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Sinan Uğur Umu1,2, Anthony M Poole1,2, Renwick CJ Dobson1,2,3,
Paul P Gardner1,2,4*

1School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
2Biomolecular Interaction Centre, University of Canterbury, Christchurch, New
Zealand; 3Department of Biochemistry and Molecular Biology, University of
Melbourne, Parkville, Australia; 4BioProtection Research Centre, University of
Canterbury, Christchurch, New Zealand

Abstract A critical assumption of gene expression analysis is that mRNA abundances broadly

correlate with protein abundance, but these two are often imperfectly correlated. Some of the

discrepancy can be accounted for by two important mRNA features: codon usage and mRNA

secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide

evidence that avoidance increases translational efficiency. We also demonstrate a strong selection

for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have

a greater impact on protein abundance than mRNA structure or codon usage. By generating

synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:

ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance.

Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of

protein abundance.

DOI: 10.7554/eLife.13479.001

Introduction
It should in principle be possible to predict protein abundance from genomic data. However, protein

and mRNA levels are not strongly correlated (de Sousa Abreu et al., 2009; Vogel and Marcotte,

2012; Kwon et al., 2014; Maier et al., 2011; Lu et al., 2007; Taniguchi et al., 2010; Chen et al.,

2016), which is a major barrier to precision bioengineering and quantification of protein levels.

mRNA secondary structure (Pelletier and Sonenberg, 1987; Chamary and Hurst, 2005), codon

usage (Ikemura, 1981; Sharp and Li, 1987; Andersson and Kurland, 1990), and mRNA (and pro-

tein) degradation rates (Maier et al., 2011) are commonly invoked to explain this discrepancy

(Boël et al., 2016-21). Yet, at best, these features account for only 40% of variation, and in some

instances explain very little of the observed variation (Kudla et al., 2009; Maier et al., 2011;

Plotkin and Kudla, 2011; Goodman et al., 2013; Chen et al., 2016). Here we show that crosstalk

interactions between ncRNAs and mRNAs also impact protein abundance, and that such interactions

have a greater effect than either mRNA secondary structure or codon usage. We measured interac-

tions between a set of evolutionarily conserved core mRNAs and ncRNAs from 1700 prokaryotic

genomes using minimum free energy (MFE) models. For 97% of species, we find a reduced capacity

for interaction between native RNAs relative to controls. Furthermore, by generating synonymously

variant GFP mRNAs that differ in their potential to interact with core ncRNAs, we demonstrate that

GFP expression levels can be both predicted and controlled. Our results demonstrate that there is

strong selection for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes.
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Applying this knowledge to mRNA design will enable precise control of protein abundance through

the incorporation or exclusion of inhibitory interactions with native ncRNAs.

Results and discussion
To examine if avoidance of stochastic mRNA:ncRNA interactions is a feature of transcriptomes in

bacteria and archaea, we estimated the strength of all possible intermolecular RNA interactions

using a minimum free energy (MFE) model (Mückstein et al., 2006) using core ncRNAs and mRNAs.

In this work the core ncRNAs are six well conserved and highly expressed tRNA, rRNA, RNase P

RNA, SRP RNA, tmRNA and 6S RNA families annotated by Rfam (Gardner et al., 2011;

Nawrocki et al., 2015), the core mRNAs are 114 well conserved mRNAs found across bacteria, 40

of which are also conserved across archaea (Wu et al., 2013).

If stochastic interactions are selected against, because of the capacity for abundant ncRNAs

(Lindgreen et al., 2014; Deutscher, 2006; Giannoukos et al., 2012) to impact translation

(Waters and Storz, 2009; Storz et al., 2011), such negative selection would be most comparable

between species and readily detected for broadly conserved ncRNAs and mRNAs. Under-represen-

tation of interactions has been considered for the specific case of Shine-Dalgarno-like (SD-like)

sequences and the ribosome (Li et al., 2012; Woolstenhulme et al., 2015; Borg and Ehrenberg,

2015; Diwan and Agashe, 2016) and between microRNAs and 3’ UTRs (Bartel and Chen, 2004;

Farh, 2005; Stark et al., 2005; van Dongen et al., 2008). We computed the free energy distribu-

tion of interactions between highly conserved mRNA:ncRNA pairs and compared this to a number

eLife digest Many genes carry information for making proteins. To make a protein, a working

copy of the information stored in DNA is first copied into a molecule of messenger RNA. These RNA

messages are then interpreted by the ribosome, the molecular machine that makes proteins. Many

messages are produced from each gene, and each message can be read multiple times. Thus, it

should follow that the number of messages produced dictates the number of proteins made.

However, this is not the case and the number of proteins produced cannot be completely predicted

from knowing the number of messenger RNAs.

Cells control how much of a given protein they produce through interactions between the

messenger RNAs and other regulatory RNAs. The regulatory RNAs bind directly to a message and

impede protein production. Because there are millions of RNAs in a cell, these interactions have

evolved to be highly specific. Nevertheless, it seems inevitable that messenger RNAs would

encounter other RNAs too, which could short-circuit gene regulation and lead to less protein being

produced.

Umu et al. have now asked if such short-circuit events are selected against during evolution.

Computational tools were used to predict the strength of binding between the RNAs found in the

dominant forms of microbial life on Earth: the bacteria and the archaea. This approach revealed that

the majority of messenger RNAs bind more weakly to the most common RNA molecules found in

cells than would be expected by chance. Weakened binding should prevent the RNA molecules

from becoming tangled with each other and ensure that protein levels are not perturbed by

unintended interactions between highly expressed messages and other RNAs.

To test this hypothesis further, Umu et al. generated versions of the gene for a green fluorescent

protein that differed only in how well their messenger RNAs could avoid interacting with the most

abundant RNAs in E. coli cells. Those messengers that were designed to avoid interacting with other

RNAs yielded far more protein than those that were not. The findings show that taking this kind of

avoidance into account can improve predictions about how much protein will be produced and

should therefore make it easier to control protein production in experimental systems.

Finally, the messenger RNAs of some bacteria do not show such clear avoidance. However, these

bacteria have a more complex internal cell structure. This finding hints at an alternative means for

avoiding short-circuiting events that could be used by more complicated cells, such of those of

animals and plants, which also contain much larger numbers of RNAs.

DOI: 10.7554/eLife.13479.002
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of negative control interactions, which serve to show the expected distribution of binding energy

values (Figure 1A). The initiation of translation has been shown to be the rate limiting step for trans-

lation (Tuller and Zur, 2015; Plotkin and Kudla, 2011; Nakahigashi et al., 2014), therefore, we

focus our analysis on the first 21 nucleotides of the mRNA coding sequence (CDS). This has the fur-

ther advantage of reducing computational complexity. We also test a variety of negative control

mRNA regions, which are unlikely to play a functional role in RNA:ncRNA interactions. The mRNA

controls include (1) di-nucleotide preserving shuffled sequences (Workman, 1999) (orange,

Figure 1A), (2) homologous mRNAs from another phylum (with a compatible guanine-cytosine (G

+C) content) (purple), (3) downstream regions 100 base pairs (bps) within the CDS (pink), (4) the

reverse complement of the 5´ of CDSs (green), and lastly (5) unannotated (intergenic) genomic

regions (yellow). Our interaction predictions in a single model strain show that native interactions

consistently have higher (i.e. less stable) free energies than expected when compared to the five dif-

ferent mRNA negative controls: that is, there is a reduced capacity for native mRNAs and native

ncRNAs to interact. We also compared different energy models and confirm that the MFE shift is a

result of intermolecular binding (Figure 1—figure supplement 1A–C). We subsequently deployed

the most conservative negative control (i.e. di-nucleotide preserving shuffle) and free energy model

(Figure 1—figure supplement 1C) to detect if this shift for less stable binding of mRNA:ncRNA is

true of all bacteria and archaea.

In terms of stoichiometry, the model we use assumes that ncRNA expression levels are vastly in

excess of mRNA expression levels (i.e. [ncRNA] >> [mRNA]) (Giannoukos et al., 2012;

Deutscher, 2006). This is generally a biologically reasonable assumption when focussing on core

genes based upon past analysis and our own work with RNA-seq data from a range of bacteria and

archaea (Figure 4) (Lindgreen et al., 2014). Consequently, any potential mRNA interaction regions

are saturated with ncRNA, therefore a summative model of interaction energies is a reasonable

approximation to the estimated impact of excess hybridization. If modelling ncRNAs that are not so

abundant, then a model weighted by expression level may be advantageous, but it is difficult to

assess these across all conditions and developmental stages that are evolutionarily relevant. In order

to ensure that our analysis is comparable across all bacteria and archaea we have focussed on just

the most highly conserved ncRNA and protein-coding genes. Although, many of the ncRNAs are

highly structured and are bound by RNA-binding proteins this is not the case during either synthesis

and degradation of these products, furthermore, a fraction of the RNA components of these genes

will be exposed. Therefore, we expect these will form useful datasets for initial testing of our

hypothesis.

In order to assess whether mRNA:ncRNA avoidance is an evolutionarily conserved phenomenon,

we calculated intermolecular binding energies for conserved ncRNAs and mRNAs from 1,582 bacte-

rial and 118 archaeal genomes and compared these to a negative control dataset derived using a di-

nucleotide frequency preserving shuffling procedure (Workman, 1999). This measures a property

that we call the ‘extrinsic avoidance‘ of mRNA:ncRNA interactions, yet this approach may fail to

identify genuine avoidance in cases when the G+C content differences between interacting RNAs is

extreme. Measuring only extrinsic avoidance (using shuffled mRNAs as negative controls), we found

that stochastic mRNA:ncRNA interactions are significantly underrepresented in most (73%) of the

prokaryotic phyla (p<0.05, one-tailed Mann-Whitney U test) (Figure 1B,C and Figure 1—figure sup-

plement 2). This indicates that there is selection against stochastic interactions in both bacteria and

archaea.

We next sought to establish the degree to which intrinsic G+C features of RNAs lead to avoid-

ance of stochastic interactions (Figure 1D). A similar idea has been proposed which suggests that

purine loading in thermophilic bacteria may limit mRNA:mRNA interactions (Lao and Forsdyke,

2000). A test of G+C composition revealed a significant difference (p<0.05, two-tailed Mann-Whit-

ney U test) between mRNAs and ncRNAs for 95% of bacteria and archaea (Figure 1D,E). Therefore,

either extrinsic or intrinsic avoidance signals indicate that selection against stochastic interactions

and it is near-universal for the prokaryotes (97% of all strains) (Figure 1E and Supplementary file

1A and B).

Our results clearly establish a signature of selection that acts to minimise stochastic mRNA:ncRNA

interactions. However, with thousands of potential interacting RNA species in even simple prokary-

otic systems (Vivancos et al., 2010; Sharma et al., 2010), the complete avoidance of stochastic

interactions is combinatorially unlikely. Therefore, there ought to be a tradeoff between avoidance
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and optimal expression. To assess this, we examined the relationship between potential stochastic

interactions and the variation between mRNA and cognate protein levels for four previously pub-

lished endogenous mass spectrometry datasets from Escherichia coli (E. coli) and Pseudomonas aer-

uginosa (P. aeruginosa) (Laurent et al., 2010; Kwon et al., 2014; Lu et al., 2007). We computed

Spearman’s correlation coefficients between protein abundances and extrinsic avoidance, 5´ end

internal mRNA secondary structure and codon usage. Of the three measures, avoidance is signifi-

cantly correlated in all four datasets (Spearman’s rho values are between 0.11–0.17 and correspond-

ing p-values are between 0.01 and 1.3 � 10–12). In contrast, 5´ end mRNA structure significantly

correlates in two datasets, and codon usage significantly correlates in all four datasets. This indicates
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Figure 1. mRNA:ncRNA avoidance is a conserved feature of bacteria and archaea. (A) Native core mRNA:ncRNA binding energies (green line; mean

= �3.21 kcal/mol) are significantly higher than all mRNA negative control binding energies (dashed lines; mean binding energies are -3.62, -5.21, -4.13,

-3.86 & -3.92 kcal/mol respectively) in pairwise comparisons (p<2.2 � 10�16 for all pairs, one-tailed Mann-Whitney U test) for Streptococcus suis RNAs.

(B) The difference between the density distributions of native mRNA:ncRNA binding energies and dinucleotide preserved shuffled mRNA:ncRNA

controls as a function of binding energy for different taxonomic phyla. Each coloured curve illustrates the degree of extrinsic avoidance for different

bacterial phyla or the archaea. Positive differences indicate an excess in native binding for that energy value, negative differences indicate an excess of

interactions in the shuffled controls. The dashed black line shows the expected result if no difference exists between these distributions and the dashed

grey lines show empirical differences for shuffled vs shuffled densities from 100 randomly selected bacterial strains. (C) This box and whisker plot shows

�log10(P) distributions for each phylum and the archaea, the p-values are derived from a one-tailed Mann-Whitney U test for each genome of native

mRNA:ncRNA versus shuffled mRNA:ncRNA binding energies. The black dashed line indicates the significance threshold (p<0.05). (D) A high intrinsic

avoidance strain (Thermodesulfobacterium sp. OPB45) shows a clear separation between the G+C distribution of mRNAs and ncRNAs (p=9.2 � 10�25,

two-tailed Mann-Whitney U test), and a low intrinsic avoidance strain (Mycobacterium sp. JDM601) has no G+C difference between mRNAs and

ncRNAs (p=0.54, two-tailed Mann-Whitney U test). (E) The x-axis shows �log10(P) for our test of extrinsic avoidance using binding energy estimates for

both native and shuffled controls, while the y-axis shows �log10(P) for our intrinsic test of avoidance based upon the difference in G+C contents of

ncRNAs and mRNAs. Two perpendicular dashed black lines show the threshold of significance for both avoidance metrics. 97% of bacteria and archaea

are significant for at least one of these tests of avoidance.

DOI: 10.7554/eLife.13479.003

The following figure supplements are available for figure 1:

Figure supplement 1. Applying different energy models of intramolecular and intermolecular interactions for native sequences and various negative

controls.

DOI: 10.7554/eLife.13479.004

Figure supplement 2. The top and the bottom panels show bacterial phyla and archaeal phyla respectively.

DOI: 10.7554/eLife.13479.005
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that, despite strong selection against stochastic interactions, such interactions do significantly impact

the proteome (Figure 2A and Supplementary file 3). We have also conducted an ‘outlier analysis’

on one of the E. coli datasets (Laurent et al., 2010). We have selected the top and bottom-most

expressed genes relative to mRNA expression levels and computed Z-scores for each of codon-

usage, internal secondary structure and avoidance measures. We found that avoidance measures

show the most extreme shifts downwards for the bottom-most expressed genes and is shifted the

highest for the top-most genes (Figure 2—figure supplement 4).

We also test how mRNA:ncRNA crosstalk impacts the translation of transformed mRNAs that

have not coevolved with the ncRNA repertoire (low avoidance mRNAs are rare in native datasets).

We examined two available E. coli-based GFP experimental datasets (Goodman et al., 2013;

Kudla et al., 2009), where synonymous mRNAs are generated for a GFP reporter gene. This enables

the assessment of the impact of synonymous changes on protein abundance using fluorescence.

Avoidance and mRNA secondary structure are both significantly correlated with fluorescence,

whereas codon usage is not (Spearman’s rho values are 0.11 and 0.65, the corresponding p-values

are 3.17 � 10�41 and 1.69–20) (Figure 2A). Note that one of the GFP datasets (Goodman et al.,

2013) uses native E. coli mRNA 5´ ends for their constructs, whereas the other GFP dataset

(Kudla et al., 2009) is randomly generated. We observe that the influence of avoidance on gene

expression for randomly sampled synonymous mRNAs is strong (Figure 2—figure supplement 3),

while endogenous gene expression is limited. Presumably, due to negative selection pruning low

avoidance mRNAs from the gene pool (Figure 2A).

For each of the seven datasets described above we have tested linear models of measures of

mRNA levels, codon usage, internal secondary structure and avoidance (Figure 2—figure supple-

ment 3 and Supplementary file 5). Avoidance alone explains around 35% of variance in GFP data-

sets where extreme mRNA compositions can be explored, whereas in native mass-spec derived

datasets 2–3% of the variance is explained by avoidance alone. Codon usage describes 2% to

�0.5% of variance in GFP data, and 19% to 0.3% of variance in mass-spec derived datasets. Internal

secondary structure 33% to 10% in GFP datasets, and 0.2% to 0% of the variance in mass-spec

derived datasets. Using all four measures in combination across the seven datasets between 70%

and 42% of variation in protein levels can be explained, removing avoidance from the model reduces

these estimates by between 56% and 0.7%. Thus, avoidance is at least as good an explanation of

variation in protein abundance as either codon usage and internal mRNA secondary structure.

Our results indicate that crosstalk between mRNAs and ncRNAs can impact protein expression

levels. We therefore predict that taking crosstalk into account will enable the design of constructs

where protein expression levels can be precisely controlled. To test this, we generated GFP con-

structs based on the following constraints: codon bias, 5´ end mRNA secondary structure stability

and crosstalk avoidance (see Materials and methods). Our constructs are designed to capture the

extremes of one variable, while controlling other variables (e.g. high or low avoidance and near-aver-

age codon bias and mRNA secondary structure). The G+C content, a known confounding factor,

was also strictly controlled for each construct. We selected a commercial service to perform our GFP

transformations to avoid possible bias and increase the robustness of our approach (Ioannidis and

Khoury, 2011). We predicted that a construct where all three parameters are optimised will result in

a higher expression. Consistent with predictions, our optimised construct had maximal expression

(Figure 2—figure supplement 1). Of the three parameters, avoidance showed the largest range,

suggesting that tuning this parameter permits expression levels to be finely controlled

(Rs = 0.56, p=6.9 � 10�6) (Figure 2B–D and Figure 2—figure supplements 1–4).

For a final confirmation of the avoidance hypothesis, we tested the Thermus thermophilus (T.

thermophilus) HB8 SSU ribosomal RNA, which is a component of one of the most complete prokary-

otic ribosomal structures available in the PDB (Rozov et al., 2015). We identified the regions of the

SSU rRNA that had the least capacity to interact with T. thermophilus core mRNAs and found that

these regions were generally not bound to either ribosomal proteins or other ncRNAs, such as the

LSU rRNA (p=2.49 � 10�17, Fisher’s exact test) (Figure 3; see ‘Materials and methods’). The influ-

ence of internal SD-like regions on translation pausing have been described elsewhere (Li et al.,

2012), in addition we note that the anti-SD region on SSU rRNA is one of the RNA avoidance

regions (Figure 3A).

This study focusses on the 5 ´ ends of the CDS as this region is important for the initiation of

translation (Plotkin and Kudla, 2011; Tuller and Zur, 2015) and is a consistent feature of all the
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genomic, transcriptomic, proteomic and GFP expression datasets that we have evaluated in this

work. In smaller-scale tests we have observed similar conserved avoidance signals within the entire

CDSs (Figure 3—figure supplement 1) and within the 5´UTRs (Figure 3—figure supplement 2).

Furthermore, we predict that similar signals can be observed for mRNA:mRNA and ncRNA:ncRNA

avoidance. Although the impacts of these features are challenging to validate, interactions between

clustered regularly interspaced short palindromic repeats (CRISPR) spacer sequences (Bhaya et al.,

2011) and core ncRNAs are good candidates to test ncRNA:ncRNA avoidance.
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Figure 2. mRNA attributes have different impacts on protein abundance. (A) This heatmap summarizes the effect sizes of four mRNA attributes

(avoidance of mRNA:ncRNA interaction, 5´ end secondary structure, codon bias and mRNA abundance) on protein expression as Spearman’s

correlation coefficients, which are represented in gradient colors, while a starred block shows if the associated correlation is significant (p<0.05). (B) GFP

expression correlates with optimized codon selection, measured by CAI (Rs = 0.29, p=0.016). (C) GFP expression correlates with 50 end secondary

structure of mRNAs, measured by 5’ end intramolecular folding energy (Rs = 0.34, p=0.006). (D) GFP expression correlates with avoidance, measured by

mRNA:ncRNA binding energy (Rs = 0.56, p=6.9 � 10�6). (E) Each cartoon illustrates the corresponding hypothesis; (1) optimal codon distribution

(corresponding tRNAs are available for translation), (2) low 5´ end RNA structure (high folding energy of 5´ end) and (3) avoidance (fewer crosstalk

interactions) lead to faster translation.

DOI: 10.7554/eLife.13479.006

The following figure supplements are available for figure 2:

Figure supplement 1. GFP mRNA constructs have an unbiased design that produces different protein expressions.

DOI: 10.7554/eLife.13479.007

Figure supplement 2. The scatter-plots of protein abundances (as log-fluorescences) summarize the effect of general factors for extreme GFP and

previously published GFP datasets.

DOI: 10.7554/eLife.13479.008

Figure supplement 3. In the lower four panels we show the R2 values for linear regression models between measures of each of avoidance, internal

secondary structure, codon usage and mRNA levels for each of seven independent protein and mRNA expression datasets Supplementary file 5).

DOI: 10.7554/eLife.13479.009

Figure supplement 4. An outlier analysis of E. coli protein-per-mRNA ratios and avoidance, codon usage and internal mRNA secondary structure

statistics.

DOI: 10.7554/eLife.13479.010

Figure supplement 5. Overview of mRNA:ncRNA avoidance analysis and results.

DOI: 10.7554/eLife.13479.011

Umu et al. eLife 2016;5:e13479. DOI: 10.7554/eLife.13479 6 of 16

Research article Computational and Systems Biology Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.13479.006
http://dx.doi.org/10.7554/eLife.13479.007
http://dx.doi.org/10.7554/eLife.13479.008
http://dx.doi.org/10.7554/eLife.13479.009
http://dx.doi.org/10.7554/eLife.13479.010
http://dx.doi.org/10.7554/eLife.13479.011
http://dx.doi.org/10.7554/eLife.13479


In conclusion, our results indicate that the specificity of prokaryotic ncRNAs for target mRNAs is

the result of selection both for a functional interaction and against stochastic interactions. Our exper-

imental results support the view that stochastic interactions are selected against, due to deleterious

outcomes on expression. We suspect avoidance of crosstalk interactions has several evolutionary

consequences. First, as transcriptional outputs become more diverse in evolution, we expect that

the probability of stochastic interactions for both new ncRNAs and mRNAs becomes higher. This will

impact the emergence of new, high abundance RNAs, since selection for high abundance may be

mitigated by deleterious crosstalk events. Second, we predict that stochastic interactions limit the

number of simultaneously transcribed RNAs, since the combinatorics of RNA:RNA interactions imply

that eventually stochastic interactions cannot be avoided. This may in turn drive selection for forms

of spatial or temporal segregation of transcripts. Finally, taking codon usage, mRNA secondary

structure and potential mRNA:ncRNA interactions into account allows better prediction of proteome

outputs from genomic data, and informs the precise control of protein levels via manipulation of syn-

onymous mRNA sequences (Figure 2—figure supplement 5).

Materials and methods
Here we summarize the data sources, materials and methods corresponding to our manuscript. We

performed all statistical analyses in R, and all other computational methods in Python 2.7 or Bash

shell scripts. We explicitly cite all the bioinformatics tools and their versions. All tables

(Supplementary files 1–5) are available as supporting online material. All of our own sequences,

scripts and R workspace images are available on Github including the supplementary files (http://

github.com/UCanCompBio/Avoidance). The other datasets are cited in the manuscript

(Supplementary file 3).

Evolutionary conservation
If excessive interactions between messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) are

detrimental to cellular function, then we expect the signature of selection against interactions (avoid-

ance) to be a conserved feature of prokaryotic genomes. In the following, we describe where the

data used to test the evolutionary conservation of avoidance was acquisitioned, the models that we

use to test avoidance and the negative controls in detail for evolutionary conservation predictions.

We also investigate detect regions of avoidance on one of the core ncRNAs, the ribosomal small

subunit (SSU) RNA.

Data sources for bacterial genomes
The bacterial genomes and annotations that we used for investigating mRNA:ncRNA interactions

were acquired from the EBI nucleotide archive (2564 sequenced bacterial genomes available on

August 2013; http://www.ebi.ac.uk/genomes/bacteria.html). We selected an evolutionarily con-

served (core) group of 114 mRNAs from PhyEco (Wu et al., 2013) and an evolutionarily conserved

(core) group of ncRNAs (Hoeppner et al., 2012). PhyEco markers are based on a set of profile

HMMs that correspond to highly conserved bacterial protein coding genes (these include ribosomal

proteins, tRNA synthetases as well as other components of translation machinery, DNA repair and

polymerases) (Wu et al., 2013). The HMMer package (version 3.1b1) (Eddy, 2011) was used to

extract the mRNAs corresponding to these marker genes from genome files. We removed genome

sequences that host fewer than 90% of the marker genes; leaving 1582 bacterial genome sequences

and 176,704 core mRNAs that spanned these. We extracted the first to the 21st nucleotide of the

core mRNAs. As this region showed the strongest signal in a small-scale analysis (Figure 3—figure

supplement 1A), this region has also been shown to have an unusual codon distribution in previous

work (Tuller and Zur, 2015; Goodman et al., 2013) as explained in the main text. We obtained

ncRNA annotations using the Rfam database (version 11.0) (Gardner et al., 2011) for the well con-

served and highly expressed tRNA, rRNA, RNase P RNA, SRP RNA, tmRNA and 6S RNA families

(Rfam accessions: RF00001, RF00005, RF00010, RF00011, RF00013, RF00023, RF00169, RF01854,

RF00177). The redundant annotations were filtered for overlapping and identical paralogous sequen-

ces, leaving 99,281 core ncRNA that spanned 1582 bacterial genomes.
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Figure 3. The most under-represented mRNA:rRNA interactions correspond to exterior regions of the ribosome. (A) In the upper bar, the regions of

the T. thermophilus SSU rRNA that are under-represented in stable interactions with mRNAs (p<0.05) are highlighted in red. In the lower bar, the

inaccessible residues (<3.4 Angstroms from other nucleotides or amino acids in the PDB structure 4WZO). (B) The 3 dimensional structure of the T.

thermophilus ribosome includes 5S, SSU and LSU rRNA, 48 ribosomal proteins, 4 tRNA and a bound mRNA (PDB ID: 4WZO) (Rozov et al., 2015). We

have highlighted the most avoided regions of the SSU rRNA in red (based upon the fewest stable interactions with T. thermophilus mRNAs (p<0.05).

Two different orientations are shown on the left and right, the upper structure shows just the SSU rRNA and mRNA structures, the lower includes the

ribosomal proteins (coloured blue). Bottom right, a view of the ribosome that also includes the LSU rRNA (green) is also shown. There is a significant

correspondence between the accessibility of a region of SSU rRNA and the degree to which it is avoided (p=2.5 � 10�17, Fisher’s exact test).

DOI: 10.7554/eLife.13479.012

The following figure supplements are available for figure 3:

Figure supplement 1. Avoidance pattern and its correlation with protein expression vary on mRNAs.

Figure 3 continued on next page
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Data sources for archaeal genomes
We followed a similar pipeline for archaeal genomes as described for bacterial genomes. In total we

processed 240 archaeal genomes, and after filtering those that had fewer than 90% of the marker

genes, we had 118 archaeal genomes for further analysis (genomes available on August 2013)

(http://www.ebi.ac.uk/genomes/archaea.html). These genomes host 12,370 and 10,804 core mRNAs

and core ncRNAs respectively.

Test of an (extrinsic) avoidance model
We used RNAup (version 2.0.7) (Lorenz et al., 2011) to calculate the binding minimum (Gibbs) free

energy (MFE) values of mRNA:ncRNA interactions. The RNAup algorithm combines the intramolecu-

lar energy necessary to open binding sites with intermolecular energy gained from hybridization

(Mückstein et al., 2006). In other words, this approach minimizes the sum of opening intramolecular

energies and the intermolecular energy (Figure 1—figure supplement 1C). In our model of avoid-

ance, we test for a reduction in absolute binding MFE relative to negative controls as a measure of

avoidance. After testing a variety of negative controls (e.g. dinucleotide preserved shuffled mRNAs,

the 5´ end of homologous mRNAs from a different bacterial phylum, 100 nucleotides downstream of

designated interaction region, reverse complements, and identically sized intergenic regions), we

selected the dinucleotide frequency preserved shuffled sequences as our negative control since this

displayed the most conservative interaction MFE distribution (Figure 3—figure supplement 1A–C).

In more detail, to serve as a negative control we compute the interaction MFE between each of the

core ncRNAs and 200 dinucleotide-preserved shuffled versions of the 5´ end mRNAs. A dinucleotide

frequency preserving shuffling procedure is used, as Gibbs free energies are computed over base

pair stacks, i.e. a dinucleotide alphabet, therefore this method has been shown to be important in

order to minimise incorrect conclusions (Workman, 1999). We tested if the energy difference

between native and shuffled interaction distributions is statistically significant using the nonparamet-

ric one-tailed Mann-Whitney U test, which returns a single p-value per genome (Figure 1C). If the

distribution of native interaction energies for a genome is significantly higher (i.e. fewer stable inter-

actions) than the negative control, this is an indication that the genome has undergone selection for

mRNA:ncRNA avoidance. To create the background density difference lines (seen in grey at

Figure 1B), we randomly selected 100 bacterial strains and plot differences between the densities of

shuffled interactions.

Test of an intrinsic avoidance model
The energy-based avoidance model that we defined above is opaque to cases of ‘intrinsic avoid-

ance’. These are where the intrinsic properties of mRNA and ncRNA sequences restrict their ability

to interact. For an extreme example, if ncRNAs are composed entirely of guanine and cytosine

nucleotides, whilst mRNAs are composed entirely of adenine and uracil nucleotides, then these will

rarely interact. Therefore, our energy-based avoidance measures for native and shuffled interactions

will both be near zero, and thus will not detect a significant energy shift between the native and con-

trol sequences. In order to account for some of these issues, we compared the G+C difference

between core ncRNAs and core mRNAs. We used a nonparametric two-tailed Mann-Whitney U test

to determine if there is a statistically significant G+C difference between the two samples: G+C of

ncRNAs vs G+C of 5´ end mRNAs (Figure 1D,E).

Figure 3 continued

DOI: 10.7554/eLife.13479.013

Figure supplement 2. Comparison of different regions for evolutionary conservation analyses.

DOI: 10.7554/eLife.13479.014

Figure supplement 3. The most avoided regions of selected T. thermophilus non-coding RNAs.

DOI: 10.7554/eLife.13479.015

Umu et al. eLife 2016;5:e13479. DOI: 10.7554/eLife.13479 9 of 16

Research article Computational and Systems Biology Genomics and Evolutionary Biology

http://www.ebi.ac.uk/genomes/archaea.html
http://dx.doi.org/10.7554/eLife.13479.013
http://dx.doi.org/10.7554/eLife.13479.014
http://dx.doi.org/10.7554/eLife.13479.015
http://dx.doi.org/10.7554/eLife.13479


Sliding window analysis to detect regions of significance for avoidance
on SSU ribosomal RNA
We hypothesise that heterogeneous signals of avoidance within ncRNA sequences may correspond

to the accessibility of different ncRNA regions. For example, are highly avoided regions of abundant

ncRNAs more accessible than those that are avoided less? To create an avoidance profile, we tested

binding MFEs of native and shuffled interactions throughout the full-length SSU ribosomal RNA of T.

thermophilus, using a one tailed Mann-Whitney U tests to evaluate the degree of avoidance for each

nucleotide in the SSU rRNA (Figure 3) with a window size of 10 and step size of 1

(Supplementary file 4). We selected the protein data bank (PDB) entry (4WZO) as it is one of the

few ribosomal structures with associated protein, mRNA, tRNA and LSU binding data (Rozov et al.,

2015). The native interactions are the interactions between T. thermophilus core mRNAs and SSU

ribosomal RNA. The shuffled controls are derived from 200 dinucleotide preserved shuffled versions

of the RNAs. We created a 2 � 2 contingency table which separates the counts of residues that

either host a strong avoidance signal or little avoidance signal (regions with p<0.001, Mann-Whitney

U test) and residues that we predict to either be in contact (<3.4 Angstroms between atoms) with

ribosomal proteins or ribosomal, transfer or messenger RNAs or not in contact with other molecules

(i.e. accessible) (Figure 3). We applied a Fisher’s exact test Fisher (1992) to these groups to and dis-

covered a statistically significant relationship between avoidance and accessibility (p=2.5 � 10�17).

We have applied the same analysis to the other T. thermophilus core ncRNA genes (tRNAs,

tmRNA, RNase P RNA and SRP RNA) in order to determine regions of avoidance (Figure 3—figure

supplement 3). Since there are more than one tRNAs, we aligned the cellular RNAs to the associ-

ated Rfam model (RF00005) (Gardner et al., 2011; Nawrocki et al., 2015) using the cmalign tool

(Nawrocki and Eddy, 2013).

Sliding window analysis to detect regions of significance for avoidance
on mRNAs
In order to identify a region of mRNA that is consistent and unique in the datasets that we applied

evolutionary and expression analyses to we created an avoidance profile from the previously pub-

lished GFP mRNAs (Kudla et al., 2009). We calculated binding MFEs using a window size of 21 with

a 1 nucleotide step size, and for each region we computed the associated Spearman’s correlation

coefficients with p-values. This analysis revealed the significance of the first 21 nucleotides on

expression, this is consistent with previous results that identify initiation as the rate limiting step for

translation (Tuller and Zur, 2015; Plotkin and Kudla, 2011). It also revealed other statistically signif-

icant regions with high correlation correlation coefficient throughout the GFP mRNAs (Figure 3—fig-

ure supplement 1A).

Proteomics/Transcriptomics and GFP expression
We predict that mRNAs with low avoidance values will produce fewer proteins for each mRNA tran-

script than those with high avoidance. In order to test this, we conducted a meta-analysis of proteo-

mics and transcriptomics data and the relationship between this data and measures of mRNA and

ncRNA avoidance. In the following section we describe the origins of the data we have used and the

statistical analysis we use to test whether avoidance influences gene expression.

Data sources and statistics for mRNA, protein abundance and GFP
expression
We compiled our data from five protein and mRNA quantification datasets, which consist of three E.

coli (Laurent et al., 2010; Goodman et al., 2013; Lu et al., 2007) and two P. aeruginosa

(Laurent et al., 2010; Kwon et al., 2014) (Supplementary file 3). We calculated Spearman’s corre-

lation coefficients (and associated p-values) among the protein abundances and 5´ end secondary

structure (measured by intermolecular MFE), codon bias (measured by codon adaptation index

(CAI)) and avoidance (Figure 2A). We have created single and multiple regression models to deter-

mine the explained variances by these parameters (Figure 2—figure supplement 3 and

Supplementary file 5). These models show that avoidance explains more variance on average than

secondary structure or codon bias. Up to 70 percent of the variation in GFP expression can be

explained by including all the parameters and mRNA abundances (Figure 2—figure supplement 3).
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CAI metric defines how well mRNAs are optimised for codon bias (Sharp and Li, 1987). The CAI val-

ues were determined based on codon distribution patterns acquired from the core protein coding

genes of E. coli BL21(DE3) (Accession: AM946981.2) (Wu et al., 2013) using Biopython libraries (ver-

sion 1.6) (Cock et al., 2009). The folding MFE predicts how stable the secondary structure of an

RNA can be. The folding MFEs of GFP mRNAs were calculated using the RNAfold algorithm (version

2.0.7) (Lorenz et al., 2011). We restricted folding energy to first 37 nucleotides because the most

significant correlation was previously reported for this region (Kudla et al., 2009). We acquired pre-

viously published GFP data, associated fluorescence values and mRNA quantifications (Kudla et al.,

2009) via personal communication. Our avoidance model showed the highest and most significant

correlation with GFP expression in that dataset (Rs = 0.65, p=1.69 � 10�20) (Figure 2A and Fig-

ure 2—figure supplement 2D,E,F). 5´ end secondary structure (Rs = 0.62, p=5.73 � 10�18) corre-

lates slightly less than avoidance, while CAI does not correlate significantly (Rs = 0.02, p=0.4).

mRNA design
We have shown that avoidance is a broadly evolutionary conserved phenomenon and that it is signif-

icantly correlated with protein abundance relative to mRNA abundance. We now wish to test if

avoidance can be used to design mRNA sequences that modulate the abundance of corresponding

protein in a predictable fashion. We use a set of GFP mRNA constructs that all maintain the same G

+C content, codon adaptation index (CAI) and internal secondary structure but host either very high

or very low avoidance values. This procedure was repeated for the CAI and internal secondary struc-

ture values while maintaining a constant avoidance. The resulting 13 constructs were synthesised,

transformed and expressed by commercial services. In the following paragraphs, we explained how

we design our GFP constructs, the experimental set-up and statistical analyses.

Green fluorescence protein (GFP) mRNA design
We sampled 537,000 synonymous mRNA variants of a GFP mRNA (the 239 AA, 720 nucleotide long,

with accession AHK23750, can be encoded by 7.62 � 10111 possible unique mRNA variants). In brief,

these mRNA variants were scored based upon (1) CAI, (2) mRNA secondary structure in their 5´ end

region, and (3) mRNA:ncRNA interaction avoidance in their 5 end region. The genome of E. coli

BL21 encodes 52 unique core ncRNAs (Gardner et al., 2011; Nawrocki et al., 2015), to estimate

the level of ncRNA avoidance for each GFP mRNA, we sum the binding MFEs. For example, for each

GFP mRNA we compute 52 independent binding MFE values for each ncRNA. In short, a higher

summed MFE score for a GFP mRNA implies a higher avoidance, while a lower summed MFE score

implies a lower avoidance. This approach assumes that the ncRNAs are expressed at much higher

levels than GFP mRNAs (i.e. [ncRNA] >> [mRNA]) (Figure 4). Consequently, any potential interaction

site on GFP mRNAs are likely to be saturated with ncRNA. Finally, we selected 13 GFP mRNA con-

structs, while controlling the range of G+C values. These GFP mRNAs were designed to have four

different aspects; extreme 5 end secondary structure (2 minimum and 2 maximum folding MFE con-

structs), extreme codon bias (2 maximum and 2 minimum CAI constructs), extreme interaction avoid-

ance (2 minimum and 2 maximum binding MFE constructs) and an ‘optimal’ construct. The optimal

construct was selected for a high CAI, low 5´ end structure and high avoidance. All extreme GFP

mRNA constructs have near identical G+C content (between 0.468–0.480) and identical G+C con-

tents at the 5´ end (0.48). Each of the sampled GFP mRNAs is separated from other mRNAs by at

least 112 nucleotide substitutions and 122 nucleotide substitutions on average (Figure 2—figure

supplement 1).

Extreme GFP transformations, determining fluorescence levels and RT-
qPCR analyses
Both GFP expression assays and RT-qPCR analyses were performed as part of a commercial service

offered by the University of Queensland, Protein Expression Facility and Real-Time PCR Facility. Plas-

mid DNA from each construct was transformed into an expression strain of E. coli BL21(DE3). Starter

cultures were grown in quadruplicate from single colonies in 0.5 mL of TB kanamycin 30 mg/mL

media in a 96 deep-well microplate and incubated at 30˚C, 400 rpm (3 mm shaking throw). Each

starter culture was used to inoculate 1.0 mL of the same media at a ratio of 1:50, each in a single

well of a 96 deep-well plate. The cultures were incubated at 30˚C, 400 rpm for 1 hr, at this point the
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cultures were chilled for 5 min then induced into 0.2 mM IPTG and incubated at 20˚C. For analysis,
culture samples of 100 mL were taken at 1 hr, 2 hr, 3 hr, 4 hr and 22 hr (overnight) hours post-induc-

tion (HPI) for fluorescence and optical density analysis. Samples were collected in PetriWell 96-well

flat bottom, black upper, lidded microplates (Genetix). Cell density of fluorescence measurements

was performed on a Spectramax M5 Microplate Reader using SMP software v 5.2 (Molecular Devi-

ces). For fluorescence intensity measurements, samples were collected in the 96-well plate listed

above. Samples were analysed by bottom-read, 10 reads per well at an excitation wavelength

= 488 nm, emission wavelength = 509 nm with an automatic cut-off at 495 nm and measured as rela-

tive fluorescence units (RFU). The raw RFU values were normalised by subtracting the averaged

baseline values obtained from untransformed BL21(DE3) at the same time point. All samples at the

22 HPI time point were diluted 1:4 in TB kanamycin 30 mg/mL media before measurement. Total

RNA was purified from induced 0.5 mL of BL21(DE3) cultures on MaxwellÂ 16 robot (Promega) using

LEV simplyRNA Tissue Kit (Promega). RNA concentrations were assessed on Qubit 3.0 Fluorometer

(Thermo Fisher Scientific). cDNA synthesis was done using ProtoScript II First Strand cDNA Synthesis

Kit (NEB) according to manufacturer protocol using random primer. The rpsL gene was selected as

the reference gene (internal control). RT-qPCR was performed in 384-well plates with a ViiA 7 Real-

Time PCR System (Thermo Fisher Scientific) using Life Technology SYBR Green-based PCR assay.

The data analysis was performed using Applied Biosystems QuantStudio software (Thermo Fisher

Scientific). The total volume of reaction was 10 mL including 0.2 mM of each primer as a final concen-

tration. The following PCR conditions were used: 95˚C for 10 min, followed by 40 cycles of 95˚C for
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Figure 4. The median expression of core ncRNA genes (n = 325 data points) in prokaryotic genomes is nearly two

orders of magnitude greater than core mRNAs (n = 8086 data points) which proves that ncRNAs constitute most of

the cellular RNAs. To create this plot, we used mean mapped reads per gene length (i.e. mean read depth per

position) of each core gene. The expression data are compiled from 5 archaeal and 37 bacterial strains from a

previous study (Lindgreen et al., 2014).
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15 s and 60˚C for 1 min. The melting curves were analyzed at 60–95˚C after 40 cycles. RNA concen-

trations were subsequently estimated using the approach (Schmittgen and Livak, 2008). We shared

the raw data, oligos and primers in the supplementary files (Supplementary file 2A,B).

Statistical analyses of extreme GFP data
As described, we designed extreme GFP mRNA constructs, and measured the associated fluores-

cence. A Kruskal-Wallis test (nonparametric alternative of ANOVA) shows a statistically significant

difference between the fluorescence of GFP mRNA groups (p=1.35 � 10–5) (Figure 2—figure sup-

plement 1). Our pairwise comparison of GFP groups using a Kruskal-Nemenyi test (a nonparametric

alternative of the Student’s t-test) for fluorescence difference also reveals a statistically significant

difference in fluorescence between high avoidance constructs and low avoidance constructs

(p=0.00036). We computed the Spearman’s correlation coefficients (and associated p-values)

between GFP expression and each of the following measures; CAI (Rs = 0.29, p=0.016), intramolecu-

lar folding energy (Rs = 0.34, p=0.006), avoidance (intermolecular binding energy) (Rs = 0.29,

p=6.9 � 10�6) and mRNA concentration (Rs = 0.73, p=3.2 � 10�3) to predict effect size of each pre-

dictor. Our avoidance model resulted in the highest correlation with GFP expression (Figure 2B–D).
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Anthony M Poole
Renwick CJ Dobson
Paul P Gardner

University of Canterbury Biomolecular Interaction
Centre, Joint PhD
Scholarship

Sinan Uğur Umu
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Additional files
Supplementary files
. Supplementary file 1. The levels of extrinsic and intrinsic avoidance for each publicly available bac-

terial and archaeal genome sequence. Column A contains the species and strain names; Column B

contains the ENA accession; Column C contains the phylum name; Column D contains the extrinsic

avoidance p-value (i.e. the difference between RNAup Gibbs’ free-energy of interaction distributions

between native and randomized sequences, one-tailed Mann-Whitney U test); Column E contains

the genomic G+C content; Column F contains the genome size in nucleotides; Column G contains

the average G+C content of the first 21 nucleotides of 114 ‘core’ (highly conserved) mRNAs; Column

F contains the average G+C content of six core highly expressed ncRNAs (tRNA, rRNA, RNase P

RNA, SRP RNA, tmRNA and 6S RNA); Column F contains the intrinsic avoidance p-value (i.e. the dif-

ference in G+C content between core mRNAs and ncRNAs, two-tailed Mann- Whitney U test). Table

A contains the data for bacterial species, Table B contains the data for archaeal species.

DOI: 10.7554/eLife.13479.017

. Supplementary file 2. Data for the extreme GFP transformations, including fluorescence levels and

RT-qPCR analyses. Table A: Column A contains a unique identifier for each mRNA sequence; Col-

umn B contains a unique numeric code for each mRNA sequence; Column C contains a colour used

for visualizing the datasets; Column D contains the sum of RNAup Gibbs’ free-energy of interactions

between nucleotides 1 to 21 of the GFP mRNA and the core ncRNAs of E. coli BL21(DE3); Column E

contains the RNAfold Gibbs’ free-energy of folding for nucleotides 1 to 37; Column F contains the

CAI for each GFP mRNA, using codon distribution patterns acquired from the core protein coding

genes of E. coli BL21(DE3); Column G contains the GFP flourescence values (four replicates for each

mRNA); Column H contains DDCT values from RT-qPCR results, these can be used to quantify mRNA

concentrations; Column I contains mean GFP fluorescence values; Column J contains mRNA abun-

dances; Table B: contains the oligonucleotide sequences used to gather RT-qPCR results.

DOI: 10.7554/eLife.13479.018

. Supplementary file 3. Data corresponding to the heatmap in Figure 2A. Each row corresponds to a

different dataset containing protein and mRNA expression levels. Column A contains a brief sum-

mary of the type of dataset; Column B contains Spearman correlation coefficients (and correspond-

ing p-values) between avoidance measurements and protein abundance; Column C contains

Spearman correlation coefficients (and corresponding p-values) between mRNA secondary structure

measurements measurements and protein abundance; Column D contains Spearman correlation

coefficients (and corresponding p-values) between codon adaptation index measurements and pro-

tein abundance; Column E contains Spearman correlation coefficients (and corresponding p-values)

between mRNA and protein abundances; Column F contains the species names of the organism

each dataset was collected in; Column G contains the size of the dataset; Column H contains a refer-

ence to the manuscript each dataset was first published in; Column H contains a link to the Pubmed

entry for each manuscript;

DOI: 10.7554/eLife.13479.019

. Supplementary file 4. Data corresponding to Figure 3. <3.4 For each position in the SSU rRNA

sequence provided in PDB structure 4WZO, in Column A the accessibility of the region is evaluated

(i.e. ’1’ if the residue is Angstroms from another nucleotide or aminoacid residue and ’0’ otherwise).

Column B contains local SSU:mRNA avoidance p-values corresponding to differences in RNAup

Gibbs’ free-energy of interaction distributions between native and randomized sequences using

Mann-Whitney U tests.

DOI: 10.7554/eLife.13479.020

. Supplementary file 5. This table contains the results of R2 values for linear regression models

between protein levels and the different predictors of expression level that are illustrated in Fig-

ure 2—figure supplement 3. Column A contains the model (e.g. ”Protein abundance Avoidance +

Folding Energy + CAI + mRNA abundance” corresponds to the relationship between protein abun-

dance, mRNA avoidance, mRNA folding, codon usage and mRNA abundance; Column B contains

the R2 value for the relationship; Column C contains the reference the corresponding protein and

mRNA data came from; Column D contains the type of data and the size of the dataset;

DOI: 10.7554/eLife.13479.021
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