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Abstract

Coronary atherosclerosis is the major cause of mortality and disability in developed nations. A
deeper understanding of mechanical properties of coronary arteries and hence their mechanical
response to stress is significant for clinical prevention and treatment. Microstructure-based models
of blood vessels can provide predictions of arterial mechanical response at the macro- and micro-
mechanical level for each constituent structure. Such models must be based on quantitative data of
structural parameters (constituent content, orientation angle and dimension) and mechanical
properties of individual adventitia and media layers of normal arteries as well as change of
structural and mechanical properties of atherosclerotic arteries. The microstructural constitutive
models of healthy coronary arteries consist of three major mechanical components: collagen,
elastin, and smooth muscle cells, while the models of atherosclerotic arteries should account for
additional constituents including intima, fibrous plaque, lipid, calcification, etc. This review
surveys the literature on morphology, mechanical properties, and microstructural constitutive
models of normal and atherosclerotic coronary arteries. It also provides an overview of current
gaps in knowledge that must be filed in order to advance this important area of research for
understanding initiation, progression and clinical treatment of vascular disease. Patient-specific
structural models are highlighted to provide diagnosis, virtual planning of therapy and prognosis
when realistic patient-specific geometries and material properties of diseased vessels can be
acquired by advanced imaging techniques.
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1. INTRODUCTION

Coronary artery disease (CAD) is the major cause of mortality and morbidity in Western
countries (Roger et al., 2012). CAD is caused by plaque buildup in the coronary artery wall
that narrows the vessel lumen over time and blocks blood flow to the heart muscle, which
may cause myocardial infarction that may progress to heart failure (Klein and Gheorghiade,
2004). The mechanical properties of coronary arteries are fundamental to the understanding
of atherogenesis that strongly affect the stresses and strains in the cells and fibers of the
arteries. Knowledge of mechanical response of arteries can also greatly advance the
preoperative assessment of therapies; e.g., stent implantation using a patient-specific
computational analysis (Antoniadis et al., 2015). Accurate model predictions of the
mechanical properties of arterial wall under physiological and pathological loading are
necessary for clarifying the initiation, progression and clinical treatment of vascular disease.

Microstructure-based constitutive models for blood vessel are mativated by the fact that the
overall vascular mechanical properties stem from microstructural components including
elastin and collagen fibers, smooth muscle cells (SMCs), and the ground substance. These
models can accurately predict the macro- and micro-level mechanical behavior of arteries to
provide a deeper understanding of the individual role of each constituent. The goal of this
review is to provide an overview of coronary artery microstructure including elastin,
collagen and SMCs under various loadings. The microstructure is then integrated into
mathematical models of mechanical properties to predict vessel responses when mechanical
loading is perturbed. The needs for future research directions on micro-mechanical modeling
of blood vessels in health and disease are highlighted.

2. MORPHOLOGY AND MECHANICS OF CORONARY ARTERIES

The morphology of artery wall has been investigated extensively for several decades
(Rhodin, 1980; Bunce, 1974; Smith et al., 1981; Hass, 1942; Finlay et al., 1995; Zoumi et
al., 2004; Chen et al., 2011a, 2013b, 2013a). The arterial wall is composed of three distinct
layers including intima, media and adventitia, respectively (Rhodin, 1962). For many types
of arteries such as aorta, carotid, iliac (elastic arteries) and coronary (muscular artery), the
layers consist of common components such as collagen, elastin and SMC, albeit the
ultrastructure of each artery is unique with specific content and arrangements of constituents
in individual layers (Rhodin, 1980; Smith et al., 1981; Haas et al., 1991; Finlay et al., 1995).
The microstructure of coronary arteries is the major focus of this review as described below.

2.1 Structure of Normal Coronary Arteries

The adventitia (outermost layer of an artery) typically consists of dense collagen fibers,
elastin fibers, some fibroblasts and hydrophilic macromolecules (including
glycosaminoglycans, proteoglycans and glycoproteins), and serves to protect the vessel wall
from over-stretch as well as to mechanically couple to the surrounding tissues (Clark and
Glagov, 1985; Zoumi et al., 2004). Classical histological studies showed that fibers in
adventitia rendered a preferred orientation in non-coronary arteries (Rhodin, 1980; Smith et
al., 1981; Haas et al., 1991; Finlay et al., 1995). Zoumi et al. (Zoumi et al., 2004) combined
two-photon-excited fluorescence (TPEF) microscopy and second harmonic generation
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(SHG) microscopy to visualize elastin and collagen fibers simultaneously in porcine
coronary arteries, and found that the adventitia is rich in collagen bundles and a few elastin
fibers oriented in the direction along the vessel axis.

Recently, Chen et al. (2013b, 2011a) examined more detailed longitudinal-circumferential
sections (Fig. 1) of coronary arteries and revealed that elastin and collagen fibers form
concentric densely packed fiber sheets in inner adventitia (Fig. 1b), and collagen fibers
largely orient towards the axial direction of the artery with a peak at 110° (0° denotes
circumferential direction and 90° denotes axial direction) (Fig. 1c). Elastin was parallel with
collagen fiber but with secondary direction forming a netlike structure in a sublayer (Fig.
1d). Collagen fibers gradually become thicker and distributed randomly toward the exterior
adventitia whereas elastin fibers were largely absent. The ratio of collagen content (33.5%)
to elastin content (22.1%) in adventitia of the left anterior descending (LAD) coronary
arteries was reported as 1.5 (Chen et al., 2011a), which was higher than the ratio of 1.1 for
the right coronary arteries, RCA (Garcia and Kassab, 2009). The difference was likely due to
different branches (LAD vs. RCA) and size of animal (body weight of 80 kg vs. 43 kg). The
morphometry of elastin and collagen fibers are shown in Fig. 2a—c and quantitative data of
microstructure of coronary arteries are summarized in Table 1.

The media layer of an artery serves as the most important mechanical layer at physiological
conditions (i.e., under normal hemodynamic loadings) (Rhodin, 1980). The media is made
up of concentric SMC layers, elastic lamellae (EL), collagen fibril bundles and elastic fibrils.
For most arteries, EL are thick continuous sheets of elastin with periodic pores, and SMCs
fill within inter-lamellae (IL) space and connect to dense and intricately organized IL elastin
fibers, while collagen bundles intersperse between EL and enveloped SMCs (Clark and
Glagov, 1985; O’Connell et al., 2008). Coronary media EL is composed of narrower and
more widely spaced elastin fibers (Clark and Glagov, 1985) and thus presents a thin and
porous structure compared to aorta (e.g., compare Fig. 1 and Fig. 2 of Zoumi et al., 2004).
Moreover, the IL space becomes wider and may contain more than one layer of SMCs
(Clark and Glagov, 1985; Zoumi et al., 2004). A later study of Boulesteix et al. (Boulesteix
et al., 2006) found that murine coronary arteries do not contain many elastin laminae as
found in aorta and carotid arteries. It was reported that the volume density of SMC was 74%
while that of extracellular matrix (i.e., collagen and elastin fibers, ECM) was 17% for adult
murine coronary media (Cebova and Kristek, 2011). The ratio of collagen to elastin content
was 3.7 in media layer of porcine RCA (Garcia and Kassab, 2009) which was slightly larger
than that of intact coronary arteries (e.g., ratio of intact canine coronary arteries was reported
as 3.1 by Fischer and Llaurado, 1966) likely due to the lower ratio of collagen to elastin in
adventitia.

The arrangement and orientation of SMCs show variations depending on types of arteries
and species (Wolinsky and Glagov, 1967; Osborne-Pellegrin, 1978; Hansen et al., 1980;
Rhodin, 1980; Clark and Glagov, 1985; O’Connell et al., 2008; Fujiwara and Uehara, 1992).
For bovine coronary arteries, previous studies found SMCs have a longitudinal arrangement
in inner and outer layers of media, whereas the cells in middle layers are arranged along the
circumferential direction of the vessel (Fischer, 1951; Rhodin, 1980). Quantitative
measurements confirmed that SMCs aligned off circumferential direction of porcine
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coronary media with symmetrical polar angles 18.7°+10.9° (Chen et al., 2013a) as shown in
Fig. 2 d. The dimensions and spatial aspect ratio of cells were also determined (Fig. 2e and
f). An additional study of 3D reconstruction of SMCs showed that radial tilt angle of cells is
about 8 ° (Luo et al., 2015), in line with previous two-dimensional observation. The angle is
much smaller than the tilt angle, however, of other tissues (Fujiwara and Uehara, 1992;
O’Connell et al., 2008). The quantitative orientation angles of collagen and elastin fibers of
coronary media are lacking, however, due the complex 3D architecture of fiber networks.
Arrangement of medial collagen is somewhat controversial in the literature. Collagen was
commonly described as a meshwork of helically woven fibers layered around the vessel
circumference in several previous studies (Rhodin, 1980; Clark and Glagov, 1985;
Shadwick, 1999; Walker-Caprioglio et al., 1991) while a later study of 3D microstructure of
aortic media suggested that collagen fiber bundles were parallel within each layer and
preferentially oriented in the circumferential direction as SMCs (O’Connell et al., 2008).
Nevertheless, these studies concur that collagen largely orients towards circumferential
direction of vessels, while elastin presents a complex 3D arrangement, including layered EL,
randomly distributed IL fibrils and radial thick fibers (O’Connell et al., 2008).

The intima (innermost layer of an artery) consists of endothelial cells, a few collagen
bundles and basal lamina (Rhodin, 1980; Zoumi et al., 2004). Rhodin found that the
subendothelial area contains bundles of longitudinally arranged SMCs, which is consistent
with the longitudinal arrangement of inner media SMCs. The intima is very thin and does
not contribute to the mechanical properties of the vessel wall in normal animals (Zoumi et
al., 2004; Wagenseil and Mecham, 2009). Velican et al. (\Velican and Velican, 1985),
however, pointed out that a healthy human coronary artery has a thick intimal layer which
develops rapidly in early years and continues to grow throughout life. Holzapfel et al.
(Holzapfel et al., 2005a) reported the ratio of thickness of adventitia, media, intima and the
total wall of non-atherosclerotic aged human coronary arteries as 0.4+0.03, 0.36+0.03 and
0.27+0.02, respectively.

2.2 Mechanical properties of Normal coronary arteries

In arteries, elastin fibrils have relatively lower stiffness and larger deformability, which helps
to support blood vessels at low pressure, whereas collagen fibers are undulated and do not
withstand loads. At high pressure, collagen fibers become straightened and engaged to carry
most of the load (Clark and Glagov, 1985; Glagov et al., 1992; Zoumi et al., 2004). Engaged
collagen fibers are much stiffer than elastin fiber, leading to a rapid increase in strain-stress
curve of blood vessel. The modulus of elasticity of collagen is approximately 400 times
greater than that of elastin (Burton, 1954). SMCs, when contracted, achieve active response
to physiological loads by altering circumferential as well as longitudinal mechanical
properties of blood vessels (Dobrin, 1984; Chen et al., 2013a; Huo et al., 2012, 2013). The
contribution of passive SMCs, however, has been debated in the literature. Previous studies
(Cox, 1981; Viidik, 1979) have stipulated that SMCs have regulatory function with slight
effect on the passive mechanical properties of the arterial wall. The study of Fridez et al
(Fridez et al., 2003) contended that SMCs did not affect the mechanical responses of the
healthy artery and that differences were only observed under pathological conditions of
hypertension. Kochova et al. (Kochova et al., 2012) removed SMCs by Triton® X-100 from
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carotid arteries and showed that SMCs do not directly influence the mechanical behavior. On
the contrary, Silver et al. (Silver et al., 2003) and Sokolis et al (Sokolis et al., 2006) asserted
that SMCs share the stress with collagen bundles since SMCs are bound in series with a
network of interwoven collagen fibrils. The contributions of passive properties of SMCs
have yet been well established and should be further investigated.

The mechanical response of individual coronary layers is a direct result of microstructure
(Chen et al., 2011a; Huo et al., 2012, 2013; Chen et al., 2013b, 2013a; Lu et al., 2004; Wang
et al., 2006). Largely longitudinal alignment of elastin and collagen fibers of adventitia layer
induce a larger axial stress than circumferential stress (Chen et al., 2013b) (Fig. 3a and b),
while media layer presents a higher circumferential stress than adventitia and intact wall as
shown in Figs. 3c and d (Wang et al., 2006), since the SMCs and fibers orient towards the
circumferential direction of coronary arteries ( Chen et al., 2013a). These mechanical
responses are consistent with an earlier study of Lu et al. where they examined passive
elastic moduli of individual layers of coronary arteries (Lu et al., 2004). It was found that in
the axial direction, elastic moduli increase in the order of adventitia > intact vessel > media,
and in the order of media > intact vessel > adventitia in the circumferential direction. In
these swine studies, intima was very thin and thus was considered as part of media layer
(i.e., intima-media layer), and the coronary artery were analyzed as a two-layer structure. As
noted above, the thickness of human coronary intima is comparable to that of adventitia and
media, and hence it was considered as an additional layer (Holzapfel et al., 2005a).
Moreover, it was found that the intima is the stiffest layer of the human coronary artery
while the media is the softest in the longitudinal direction. Analogous to porcine coronary
arteries, human coronary adventitia is stiffer in longitudinal direction and the media is stiffer
in circumferential direction.

The active mechanical properties of coronary arteries have also been widely investigated.
Many studies showed that blood vessels present an uniaxial vasoconstriction; i.e.,
contracting only in the circumferential direction with no axial response (Rachev and
Hayashi, 1999; Zulliger et al., 2004b; Carlson and Secomb, 2005), assuming completely
circumferentially oriented SMCs (Wolinsky and Glagov, 1967; Hansen et al., 1980; Clark
and Glagov, 1985; O’Connell et al., 2008). Lu and Kassab (Lu and Kassab, 2007) found
considerable axial force changes during carotid and femoral arteries contraction, however,
using an isovolumic myograph. The study of Hayman et al (Hayman et al., 2013) also
showed that SMC vasoconstriction reduced carotid artery buckling as compared with the
relaxed conditions, indicating that SMC contraction may shorten the artery in the axial
direction. For coronary arteries, Huo et al. (Huo et al., 2013, 2012) observed that axial force
significantly increased and outer diameter decreased during K*-induced SMC contraction
under a biaxial protocol of distention and extension. This suggests a biaxial response of
coronary arteries; i.e., SMCs contraction induced vessel stiffer in both circumferential and
axial directions. Chen et al. (2013a) later measured SMCs orientation of porcine coronary
arteries to incorporate into a microstructural model of active coronary media, and revealed
that the biaxial vasoactivity is induced by oblique SMC arrangement as well as multi-axial
muscle vasoconstriction.
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3 STRUCTURAL EVOLUTIONS AND MECHANICAL CHANGES IN AGED AND
DISEASE CORONARY ARTERIES

The structural growth and remodeling (G&R) in normal arteries is generally accompanied by
increased collagen fibers, hypertrophic SMCs and fragmentation of internal elastic
membrane that leads to enlarged diameter and thicker wall of coronary artery. As aging
occurs, SMCs progressively migrate from the media and accumulate into the intima which
results in intimal hyperplasia (\Velican and Velican, 1985). It was reported that coronary
intimal thickening is gender- and branch anatomy-dependent (Melican and Velican, 1985,
1981a, 1981b). The vessel size, arterial bed and species also affect intimal thickening (Stout
et al., 1983). In intimal thickening, there is an increase in the number of subendothelial cells,
which are mainly mononuclear and SMCs (Folkow and Svanborg, 1993; Lakatta, 1993; Wei,
1992) inducing media thickening along with SMCs hypertrophy (Virmani et al., 1991).

Many studies have shown an increase in the content of collagen in large arteries with
increased age (Lakatta, 2000; Schlatmann and Becker, 1977; Tsamis et al., 2013), but this
change was found to occur nonlinearly (Myers and Lang, 1946). The structure of collagen
fibers was also changed with advanced age, showing an increase in irregularly arranged
fibers in the media of lager arteries (Toda et al., 1980). For elastin fibers, it was found that
mature elastin has a very long life, of which the half-life is about 40 years (Arribas et al.,
2006), in line with many observations that elastin content remained unchanged with age
(Faber and MOller-Hou, 1952; Hass, 1942; Briones et al., 2010; Tsamis et al., 2013).
Therefore, the decrease in elastin concentration (Hass, 1942) is due to increase of other
components, such as collagen fibers. Some studies suggested that glycoprotein eventually
disappear from elastin fibrils and cause elastin fragmentation and a reduction of its content
with aging (Toda et al., 1980; Robert, 1996; Greenwald, 2007).

Although much efforts have been made to quantify structural change of aorta with age
(Tsamis et al., 2013), quantitative data of coronary arteries is limited (Cebova and Kristek,
2011; Ozolanta et al., 1998). Ozolanta examined structural and mechanical properties of 205
human coronary arteries (Ozolanta et al., 1998). The samples were divided into six age
groups form 1 year to 80 years. The results showed that with the increase of age, the mean
thickness of vessel wall and the outer diameter gradually increase. Both collagen and elastin
contents increase in aged coronary. The deformability of vessels declines, while the walls
become stiffer with an elevated tangential elastic modulus (related quantitative data is listed
in Table 2). A study of septal branch of the left descending coronary artery of control Wistar
rat showed that inner dimeter significantly increases compared to wall thickness (57% vs.
14%) from 3 weeks to 52 weeks, while the contents of SMCs and ECM increase 9% and
19% in media, respectively (Cebova and Kristek, 2011). The study showed that aged-
induced structural change is highly associated with specimens, species and longitudinal
positions. Additionally, Valenta et al. investigated aging effects on residual strain,
constitutive relation and stiffness parameter of human coronary arteries (Valenta et al.,
2002), based on previous experimental studies (Valenta et al., 1999; Ozolanta et al., 1998). A
correlation between opening angle and age was given (as shown in Fig. 4a). Age-related
stress-strain relation of arterial wall in circumferential direction has also been determined
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(Fig. 4b) to confirm that arterial wall hardening increases rapidly above the age of 30.
Stiffness parameter gradually increases with age (this increase is significant above the age of
60), and tends to decrease when the opening angle 6 increases (Valenta et al., 2002).

Although G&R of vascular structure is a physiological process that accompanies normal
growth, exercise training, pregnancy, aging, etc., the borderline between physiology and
pathophysiology, in part, depends on the degree of hemodynamic alterations that affects
vascular mechanics (Osborne-Pellegrin et al., 2010; Lacolley et al., 2012; Rafieian-Kopaei et
al., 2014; Schwartz et al., 1991). Intimal hyperplasia, the precursor lesion for
atherosclerosis, is thought to be stimulated by injury, inflammation, and perturbed
hemodynamics that affect endothelial shear stress and intramural wall stress. A study of vein
grafting hyperplasia clearly demonstrated a relationship between increased mean wall stress
and intimal hyperplasia (Zwolak et al., 1987). Choy et al. showed venous hypertension
induced by ligation can cause intimal hyperplasia in superficial veins that were not tethered
by the myocardium but only wall thickening in intra-myocardial veins due to differences in
wall stress in the two local environments of the same heart (Choy et al., 2006). Choy and
Kassab showed differences in coronary wall thickness-to-radius ratio in the left ventricle but
not the right ventricle due to local adaptation of stress distribution (Choy and Kassab, 2009).
Stent-induced abnormal wall shear and intramural wall stresses have also been shown to
contribute to intimal hyperplasia (Chen et al., 2011). The relation between wall stress and
atherosclerosis has been investigated in coronary (Zhang et al., 2004) and vertebral arteries
(Thubrikar and Robicsek, 1995).

The G&R of blood vessels may be mainly mediated by ECM protein secretion and cell
proliferation and migration (Banes et al., 1993; Leung et al., 1976; Lu et al., 2011;
Moiseeva, 2001; Niland and Eble, 2012). SMCs are embedded in the ECM and surrounded
by an incomplete basement membrane (Dingemans et al., 2000). The ECM interacts with
cells to regulate diverse functions, including proliferation, migration and differentiation by
integrin receptors, which are the principle receptors for the ECM and serve as a
transmembrane link between the ECM and the cellular actin cytoskeleton (Niland and Eble,
2012). The principle function of SMCs is to maintain vascular tone and resistance. Adhesion
of contractile SMCs to the ECM is fortified in order to withstand the imposed tension due to
hemodynamic forces. Perturbation of stress or stretch on vessel walls activates various
heparanases and a cascade of proteases that influence the adhesion of ECM to SMC surface,
providing the trigger for phenotypic changes (Ward et al., 2000). For instance, during
atherosclerotic plaque development, SMCs transit from a contractile to a synthetic
phenotype and begin to synthesize ECM (including different molecules seen only in small
quantities in normal vessels), which influences cell proliferation and migration. The cells
also modify the ECM by producing matrix metalloproteinase which release cryptic
fragments that can stimulate cellular responses (Adiguzel et al., 2009).

In arterial atherosclerosis, the endothelial and SMCs become dysfunctional and the disease
is accompanied by excessive fibrosis of intima, fatty plaque formation, proliferation of
SMCs, and migration of group of cells such as monocytes, T cells, and platelets (Rafieian-
Kopaei et al., 2014; Stary et al., 1995; Virmani et al., 2000). The initial lesion is usually
caused by focal increase in the lipoproteins of the intimal layer of the arteries. The lesion
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grows into fibrous cap atheroma, classically showing a necrotic core (NC) containing
cholesterol esters, free cholesterol, phospholipids, and triglycerides. The fibrous cap consists
of smooth muscle cells in a proteoglycan-collagen matrix, with a variable number of
macrophages and lymphocytes. As lesions progress, NC surrounded by macrophages
become increasingly consolidated or more masses comprising large amounts of extracellular
lipid, cholesterol crystals, and necrotic debris. Vulnerable plaque generally refers to a thin
fibrous cap atheroma, which is distinguished from the earlier fibrous cap lesion by the loss
of smooth muscle cells, extracellular matrix, and inflammatory infiltrate. The NC underlying
the thin fibrous cap is usually large and hemorrhage and/or calcification are often present.
The lesions can be exacerbated to fibrocalcific plaques or develop calcified nodule, and
eventually induce thrombosis or vessel rupture (Virmani et al., 2000). According to lesion
evolution, the plaques were classified into six types by the American Heart Association
(AHA) criteria and seven types by the modified histologic classification of Virmani et al.
(Stary et al., 1995; Virmani et al., 2000).

There have been many efforts to identify the components of atherosclerotic plaques of
coronary arteries. Romer et al. quantified plaque composition by near-infrared Raman
Spectroscopy and provided the relative weights of cholesterol, calcium salts and delipidized
arterial tissue in non-atherosclerotic tissues, non-calcified and calcified plaques (Rémer et
al., 1998). Moore et al. characterized coronary atherosclerotic morphology by a
radiofrequency spectral analysis based on intravascular ultrasound (IVUS) images and
accurately identified fibrosis, lipid, microcalcification, heavy calcium in coronary arteries
(Moore et al., 1998). A later study of Nasu et al. proposed a color-coded mapping method
using 1VUS radiofrequency data analysis and showed this technique may play an important
role in detecting vulnerable plaque (Nasu et al., 2006). Li et al. recently employed high-
resolution multicontrast-weighted magnetic resonance technique to identify the composition
of atherosclerotic plaques of human left main coronary artery, and accurately classified
plaques according to the AHA criteria (Li et al., 2012). These structural changes are
associated with significant alterations in the mechanical properties of the arteries. Karimi et
al. examined both healthy and atherosclerotic human coronary arteries by uniaxial tensile
test and found that the atherosclerotic arteries bear 44.5% more stress and 34.6% less strain
as compared to the normal arteries. The physiological and maximum elastic moduli of
atherosclerotic arteries are 2.5 and 2.9 times higher than that of healthy arteries, respectively,
as summarized in Table 3 (Karimi et al., 2013).

4 MICROSTRUCTURE-BASED MECHANICAL MODELS OF HEATHLY
CORONARY ARTERIES

4.1 Microstructure-based Constitutive Model with a Fluid-like Matrix

The idea of relating the macroscopic mechanical properties of arteries to the arterial
microstructures, including elastin and collagen fibers and cells, was first demonstrated by
Burton and Yamada (Burton and Yamada, 1951). Roach and Burton (Roach and Burton,
1957) made a quantitative study by differential digestion of elastin or collagen and measured
the mechanical properties of the digested artery. Azuma and Hasegawa (Azuma and
Hasegawa, 1971) discussed the rheological properties of arteries and veins in terms of the
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networks of collagen, elastin and SMCs, and revealed that the mechanical properties of the
vessels largely stem from microstructure.

The first microstructural models were proposed by Lanir (Lanir, 1983, 1979) and Decraemer
et al. (Decraemer et al., 1980). Lanir (Lanir, 1983, 1979) considered the passive fibrous
tissue as a composite of elastin and collagen fibers, while SMCs and ground substance were
assumed to be a fluid-like matrix. Both elastin and collagen embedded the fluid-like matrix,
and the fibers only sustain non-hydrostatic loading such as tension and shear while the
contribution of the matrix is a hydrostatic pressure. This simplification implies that the fibers
deform identically as the tissue, and the overall strain energy function (SEF) of tissue is
therefore the volumetric sum of the individual fibers” SEFs. Each fiber has its own SEF
we), which depends on the uniaxial fiber strain e that is determined by the local strain
tensor E and the reference fiber direction N as e= E : N®N. Fiber orientation is determined
by N = cos 6 cose er + sin 6 cos ¢ eg+ sing e, with (e, eg, €,) as three principle axes of
blood vessel. This model involves the orientation distribution of one type of fiber 7by a
density function ® (6,¢) with 8, ¢ are azimuthal and polar angles between the fiber direction
and principle axes. The overall SEF is the sum of fibers’ SEF in all directions (Hollander et
al., 2011):

W (E)=Y f f i(0, $)w;(e)sinddode o

where @;. is the volume fraction of type /fibers. The second Piola-Kirchhoff stress of the
tissue is derived as:

ow OWi(e) .

>
/.
(2

Oe

in which is the stress-strain relation of type /fibers.

The density function ® {0,¢) of fiber orientation can be determined by experimental
measurements. Specific to porcine coronary arteries (Chen et al., 2013a, 2011a), elastin and
collagen fibers form layered structure in adventitia and the overall fiber orientation follow a
bimodal distribution with two peaks, of which the first lower peak is nearly in the
circumferential direction and the second higher peak is nearly in the axial direction. In
media, large collagen and elastin fibers may be parallel to SMCs aligning off circumferential
direction of blood vessels with symmetrical normal distributions, and IL elastin fibrils can
be assumed to be distributed following a three dimensional beta function (Hollander et al.,
2011).

The constitutive law of a single elastin is considered to be linear, while that of collagen
fibers is assumed to be nonlinear (Annovazzi and Genna, 2010; Hollander et al., 2011; Chen
et al., 2011b), based on experimental observations (Gosline et al., 2002; Gentleman et al.,
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2003; Zoumi et al., 2004; Chen et al., 2011a, 2013b). Both types of fibers are only resistant
to tensile load (i.e., €> 0), and collagen fibers are recruited to carry out loads only after they
become straightened. Lanir et al. (Lokshin and Lanir, 2009; Hollander et al., 2011)
considered a linear SEF for elastin by 0 Wi0e = kge with k> 0 as stiffness parameter of
elastin fiber. Because of the wavy nature of collagen fibers, the nonlinear constitutive
relation 0 W/de = k(e - e))N was considered to account for the nonlinear elastic behavior,
of which k-> 0 and M- > 0 are parameters characterizing the nonlinear stress-strain
response of collagen, and & > 0 denotes the strain beyond which the collagen can withstand
tension, as determined by measurements (Chen et al., 2011a). It should be noted that the
values of model parameters are highly associated with species and sizes of tested specimens.
The microstructural approach, in principle, can employ any well-defined constitutive model
for the fibers. This microstructural model accounts for fiber volume fraction @, the
orientation ® {6, ¢) and undulation distributions &g and is capable of accurately describing
and predicting the mechanical properties of blood vessels. The study of Hollander et al.
(Hollander et al., 2011) showed the model provides good predictions of coronary media
twist response based on parameters estimated from only biaxial tests of inflation and
extension. In addition, good predictive capabilities are demonstrated for the model behavior
at high axial stretch ratio based on data of law stretches.

Decraemer et al. (Decraemer et al., 1980) proposed a parallel wavy fibers model for soft
biological tissues in uniaxial tension based on similar simplifications. A later study of Wuyts
et al. (Wuyts et al., 1995) developed his approach by including a distribution of the initial
length of collagen fibers to predict blood vessel mechanical properties. Humphrey and Yin
(Humphrey and Yin, 1987) also employed fluid-like matrix assumption in a constitutive
models of soft tissues. Although these microstructural models have been well developed 40
years ago, the application have been somewhat limited due to lack of quantitative data of
tissue microstructure in literature; and the complex integral expression of SEF made it
difficult to implement in finite element (FE) simulations. Recently, the microstructure of
many tissues have been visualized and measured due to the development of multiphoton
microscopy techniques (O’Connell et al., 2008; Chen et al., 2013b, 2013a). Based on
quantitative microstructural data, Chen et al extended the model to account for active SMCs
contraction and accurately predicted biaxial vasoactivity of coronary arterial media (Chen et
al., 2013a). They also developed a layer-specific microstructural model for coronary
adventitia to determined material parameters of individual elastin and collagen fibers (Chen
et al., 2015). Compared with phenomenological models, these layer-specific models are
based on realistic microstructure and the material parameters of individual fibers have
physical meaning. The models can accurately predict the mechanical microenvironment of
vessel wall and hence elucidate the underlying mechanisms of vessel behavior.

4.2 Microstructure-based Constitutive Model with a Solid-like Matrix

Some micromechanical models assume the tissue as a collagen fiber reinforced composite,
whose matrix is a solid-like material that can take up load. This assumption is motivated by
the fact that the elastin, which is part of the matrix, becomes straightened and begins to take
the load in the early deformation of the tissue. The experimental study of Gundiah et al.
(Gundiah et al., 2007) suggested that the elastin is described with a neo-Hookean
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constitutive model, and later observations of Chen et al. (2013b) confirmed the relatively
isotropic arrangement of elastin fibers. Based on this assumption, Holzapfel et al. (Holzapfel
et al., 2000) modeled the arterial wall as a two-layer fiber-reinforced composite of which
elastin fibers, cells and ground substance are considered as a non-collagenous matrix. The
matrix contributes to the isotropic mechanical responses of the blood vessel, while the
anisotropic part originates from the deformation of two classes of collagen fibers
symmetrically disposed with respect to the axis of the vessel. The SEF of an individual layer
of blood vessel is given as:

A=S0r. _ ki ex . 9)%] -
W (E)=3(L 3)+2k2i§6{ p[ks(L: = 2)°] - 1} o

where ¢> 0 is stress-like material parameter of the non-collagenous matrix, and &; > 0 is
stress-like material parmaeters and 4, > 0 a dimensionless parameters for collagen fibers. /4
is the first invariant of the Cauchy-Green deformation tensor C; /;is an invariant of the
Cauchy-Green tensor C with respect to the vector v, of a fiber orientation by /;-v;- C - v;.

This model has been applied and developed for various tissues (Holzapfel et al., 2005a;
Kroon and Holzapfel, 2008; Wan et al., 2012; Avril et al., 2013) and numerical simulations
(Gasser et al., 2002, 2006) because of the straightforward mathematical form of SEF. Kroon
and Holzapfel (Kroon and Holzapfel, 2008) incorporated the model into multi-layered
structures with the mean fiber alignments that distinguished one layer from another. Li and
Robertson (Li and Robertson, 2009) extended this model to account for either a finite
number of fiber orientations or a fiber distribution function. Mechanical predictions of the
model are more accurate than those of phenomenological models as they account for
heterogeneity of material properties and geometrical features of vessel components. Since
the actual fiber geometrical distributions are not considered, however, the model may not
accurately predict stress level of individual fibers and cells and the corresponding material
parameters are not physically meaningful.

There have been many other micromechanical models based on solid-like matrix
simplification. Zulliger et al. (Zulliger et al., 2004a) employed different SEF of the matrix
and collagen fibers to account for the distribution of the waviness of collagen fibers, and this
model was developed to predict mechanical responses of aging arteries (Zulliger and
Stergiopulos, 2007). Grytz and Meschke (Grytz and Meschke, 2009) approximated the
collagen fibril crimp by a three-dimensional cylindrical helix to represent the constitutive
behavior of the hierarchical organized substructure of biological tissues. Chen and
colleagues (Chen et al., 2011b) assumed non-affine deformation in tissue and developed a
finite-strain homogenization approach based on the second-order estimate theory to predict
the macroscopic stress-strain relation and microstructural deformation of vascular tissue.
Martufi et al. (Martufi and Gasser, 2011) and Séez et al. (Séez et al., 2014) developed
structural constitutive models of blood vessels, of which collagen fibers are assembled by
proteoglycan cross-linked collagen fibrils and reinforce an isotropic matrix material, albeit
some experimental observations suggested that proteoglycan plays a negligible role in the
elastic behavior of vascular tissues (Viidik et al., 1982; Fessel and Snedeker, 2011; Chen et
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al., 2015). Furthermore, many multi-scale homogenization approaches have been developed
to account for nanoscale effects, which are related to intermolecular cross-links and collagen
mechanics (Stylianopoulos and Barocas, 2007; Tang et al., 2009; Nierenberger et al., 2013;
Marino and Vairo, 2014).

4.3 Comparison between models of fluid and solid-like matrix

Lanir’s model accounts for fiber volume fraction (@), the orientation (®. ) and undulation
distributions (&), while Holzapfel’s model involves only fiber orientation (/). Lanir’s model
therefore provides high predictive power. This model, however, is not easy to implement
with FE simulation due to complex integral expressions of SEF. A structural model with
straightforward SEF (e.g., Holzapfel et al.’s model) may be more efficient for FE
simulations. Such SEFs have been employed in FE analysis for diseased coronary arteries
(Holzapfel et al., 2005a; Cardoso et al., 2014). It noted that the two-layer models (accounts
for individual layered microstructure) are typically used as the intima contributes negligible
mechanical support for coronary arteries of normal animals, normal animals. For those
arteries with three distinct layers, however, such as coronary arteries of aged humans or
animals, a three-layer microstructural model should be developed to reflect intimal
responses. For instance, Holzapfel et al. (Holzapfel et al., 2005a) developed a three-layer
model of normal human coronary arteries, and their analysis showed the intima has
significant load-bearing capacity and mechanical strength when compared with the media
and adventitia. For atherosclerotic vessels, additional layers or components should be added
in the mechanical artery models (i.e., Egs. 1) or (3)) with specific material and structural
properties of each component. Although quantitative microstructural data of aged and
atherosclerotic coronary arteries are limited, a few qualitative or semi-quantitative data exist.
For instance, Romer et al. (Rdmer et al., 1998) obtained different contents of cholesterol,
calcium and delipidized arterial tissue in coronary arteries with progression of
atherosclerosis, and Huang et al. (Huang et al., 2001) provided different material properties
of fibrous plaque, arterial wall, lipid and calcium, respectively.

Various constitutive models can be applied to coronary arteries by incorporating specific
microstructural features. To simplify the process, some algorithms have been developed to
automatically quantify native tissue microstructural parameters based on optical images.
Image analysis technique by using the Fourier transform has been widely developed to
evaluate orientation in fibrous tissues (Pourdeyhimi et al., 1997), while fiber diameter was
measured by direct tracking method (Ziabari et al., 2009). More recent studies introduced
automated image-based analysis tool to characterize tissue fiber network topology and
describe multiple parameters of elastin and collagen microarchitecture, including fiber
orientation angle, diameter, tortuosity, etc. (D’ Amore et al., 2010; Koch et al., 2014). Luo et
al. proposed an efficient segmentation algorithm to render and extract 3D structure of medial
SMCs (Luo et al., 2015). Moreover, these structural parameters are measured based on
microscopic images, which are considered to be small enough as a representative volume
element with a micro-scale resolution. The parameters are typically averaged over
measurements at different positions of vessel walls and hence are statistically average values
representative of microstructure of vascular tissue. With the aid of these approaches,
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microstructural data of blood vessels can be extracted from optical images and integrated
into mechanical models that lead to an in-depth understanding of vessel responses.

5 FINITE ELEMENT ANALYSES OF ATHEROSCLEROSIS CORONARY
ARTERIES

FE approaches are employed for diseased arteries due to the irregular shapes of fatty plaques
and complex nonlinear arterial boundary conditions. FE analysis of atherosclerotic arteries is
of great interest in basic and applied research as it can simulate interactions between arterial

walls and stents and extensively explore tissue responses to device implantation (Chen et al.,
2009; Chen et al., 2015, 2013, 2011).

In computational simulations, the behavior of plaque tissue is generally considered to be
hyperplastic and with a regular shape, such as sphere, ellipse, core, etc (Chau et al., 2004;
Karimi et al., 2013). The most widely used constitutive models are homogenous models due
to their relatively simple SEF (Chau et al., 2004; Conway et al., 2012; Garcia et al., 2012;
Cardoso et al., 2014). The study of Imoto et al. (Imoto et al., 2005) examined the
longitudinal structural determinants of plaque vulnerability by linear elastic orthotropic
models, and revealed that most common rupture point is that the shoulder of the fibrous cap.
Kamalanand and Srinivasan (Kamalanand and Srinivasan, 2011) recently employed a three-
dimensional Neo-Hookean model to analyze mechanical behaviors of normal and
atherosclerotic vessel with 50% and 90% plaque deposition. Although homogenous models
have low computational costs, structured-based constitutive models can address the natural
heterogeneity of biological tissues (Chau et al., 2004). There are relatively small numbers of
studies that account for plaque substructure in the constitutive models. Chau et al. (Chau et
al., 2004) analyzed the stress distribution of an atherosclerotic coronary using a two-
dimensional rubberlike isotropic Mooney-Rivlin model based on optical coherence
tomography (OCT) images. They set different material parameters for arterial wall, fibrous
plaque, lipid and calcium and found that the overall stress distribution did not change
drastically in regions of interest in spite of the significant changes in model geometry. The
work of Holzapfel et al. (Holzapfel et al., 2005b) employed a microstructural model
(Holzapfel et al., 2005a) developed for tissue components which capture anisotropic,
nonlinear and dissipative characteristics, and thus distinguish lipid and calcified FE
simulation of coronary stent angioplasty. Mortier et al.(Mortier et al., 2010) later employed
this model to assess the effects on restenosis reduction of three drug-eluting stents.

Cardoso and Weinbaum (Cardoso and Weinbaum, 2014) demenstrated that acute coronary
syndrome was largely induced by the rupture of the thin fibrous cap overlying the necrotic
core of a vulnerable plaque. The rupture usually occurs when the stress of a lesion goes
beyond the ultimate stress (i.e., peak circumferential stress at failure). Therefore, an accurate
prediction of local stress distribution is essential for assessment of vulnerable plaque
stability. A recent study (Cardoso et al., 2014) evaluated the effects of tissue material
properties and geometries on the stability of vulnerable cap by three different hyperelastic
constitutive models: Neo-Hookean, Mooney-Rivlin model and Holzapfel’s model (Holzapfel
et al., 2000). They pointed out that stress concentration factor depends on tissue properties,
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anisotropy, size and shape, all of which can only be accounted for by a structural mechanical
model. These application and evaluations indicate microstructure-based anisotropic models
can lead to a better understanding of arterial biomechanics and shed light on the very
significant clinical problem of plaque rupture.

6 FUTURE PERSPECTIVES AND CHALLENGES

Microstructure-based models are a promising approach for cardiovascular biomechanics
which may lead to development of computer-assisted clinical diagnosis and therapy. A very
exciting application of the approach is patient-specific computational analysis based on
medical imaging to provide diagnosis, virtual planning of therapy and prediction of
prognosis. Realistic geometries of diseased vessels acquired by 1IVUS, OCT, computed
tomography (CT), and magnetic resonance imaging (MRI), etc., can provide patient-specific
models (Wallis de Vries et al., 2008; Holzapfel et al., 2014). IVUS allows for 3D
reconstruction of /in vivo arteries and can distinguish between tissue by using a
radiofrequency spectral approach (Imoto et al., 2005; Moore et al., 1998; Nasu et al., 2006).
OCT is a high resolution /n vivo imaging modality (Chau et al., 2004; Yabushita et al.,
2002), and MR can create detailed 3D images of the arterial geometry and composition (Li
et al., 2006, 2012; Sadat et al., 2010; see reviews in Wallis de Vries et al., 2008; Holzapfel et
al., 2014). Moreover, the advancement of intra-arterial imaging techniques may also enable
in vivo measurement of microstructural and molecular components (Saar et al., 2011; Yoo et
al., 2011). Many studies have shown that FE analysis integrated with /n vivo geometries
provides a rational basis for investigating the biomechanical factors relevant to
atherosclerosis (Chau et al., 2004; Imoto et al., 2005; Li et al., 2006; Sadat et al., 2010).
Therefore, virtual assessment of device implantation prior to treatment may allow
optimization of clinical outcome based on measured patient-specific geometries,
microstructural arrangements, and the mechanical properties of plaques and arterial wall (i.e,
SEFs). This approach requires not only accurate constitutive models but also accurate
rendering of diseased arterial geometry and structure.

There is also a great need for better understanding the mechano-biological mechanisms for
the disease process, which requires more detailed microstructural data of vessel wall. The
smallest structures in the most current microstructural models are elastin and collagen fibril
bundles and individual cells, but more data are needed on smaller structures that reflect
cross-links between fiber bundles and integrin-binding between fibers and SMCs. The role
of vessel tone and contraction (especially in flow regulating smaller vessels) that involves
complex chemical-mechanical interaction of actin filaments in conjunction with active
SMCs requires a multi-scale and multi-field homogenization models. These models, which
would account for interactions between cellular actin filaments and intra-cellular elastin and
collagen fibrils, would shed much needed light on the micromechanical environment of
vessel wall to reveal mechanisms for the disease process. It should be noted that a multi-
scale model requires mechanical properties and geometrical parameters of smaller
constituents at the nanoscale and are thus restricted in clinically-relevant applications where
such /n vivo imaging resolution does not currently exist. It is expected that clinical demands
will promote the development of higher resolution noninvasive imaging techniques as well
as 3D image processing algorithms.
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In summary, microstructural models take into consideration a full set of microstructural
geometries, the interactions between constituents and the nonlinearity of materials, leading
to a better understanding of cardiovascular biomechanics. Most importantly, microstructural
model-based FE analysis integrated with patient-specific geometries and structure should
advance computer-assisted clinical diagnosis and intervention in the future.
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Figure 1.
(a) Schematic figure of coronary artery layered-structure (r, © and z designate radial,

circumferential and axial direction of an artery); (b): A merged SHG/TPEF image of arterial
cross-section (red indicates collagen and green indicates elastin fibers); (c-d): SHG and
TPEF images of longitudinal-circumferential sections of inner adventitia. (e): Confocal
images of SMCs of media (F-actin was labeled by Alexa Fluor 488 Phalloidin (Green) and
the cellular nucleu was labeled by DAPI (Blue)). Reproduced from (H. Chen et al., 2013a,
2011a).
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Figure 2.

Microstructural data of fibers and SMCs of coronary arteries. (a) The overall orientation
distribution of collagen and elastin fibers of inner adventitia (0° and 90 ° indicate
circumferential and axial directions of blood vessel, respectively); (b) The asymmetrical
distribution of the collagen waviness; (c) Layer-to-layer heterogeneity of fiber width; (d)
Probability density functions (PDFs) of medial SMC orientation angles; and (e-f) PDFs of
SMC lengths and widths (Columns present experimental measurements and solid and
dashed lines present approximated normal distributions). Reproduced from (H. Chen et al.,

2013a, 2011a).
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Mechanical responses of individual coronary adventitia and media layers. (a—b) The ratio of
axial to circumferential stress of coronary adventitia and intact vessel at different axial loads
Az=13and A,= 1.5 = 1.5 with circumferential loads 1g=1.3 and 1= 1.5, respectively
(*Significant differences P <0.05; Reproduced with permission from H. Chen et al., 2013b);
(c—d) Stress-strain relation of adventitia, media, and intact wall of right coronary artery in
circumferential direction. Data correspond to axial stretch ratios 1, of 1.3 and 1.4.

Reproduced from (Wang et al., 2006).
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Aging effects on residual strain and constitutive relation of human coronary arteries. (a)
Correlation between opening angle and age; ¢ and are the average values of the predicted
opening angle of the male and female coronary arteries, respectively; ¢ denotes
experimental measurement of opening angles of aged human; 6, is the theoretical opening
angle (dotted line), corresponding to the residual strains which makes the homeostatic
circumferential stress uniform in the arterial wall at normal blood pressure (@ and A
denote female and male, respectively). (b) A constitutive relation of male left main coronary
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artery in the circumferential direction at different ages. Reproduced from Valenta et al.,
2002.
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Quantitative data of SMC, elastin and collagen fibers in individual adventitia, media layers, and intact vessel
wall of coronary arteries. (For orientation angle, 0° and 90° denote circumferential and axial directions of
blood vessel, respectively).

Adventitia Media Intact vessel
Opening Angle 9™ 160-210* 126-140
sMC 74% ™"
Elastin. 22_p506 ™ 5.3%" 16%
Content Collagen  5g_3304 ™ 200%™ 48%
C/E 11-15™* 3.74% 3.07
sMC +18.7°7
Orientation Elastin 115° % NA
Collagen 1100 * NA
SMC 4pm ™ (width)
Dimension 56 um “(Length)
Elastin 2 um *(Width) NA
Collagen 3 pm *(Width) NA

Data taken from studies of porcine coronary arteries (H. Chen et al., 2011a; Garcia and Kassab, 2009; Huo et al., 2013; Lu et al., 2004);

*:

HokAh

*
Data from study of rat coronary artery (Cebova and Kristek, 2011);

Data from study for canine coronary artery (Fischer and Llaurado, 1966).
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