral effect
of hsa-miR-155 against RV in vitro.[23]

The initial hsa-miR-155 miRTarBase list of predicted targets identified a total of 841 records
for predicted targets of hsa-miR-155, which represented 723 unique genes. The two most com-
mon validation methodologies to validate these targets were proteomics (52% of the targets) and
reporter assay (23% of the targets). We overlapped the hsa-miR-155 miRTarBase list of predicted
targets with the filtered output from the analysis of the GSE11348 dataset. A total of 81 genes
were identified as part of the hsa-miR-155 targetome during experimental in vivo human RV
infection (presented in S4 Table). Our in silico analysis demonstrated a potential complex effect
of hsa-miR-155 during RV infection, with a dynamic regulation at 8h and 48 h. At 8 hours the
largest changes recorded included the DPP7 gene, which was upregulated 1.1 fold, and the
NAMPT, IL-8 and TNFAIP2 genes downregulated 1.2 fold each. At 48 hours NAMPT, IL-8 and
TNFAIP2 were upregulated 1.4, 2.1, 1.2 fold, respectively, while the DPP7 gene was downregu-
lated 1.4 fold. Interestingly, most of the genes targeted by hsa-miR-155 that are implicated in the
regulation of the host immune response to RV underwent early silencing at 8hr but subsequent
upregulation at 48h (Fig 6A). The SOCS1 gene had the largest change between the two time peri-
ods with a 2.7-fold upregulation at 48 hours from a 1.1-fold downregulation at 8 hours.

To further evaluate the temporal changes in genes targeted by the hsa-mir-155 following
experimental RV infection in the human upper airway response we performed a pathway

Fig 4. IPA pathway analysis of predictive targets of the baseline airway secretorymiRNAome. IPA analysis
of hsa-miR-630, hsa-miR-302d-3p, hsa-miR-320e,hsa-miR-612 identified cellular assembly, organization,
development and repair as top functions (A) and overrepresented gene networks for AKT (B) TGF beta, MMP and
MAPK signaling (C).

doi:10.1371/journal.pone.0162244.g004
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analysis and identified overrepresented networks with IPA. Importantly, at 8 hours the top
upstream regulator for the list was hsa-mir-155 (p = 5.46x10-26) with 19 genes included. The
direction of the regulatory effect exerted by hsa-mir-155 on these molecules at 8 hours was con-
cordant with the literature for the downregulation of ANKFY1, BACH1, MYD88, CEBPB,
MATR3, IL6, TNFRSF10A,FMNL2, SOCS1,MECP2 and CXCL8. Fig 6B illustrates the changes
at 8 and 48 hours post-infection for the hsa-mir-155 pathway in the genes captured on the anal-
ysis. At 48 hours the top upstream regulator for the list was still hsa-mir-155 (p = 5.23x10-28)
with 21 genes included. Two additional pathways activated at 48 hours included TGFB1
(p = 1.1x10-15) and response to dsRNA (p = 4.99x10-15). The direction of the regulatory effect
exerted by hsa-mir-155 on these molecules at 48 hours was concordant with the literature for
the upregulation of CCL2, CXCL8, HK2 and STAT3.

Fig 5. Nasal extracellular miRs profiles during rhinovirus infection. (A) Scattered plot of nasal airway
extracellular miRs (control vs. rhinovirus) airway show similar baseline miRNAnome (hsa-miR-630, hsa-miR-302d-
3p, hsa-miR-320e,hsa-miR-612miR) in rhinovirus (RV)-infected and control uninfected children except for the
presence of hsa-mir155 (red square) and hsa-mir21 in individuals with RV. (B) Boxplots depicting individual levels
of hsa-mir155 and hsa-mir21 (log 2) and 25–75 percentiles. ** p<0.01

doi:10.1371/journal.pone.0162244.g005
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Discussion
There is compelling evidence demonstrating that microRNAs (miR) modify gene expression in
the airways and lungs[5, 24, 25] and is well-established that they represent a powerfulmecha-
nism that regulate normal and pathogenic responses to numerous respiratory environmental
challenges.[26–28]More recently, it has been increasingly clear that some miRs are selectively
sorted, packaged and exported in protective membrane-bound extracellular vesicles (EV) that
provide stability and mobility to the miR cargo,[3, 4, 10] allowing genetic communication

Fig 6. In silicomodel of the dynamic regulationofmir-155 targetome during experimental in vivohumanRV infection. (A) Early
downregulation (8hr) of validated hsa-miR-155 targets implicated in host immune response followed by upregulationat 48h (B). IPA network
analysis identified overrepresented targets for hsa-mir-155 at 8hr after RV infection.

doi:10.1371/journal.pone.0162244.g006
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between distant cells.[4] EVs containing miRs have been successfully isolated from nasal[29]
and pulmonary secretions[30] as well as from resident and migrating individual lung immune
cells such as macrophages,[31, 32] dendritic cells (DCs), lymphocytes and airway epithelium.
[33, 34] Moreover, the functional transferring of miRs via EVs, and consequent cell-to-cell
genetic reprogramming, has been confirmed in animal models and several cell systems[35, 36]
including human airway epithelial cells exposed to cigarette smoke.[31] Collectively, this solid
scientific evidence highlights the biological importance and untapped potential of investigating
the mechanisms and function of the airway secretion of extracellularmiRs during health and
disease. Nonetheless, there is paucity of data characterizing the global population of extracellu-
lar miRs in human respiratory secretions, which we refer here as the human airway secretory
microRNAome. The purpose of this study was to begin addressing this critical gap in the field
characterizing in vivo: 1) the baseline miRs secreted in EVs in the airways of young children
and; 2) the microRNAome changes during rhinovirus (RV) infection.

Our initial experiments examined the baseline secretory airway miRNAome. After isolation
of EVs and purification of small RNA, we determined the global miR profile in the nasal secre-
tion of young children (< 3yrs old). We used this age group because long-term airway remod-
eling[37] and subsequent asthma risk[12] is largely determined during the first 3 years of life,
[12] suggesting that this early developmental window is a critical period for airway genetic re-
programming. Our studies identified a baseline population of miRs in the nasal airway secre-
tions of all the children included (Fig 2). The top 4 extracellular nasal miRs were also found in
abundant top levels in our in vitro airway epithelial model (hsa-miR-630, hsa-miR-302d-3p,
hsa- miR-320e, hsa-miR-612), suggesting that these four secreted miRs comprise a signature
airway secretorymiRNAome. The most abundant extracellularmiR was hsa-miR-630, which
has been reported to control airway epithelial cell death and survival,maintaining a complex
regulation of its cell cycle and apoptotic balance.[38] Specifically, in A549 cells, miR-630 inhib-
its cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but at the same time inhib-
its multiple activators of apoptosis under genotoxic stress.[38] The importance of maintaining
synchronous cell cycle/apoptosis under stress conditions is highlighted by our recent studies
demonstrating that mitotic asynchrony in repairing tissue promotes chronic inflammation and
fibrosis via up-regulation of transforming growth factor beta (TGFβ) signaling.[39] Interest-
ingly, when we examined the collective predictive function of the airway secretorymiRNAome,
including hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612 targets, we identified
again cell death and survival as top functions, in addition to overrepresented gene pathways for
TGFβ signaling and other regulators of airway epithelial remodeling (Fig 4B). These results are
in overall agreement with our previous work defining the human airway secretome, in which
we also found cell death and survival as the top collective functions of the apical secretions of
the human airway epithelium.[18] Taken together, our results suggest that the baseline airway
secretorymiRNAome may contribute to maintaining a cell death/survival balance in the
human epithelial barrier, providing a secretorymiR homeostatic program that might coordi-
nate repair and remodeling of the airways under stress conditions.

RV is the most common cause of asthma exacerbations[11] and the most important early
risk factor for the development of asthma beyond childhood.[11, 12] Our data indicate that
acute RV infection in young children is associated with airway secretion of EV containing hsa-
miR155. As shown in Fig 5, hsa-miR155 clearly emerged from the baseline background miR
population at top high levels in young children infected with RV. There are no prior studies in
vivo showing similar findings. However, in vitro studies have demonstrated that has-miR155
transfection suppresses RV replication in the human cell line BEAS-2B (derived from normal
human bronchial epithelial cells).[23] In this elegant work Bondanese and colleagues also
observedviral RNA co-immunoprecipitated with argonaute 2 protein (crucial component of
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the miR silencing complex) confirming the functional direct action of miRs against RV. In
agreement with our current findings, bioinformatics predictions and subsequent experiments
demonstrated that hsa-miR155 is the key miR orchestrating host immune responses against
RV.[23] Similarly, miR-155 has been previously identified by other groups to be a key player in
antiviral responses in the respiratory system[5, 40] as well in other systems,[41–43] being criti-
cal for host defense against numerous viruses such as influenza, hepatitis C, herpes and HTLV-
1 infections. [9, 44, 45]

Notwithstanding the importance of miR-155 in the regulation of antiviral immunity, there
are two additional features that make this molecule very intriguing and important in human
airway immunology. The first is that miR-155 is selectively sorted, packaged and exported in
exosomes during immune responses.[1, 4] In fact, miR-155 is the prototype cargo molecule for
exosome-mediated immune regulation in several cell systems[1] and is currently being studied
as top candidate for potential miR-driven immune therapies via exosomes.[46] In this context,
it is important to mention that one of the strongest pieces of evidence comes from a recent
seminal work from Alexander and colleagues, in which miR-155 released from primary bone
marrow-derived DCs (BMDCs) in exosomes were taken up by recipient BMDCs and subse-
quently induced complete target gene repression in vitro and in vivo. [47] A second intriguing
feature of miR-155 is that despite being a robust enhancer of Th1 antiviral responses, it is also
needed for the development of allergic Th2 responses.[48] Several studies have identified that
miR-155 is essential for Th2-mediated eosinophilic inflammation in the lung,[28] which
maybe due to the fact that miR-155(-/-) DCs have limited Th2 priming capacity[49] and that
CD4 (+) Th2 cells require intrinsic miR-155 expression for type-2 immune polarization.[48]
Complementing these animal studies, human based research has shown that miR-155 modu-
lates the response of human macrophages to IL-13, a crucial cytokine in the programming of
Th2 responses,[50] and that miR-155 levels are dysregulated in Th2-driven conditions such as
asthma and allergic rhinitis.[8] Collectively, these data indicate that miR-155 has a powerful
and unique dual role in airway immunology, fine-tuning Th1 (antiviral) and Th2 (allergic)
inflammatory responses. Our current study provides in vivo evidence of the airway secretion of
EV containing hsa-miR155 during natural RV infection in young children. This new knowl-
edge proves the relevance of miR-155 for human airway immunobiology and highlights the
need for further studies dissecting the potential role of miR-155 in modulating the balance
betweenTh1 antiviral immunity and Th2 pro-asthmatic responses during RV infections. Eluci-
dating this notion may provide novel insights into the mechanisms by which RV induces
asthma exacerbations and increases the risk of asthma beyond childhood.[11, 12]

The target gene(s) that mediate(s) the effect of miR-155 in the airways are not completely
clear. Prior studies have demonstrated that miR-155 acts as a positive feedback regulator in
antiviral immune responses by targeting SOCS-1. [9] It can also act as a negative regulator of
SHIP[1], hence enhancing type I interferon (IFN) signaling. Additional targets have been
implicated in the regulatory effect of miR-155 in Th2 responses including ENTPD,[49] S1PR1
[48] and the transcription factor PU.1.[51] However, it is unlikely that the effects of miR-155
are mediated by single gene downregulation. Seminal experiments establishing the miR-155
induced global proteome changes by LC-MS/MS-basedproteomics [52] identified that hun-
dreds of proteins with miR-155 seed sequences tend to be downregulated simultaneously dur-
ing miR-155 overexpression. Interestingly, this repression was relatively mild, indicating that
the widespread changes in protein synthesis induced by miR-155 are the result of numerous
small/moderate effects rather than a single gene effect.[53] In line with this notion, we designed
an in silico study to examine the dynamic changes of the miR-155 targetome (all transcripts
with hsa-miR155 seed sequences previously validated as miR-155 targets; S3 Table) during in
vivo human RV infection. For this analysis we used publicly available datasets containing nasal
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epithelial transcriptomes before and during experimental RV infection in humans
(GSE11348), which were relevant to cross-validate in silico our observations seen on the nasal
airway microRNAome. As shown in Fig 6, following experimental RV infectionwe observed a
wave of small/moderate downregulation of the host immune response genes part of the miR-
155 targetome with a peak effect at 8hrs and subsequent normalization or/and upregulation by
48 hrs. These results re-enforced the relevance of miR-155 during in vivo human RV infection.
Additional work is needed to examine the potential functional role (inhibiting viral replication,
amplifying IFN signaling and/or modulating Th2 immune responses) of the airway secretion
of extracellular miR-155 during infections caused by RV and other respiratory viruses.

In addition to miR-155 we also identified the presence of miR-21 in the airway secretory
miRNAome during RV infection. It is interesting that the parallel production of miR-155 and
miR-21 has been reported before in several cell systems.[54, 55] Indeed, miR-155 and miR-21
are considered to have a synergistic effect on increasing STAT3 activity by targeting SHIP1 and
PTEN, respectively. [56] Other groups have reported that the parallel secretion of miR-155 and
miR-21 is important for the regulation of Toll-like receptor 4 (TLR4) signaling via a cross-talk
SHIP1 and PDCD4 downregulation.[57–59] In our study the levels of miR-155 and miR-21
did not show significant correlation, however, this does not exclude the possibility that miR-21
influencesmiR-155 targetome. Interestingly, we found EV containing miR-21 in the apical
secretions of our in vitro model of bronchial airway epithelium in the absence of RV infection
(Fig 3), suggesting that miR-21 secretionmay not be an specific response to RV but rather the
result of secondary airway stress conditions such as hypoxia[60] or widespread exposure to
pro-inflammatory cytokines.[61]However, our in vitro studies need to be interpreted with cau-
tion given that we did not assess miR changes after RV infection and we used HBEC lines that
may not entirely reflect human airway epithelial responses in vivo.[62] In addition, and as a
general limitation of the present study, we need to consider the cross-sectional nature our find-
ings during RV infection. Indeed, miR-155 and miR-21 airway secretion could be transient
and/or related to a specific the stage of the infection (e.g. recent onset vs. resolution phase).
Longitudinal data with a larger number of patients may be needed to validate our findings.
This type of studies would also be useful to address additional questions, including what cell(s)
ultimately produce airway extracellularmiR during RV infection. Although the airway epithe-
lium plays a key role in mediating innate airway immune responses against RV, [63, 64] it is
unclear whether they are the primary source of EVs containing hsa-miR-155. Indeed, immune
cells such as DCs and Innate lymphoid cells (ILCs) are increasingly recognized key players in
the regulation of airway immune responses during RV infection[65, 66]and they belong to a
blood cell lineage with remarkable capability of releasing exosomes containing miR-155.[67,
68] Nevertheless, regardless of the origin, our findings reporting the airway secretion of EVs
containing hsa-miR155 during RV infection have a significant impact in the field, providing in
vivo validation for the compelling data showing the pivotal role of miR-155 during RV infec-
tion in vitro[23] and the increasing evidence demonstrating that miR-155 may regulate Th1
and Th2 immunity directly[44, 48, 49] and via exosomal-mediated cell-to-cell genetic repro-
graming in several cell systems.[47]

Conclusion
Our study identified four extracellular EV-containing miRs (hsa-miR-630, hsa-miR-302d-3p,
hsa- miR-320e, hsa-miR-612) that constitute a signature miRNAome present at high concentra-
tions in the airway secretions of all individuals included in this study (n = 20). We also identi-
fied hsa-miR-155 as the main change in the baseline airway secretorymiRNAome during RV
infection in young children. Interestingly, miR-155 has major roles in exosome-mediated
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immune regulation[1, 47, 69] and in fine-tuning of both, Th1 (antiviral) and Th2 (allergic)
pro-asthmatic inflammatory responses. [9, 28, 48, 49] The approaches and findings of this
study indicate that further characterization of the airway secretorymicroRNAome during
health and disease states may ultimately lead to completely new strategies to treat and monitor
respiratory conditions in all ages.
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