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Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to
individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine,
targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most
common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has
been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted
therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of
precision cancer medicine, demonstrate the transition from traditional “one test-one drug” assays to multiplex assays, especially
by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor

heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC.

1. Introduction

Colorectal cancer (CRC), predominantly referring to colorec-
tal adenocarcinoma, is one of the most common malignant
neoplasms and a leading cause for cancer related deaths
worldwide [1]. In 2014, there are nearly 140,000 newly
diagnosed patients in the United States where it also ranks in
the second place as a cause of cancer related mortality in men
and women combined [2]. Therefore, studies aimed at under-
standing pathogenic mechanisms and optimizing clinical
management of CRC have been intensively and devotedly
conducted.

In the past two decades, major progress in understanding
the genetic alterations of diseases has been achieved and
accordingly successful examples of utilizing such information
in clinical management are accumulating. These advances
have paved the way for the emergence of a new concept,
precision medicine, essentially offering individualized med-
ical care to patients based on their unique molecular/genetic
profiling and other personalized information. This is in
contrast to cohort-based therapy specifically treating patients

based on successful therapy of a cohort of similar patients
treated previously. In the field of oncology, therapies targeting
specific genetic alterations have been proven to be a successful
example of practicing precision medicine by significantly
improving clinical outcomes compared to conventional
chemotherapy and/or radiotherapy. By far, a rapidly growing
list of drugs targeting different genetic alterations have been
approved by the Food and Drug Administration (FDA)
in the United States for treatment of advanced-stage solid
tumors [3]. Most of the drugs work through inhibiting kinase
activity. For example, BRAF inhibitors (vemurafenib and
dabrafenib) [4, 5] and MEK inhibitor (trametinib) [6] were
approved for patients with melanoma bearing BRAF p.V600E
mutation, anti-EGFR monoclonal antibodies (cetuximab and
panitumumab) for CRC without RAS mutations [7, 8], EGFR
tyrosine kinase inhibitors (gefitinib and erlotinib) targeting
certain EGFR mutations for non-small-cell lung cancers
(NSCLQ) [9, 10], and ALK tyrosine kinase inhibitor (crizo-
tinib) for NSCLC carrying the ALK gene translocations [11].
Molecular testing of targeted mutations has become essential
to select patients for these therapies [12, 13].
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To explore more useful “targets” for clinical management
of cancers, numerous potential biomarkers have been pro-
posed and investigated with tremendous effort. However,
only a limited number of them have so far been proven
to be clinically meaningful and subsequently become or
potentially become a part of standard patient care. In this
review, we focus on the molecular diagnostics currently used
in established standard care of CRC, especially those related
to targeted therapy or expected to be so shortly.

2. Current Guidelines for Targeted
Therapy in CRC

In 2009, the American Society of Clinical Oncology (ASCO)
issued a recommendation on molecular analysis for KRAS
gene mutations in patients with metastatic CRC to predict
response to anti-EGFR therapy [12]. Following the initial
focus on common KRAS mutations at codons 12 and 13,
recent data have revealed that mutations at codons 59, 61, 117,
and 146 and NRAS gene mutations are also associated with
anti-EGFR resistance [7, 8, 12, 14, 15]. Based on reviews of
currently available evidences, ASCO recently updated their
provisional clinical opinions: both KRAS and NRAS exons 2
(codons 12 and 13), 3 (codons 59 and 61), and 4 (codons 117
and 146) (so-called extended RAS testing) should be screened
for mutations in all patients with metastatic CRC who are
candidates for anti-EGFR therapy [16]. Similarly, a provi-
sional guideline from the Association of Clinical Pathologists
Molecular Pathology and Diagnostics Group in the United
Kingdom also recommends that at least KRAS codons 12,
13, 59, 61, 117, and 146 and NRAS codons 12, 13, 59, and 61
should be included for molecular analysis in CRC patients
(17]. European Society of Medical Oncology and Japanese
Society of Medical Oncology recently also revised/updated
their clinical guidelines to recommend testing of extended
KRAS/NRAS mutations [18, 19]. In addition to RAS, there is
increasing evidence suggesting that the BRAF p.V600E muta-
tion makes response to anti-EGFR therapy highly unlikely
[7, 20-22]. The Colon/Rectal Cancer Panel from National
Cancer Comprehensive Network (NCCN) recently revised
its guideline (Version 2.2016) for anti-EFGR therapy by
recommending genotyping of tumor tissues in all patients
with metastatic CRC for the extended RAS mutations as well
as BRAF mutations (http://www.nccn.org/professionals/phy-
sician_gls/f_guidelines.asp). Also, mutations in exon 20 of the
PIK3CA gene may be associated with anti-EGFR resistance
in KRAS wild-type cancer [7]. However, PIK3CA mutations
are often accompanied by a KRAS mutation in CRC [7, 23].
The benefit of testing PIK3CA mutations to guide anti-EGFR
therapy requires further studies with a large cohort of CRC
patients carrying wild-type KRAS and NRAS genes.

In addition to the above guidelines/recommendations
largely limited on “what to test” in order to guide oncologists
for targeted therapy, more details on “how to test” thus with
more practical meaning to molecular diagnostic laboratories
and pathologists are also emerging. Using lung cancer as
an example, in 2013, the College of American Pathologists
(CAP), International Association for the Study of Lung
Cancer (IASLC), and Association for Molecular Pathology

BioMed Research International

(AMP) jointly released a guideline regarding molecular
diagnostics in lung cancers [24-26]. In addition to clarify-
ing testing for EGFR mutations and ALK translocations
to guide targeted therapy with EGFR or ALK inhibitors,
respectively, in all patients with advanced-stage adenocarci-
noma, they also offer recommendations and/or expert con-
sensus opinions to address questions such as “how EGFR
and ALK testing should be performed” and “how the
molecular testing should be implemented and operationali-
zed.” Soon upon availability, this guideline was endorsed by
ASCO [27]. Similarly, a colorectal cancer expert panel from
American Society for Clinical Pathology (ASCP), CAP,
ASCO, and AMP has drafted a summary of recommenda-
tions for guideline on the evaluation of molecular markers
for CRC (http://www.amp.org/committees/clinical _practice/
CRCOpenComment.cfm). These draft guidelines were
opened for comments in 2015. Briefly, they intend to offer
“recommendations” and “no recommendations” for ques-
tions including not only “which molecular tests should be
performed for CRC,” but also “what the appropriate sample
for the tests is,” “how testing should be performed,” and so
forth. The final version is expected shortly.

3. Roles of Pathologists

Currently molecular diagnostics of CRC is largely conducted
on tissue specimens embedded in paraftin. The responsibility
of surgical pathologists and cytopathologists is not restricted
to only making a histological diagnosis. Pathologists, indeed,
play crucial roles in preanalytic specimen preparation for
molecular diagnostics, including standardizing operating
protocols for tissue sampling and processing, requesting
mandatory tests, selecting appropriate tissue blocks, and
designating adequate areas with sufficient amount and pro-
portion of tumor cells for nuclei acid extraction.

Pathologists also need to estimate tumor cellularity
within the designated areas to ensure that the tumor cell
percentage is more than the analytic sensitivity (or limits of
detection) of the requested molecular assay [28-30]. They
also play a critical role in protecting the tissue blocks from
unnecessary testing so that critical tests (even future ones)
can be performed.

3.1. Standard Operating Protocols for Tissue Sampling and
Processing. Adequate tissue sampling and processing are
critical, not only for histopathological interpretation but also
for molecular diagnostics. In our retrospective quality assess-
ment of a next-generation sequencing (NGS) assay, referred
specimens experienced a significantly higher failure rate than
in-house specimens, presumably due in part to a standardized
tissue processing protocol applied to in-house specimens [31].
In this era of precision cancer medicine, pathologists are
responsible for revisiting of the standard operating protocols
for tissue sampling at the grossing stage and tissue processing
in the histopathology laboratories to ensure adequate quality
and quantity of nucleic acids for molecular diagnostics. Ten
percent neutral-buffered formalin is recommended to fix
surgical pathology specimens or cell pellet specimens from
fine needle aspiration (FNA) or effusion for 6-48 hours
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depending on the size of the specimens [25, 26]. Fixative
containing heavy metals such as B5 solution or acids such
as Bouin’s fixative should be avoided if molecular tests
are expected to be requested. Bone specimens represent a
challenge for molecular diagnosis since bone is common
and sometimes the only metastatic site of solid tumors and
decalcification step for bone tissues typically using strong
acids can damage nucleic acids [32-34]. Therefore, a standard
operating protocol for tissue sampling and processing should
be established, specifically for bone specimens [35], in the
histopathology laboratories to preserve tissues for potential
molecular diagnosis.

3.2. Selection of Appropriate Blocks and Designation of Ade-
quate Areas for DNA Extraction. In the clinical diagnostic
setting, specimens containing low tumor cellularity are not
uncommon [36, 37] and may lead to false negative results,
particularly for assays with a lower analytic sensitivity, such
as Sanger sequencing [38-40]. Assays with a higher ana-
Iytic sensitivity are preferred for specimens with low tumor
cellularity. Nevertheless, selection of appropriate specimens
and designation of adequate areas for DNA extraction by
the pathologists may be the most cost-effective option for
accurate molecular diagnosis [28]. If possible, specimens with
a low tumor cell percentage should be avoided, such as areas
with a prominent desmoplastic reaction or inflammatory
cell infiltration, resected or biopsied specimens of lymph
nodes with subcapsular and/or infiltrative metastasis without
nodular formation, and FNA specimens with neoplastic cells
intermingled with prominent nonneoplastic tissues. Also,
regions rich in potential PCR inhibitors such as mucin and
necrotic debris should be avoided as well. Prior medical treat-
ment can interfere with tumor tissue adequacy for molecular
testing. For example, neoadjuvant therapy for rectal cancers
and some high-risk colon cancers can downstage the tumoral
lesion; however the accompanied significant depletion of
tumor cellularity may lead to false negative results of RAS
mutations [28, 41, 42]. For patients undergoing neoadjuvant
therapy, pathologists may need to seek alternative specimens,
such as pretreatment biopsies if available for molecular tests.
In addition, tissue blocks from patients with metastatic CRC
should be saved for molecular diagnostics, especially those
taken by core biopsy or FNA. Assay feasibility of specimens
with limited tissues can be improved by limiting block
trimming when preparing slides and by avoiding extensive
immunohistochemical workups.

3.3. Estimation of Tumor Cellularity and Postanalytic Qual-
ity Assessment. An accurate estimation of tumor cellularity
by pathologists provides a preanalytic measure to ensure
specimen adequacy for the analytic sensitivity of the assay.
A note should be provided in the report to indicate a
potential false result when the tumor cellularity is insufficient.
Tumor cellularity also provides an independent parameter
for postanalytic quality assessment of the assay [43]. In
our retrospective quality assessment of a pyrosequencing
assay designed to detect the BRAF p.V600E mutation for
melanomas, much lower than the expected mutant allele

frequencies (equivalent to half of the estimated tumor cel-
lularity assuming a heterozygous mutation) were observed
in two specimens. Quality assurance investigation revealed
that our original pyrosequencing assay, similar to cobas 4800
BRAF V600 mutation test, revealed a false, weak p.V600E
signal in specimens with a p.V600K mutation. Since the assay
was revised, we confirmed that pV600K and other non-
p-V60OE mutations are common in melanomas. Correlation
between observed and expected mutant allele frequencies
may predict tumor heterogeneity and mutant allele-specific
imbalance in CRC [36]. A lower than expected mutant allele
frequency indicates tumor heterogeneity while a higher than
expected mutant allele frequency indicates mutant allele-
specific imbalance. We have prospectively and retrospectively
confirmed several CRCs with RAS mutation present in
a subset of tumor cells by analysis of subareas in cases
with lower than expected mutant allele frequency. Resistant
clones with acquired RAS mutations may arise from a small
subpopulation present within the original tumor before anti-
EGEFR therapy or as a consequence of continued mutagenesis
over the course of targeted treatment [44]. Presence of
KRAS-mutant subpopulations may correlate with inferior
progression-free survival in CRC patients treated with anti-
EGEFR therapy [45]. If confirmed, a note should be added
in the report to indicate that a RAS mutation is present
in a subpopulation of the tumor. A note of mutant allele-
specific imbalance of the RAS gene may also be needed if the
information is clinically relevant in the future.

However, assessing tumor cell percentage may not be
always precise or accurate [46, 47]. Therefore, a sample with
tumor cellularity estimated as borderline adequacy for an
assay (e.g., 10-20% of tumor cellularity for a pyrosequenc-
ing assay which carries an analytic sensitivity of 10% of
tumor cellularity or 5% of mutant allele frequency) should
be reevaluated by a second pathologist, preferentially one
with both molecular and histological experience. Ideally,
pathologists who interpret molecular test results also assess
tumor cellularity since they are more aware of the analytic
sensitivity of the requested assay. In addition, they can also
compare the mutant allele frequency and the estimated tumor
cellularity for postanalytic quality assessment of the assay and
results as mentioned above. Multiple reasons may account for
a perceived discrepancy in correlating the estimated tumor
cellularity with the observed mutant allele frequency, one
of which is how pathologists determine tumor cellularity.
Pathologists are accustomed to using simple linear measure-
ments for microscopic evaluation of sizes. Therefore, they
may estimate tumor cellularity by the surface area of tumor
cells rather than the ratio of tumor nuclei. This often results
in overestimation of tumor cellularity, because cancer cells
are commonly larger and visually more impressive than a tiny
lymphocyte or stromal cell yet the total DNA amount in both
is almost the same.

4. Molecular Assays for Targeted Therapy

Since specimens containing low tumor cellularity are com-
mon in the clinical diagnostic setting [36, 37], macro- or
microdissection of unstained slides or coring of the tissue



blocks from the area(s) designated by pathologists has
become a routine preanalytic approach to enhance tumor
cellularity in many clinical laboratories [29, 30]. However,
specimens with a small cluster of tumor cells surrounded
by nonneoplastic tissue, such as CRC specimens with prior
neoadjuvant therapy, lymph node specimens without forma-
tion of distinct metastatic tumor nodules, and cytopathologic
specimens with scattered tumor cells are still problematic
[28, 48]. In the quality assessment of a NGS assay imple-
mented for clinical mutation detection in CRC, a significant
portion of mutations were detected with a low mutant allele
frequency [36]. With an analytic sensitivity of 10-20%, Sanger
sequencing as the prior gold standard could have missed 8%
(with less than 10% mutant allele frequency) or even 23%
(with less than 20% mutant allele frequency) of the mutations
in this series. Therefore, even with all of the preanalytic
efforts, it is still not uncommon to have inadequate or
marginally adequate materials. This necessitates assays with
higher analytic sensitivity.

4.1. Traditional “One Gene-One Drug” Assays. Traditional
molecular diagnostics assays usually focus on one mutation
or one gene for one drug. Examples include a few assays
approved by the FDA of the United States for companion
testing of targeted therapy: for example, cobas 4800 BRAF
V600 mutation test (for BRAF p.V600E mutation), cobas
4800 KRAS mutation test, and therascreen KRAS test (for 7
most common KRAS mutations in codons 12 and 13) [49-52].
The cobas 4800 BRAF V600 mutation test, designed specifi-
cally for the p.V600E mutation, may also detect non-p.V600E
codon 600 mutations at a lower analytic sensitivity. These
assays may not be suitable for comprehensive mutational
profiling in core biopsy or fine needle aspiration specimens
containing limited tissue. A variety of assays have also been
applied in molecular diagnostics laboratories to detect KRAS
or BRAF mutations with a limit of detection ranging from
10-20% mutant allele for Sanger sequencing, approximately
5% for pyrosequencing and high-resolution melting curve
analysis, to 1-5% for real-time PCR-based assay [53-57].
Results from different assays are usually concordant except
for specimens with poor tumor cellularity for which more
sensitive assays are needed to prevent false negative results. In
addition to molecular assays, immunohistochemistry (IHC)
stain is also a highly sensitive and cost-effective assay for
detection of BRAF mutation [58, 59]. IHC stain is especially
valuable for specimens with scattered tumor cells intermixed
with abundant nontumor cells. However, monoclonal anti-
bodies against the BRAF p.V60OE protein adopted in current
[HC assays do not detect other mutations with adequate
analytic sensitivity and specificity.

4.2. Multiplex Assays. With continuous expansion of pre-
dictive markers for targeted therapeutics, molecular testing
has been in a transition from the traditional “one test-
one drug” model to a multiplex genotyping platform to
simultaneously test a panel of genes for a specific cancer
[60, 61]. Primer extension-based multiplex assays, such as the
multiplex SNaPshot assay or the Sequenom MassARRAY sys-
tem, are capable of testing multiple targets in a single reaction
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while retaining an analytic sensitivity of 5% or below [62,
63]. More excitingly, massively parallel sequencing or NGS
technology has revolutionized genome research and also will
soon become the most cost-effective multiplex sequencing
platform in the clinical diagnostic setting as more and more
biomarkers join standard patient care [60]. The US Centers
for Disease Control and Prevention (CDC) has convened
the Next-Generation Sequencing: Standardization of Clinical
Testing (Nex-StoCT) workgroup and published guidelines to
address the 4 components of quality management of NGS
assays in clinical laboratories: test validation, quality control,
proficient test, and reference materials [64]. The 6 analytic
performance characteristics for clinical validation of NGS
assays were also defined. Although the workgroup focused
on heritable genetic diseases, the same principles can also
be applied to precision cancer medicine. Subsequently, the
workgroup (Nex-StoCT II) also published recommendations
to design, optimize, and implement informatics pipelines
for clinical NGS assays [65]. In 2015, CAP issued laboratory
standards for NGS clinical tests including the new checklist
requirements [66].

4.3. Clinical Validation and Implementation of NGS Platforms.
Mutational profiling of cancer specimens based on NGS
assays has been validated and implemented for prospective
standard patient care or clinical trial in the clinical molecular
diagnostic laboratories. The spectrum of mutations examined
(reportable range) ranges from a panel of genes for a specific
tumor or a group of tumors [67-70] to a larger panel of
targetable/actionable genes or oncogenes/tumor suppression
genes [37, 71] and whole exome sequencing [72, 73]. Cur-
rently, treatment guided by the comprehensive analysis of
whole exome sequencing is still limited in a small fraction
of patients. The ability to generate large amounts of data of
unproven significance, therefore, should not take precedence
over the timely generation of clinical useful data. When an
extensive NGS panel is offered for clinical diagnosis, it is
recommended that an assay with a shorter turnaround time is
reported first, followed by a more comprehensive assay which
may take longer time to complete [24-26].

We have validated and implemented a NGS platform
using the AmpliSeq Cancer Hotspot Panel and Personal
Genome Machine in a Clinical Laboratory Improvement
Amendments- (CLIA-) certified laboratory [67]. In a retro-
spective quality assessment study, we surveyed the perfor-
mance characteristics of the NGS assay conducted in 310 CRC
specimens [36]. NGS demonstrated a high analytic sensitivity
(2% or lower mutant allele frequency), broad reportable
ranges of mutation spectrum relevant to anti-EGFR therapy
in KRAS, NRAS, BRAE and PIK3CA genes, capacity for
quantitative measurement of mutant allele frequencies, and
simultaneous detection of concomitant mutations [36]. The
test feasibility was approximately 98% (2% of combined
rejection rate and failure rate) [31] with a turnaround time
of 3-6 working days for 90% or more of specimens as
the assay was conducted twice a week (unpublished data).
Seventeen percent of KRAS mutations were outside codons
12 and 13 and 48% of PIK3CA mutations were outside the
3 most common mutated codons 542, 545, and 1047. The
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incidence of tumors with predicted resistance to anti-EGFR
therapy increased as reportable ranges became wider, from
40% if only mutations in KRAS exon 2 were tested to 47%
if exons 2-4 were included, 48% if KRAS and NRAS exons
2-4 were included, 58% if also including BRAF codon 600
mutations, and 59% if adding PIK3CA exon 20 mutations.
Interestingly, right-sided CRCs were found with a higher
risk of predicted anti-EGFR resistance. The advantage with
broader reportable ranges may also be helpful in elucidating
the clinical significance of uncommon mutations [36, 74].
For example, we identified BRAF mutations with reduced or
silent kinase activity, such as mutations affecting codon 594.
CRC patients with kinase-impaired BRAF mutations may
respond to anti-EGFR therapy [7]. Kinase-impaired BRAF
mutants showed a significantly higher incidence of concomi-
tant activating KRAS or NRAS mutations [36, 75]. In the
presence of oncogenic RAS proteins, kinase-impaired BRAF
forms a complex with CRAFE, which leads to hyperactivation
of the CRAF/MEK/ERK cascade [76, 77]. Therefore, CRC
patients with coexisting kinase-impaired BRAF mutation and
activating RAS mutation may benefit from MEK inhibitors
[75].

5. Future Perspectives

With the inspiration of achieved success in precision cancer
medicine, tremendous efforts have been devoted to dis-
covering more biomarkers for potential usage in clinical
diagnosis, prediction, and prognostication of CRC [78]. In
addition to mutations within the mitogen-activated protein
kinase (MAPK or RAS/RAF/MEK/ERK) pathway and the
phosphatidylinositol 3-kinase (PI3K/AKT/mTOR) pathway,
the potential molecular markers also include epigenetic
alterations and microRNA expression. Also, exploration of
“old” markers for new utilization is feasible and economical
given that a single marker can be used for multiple purposes
or in different situations. For example, BRAF mutation
status has several clinical implications in CRC. Detecting the
p-V60OE mutation has been a part of the algorithm to dis-
tinguish sporadic CRC with microsatellite instability (MSI)
from hereditary nonpolyposis colorectal cancers (HNPCC
or Lynch syndrome) since this BRAF mutation is present
only in sporadic cases [79, 80]. BRAF mutations along with
MSI status can also offer information for risk stratification
of CRC. Patients with a pV600E mutation may carry an
inferior prognosis in microsatellite-stable (MSS) CRC but
not CRC with MSI [81, 82]; however, a study suggests that
in advanced (metastatic) disease patients with a p.V600E
mutation carry an inferior prognosis also in MSI CRC [83].
MSI status also has multiple implications. Besides the well-
known role in screening for HNPCC, MSI is associated with
a lower stage of CRC at diagnosis and a favorable stage-
specific prognosis [84], although conflicting results in stage
IV patients exist [85]. In terms of predictive significance,
MSI patients may not benefit from 5-FU based adjuvant
therapy [86-88], though benefit has been observed in stage
III patients with suspected HNPCC [89]. Further studies are
needed to clarify the predictive value of MSI status [90]. More
importantly, a recent clinical trial demonstrated the utility of

MSI status as a predictive marker for responsiveness to PD-
1 blockade immunotherapy in advanced CRC patients [91].
As expected, there are many ongoing clinical trials regarding
targeted therapy, immunotherapy, and combinatorial therapy
for CRC patients. Undoubtedly there will be prosperous
progress of precision medicine in CRC in the near future.
For the rest of this review, we will focus on recent advance in
the field of tumor heterogeneity associated with anti-EGFR
resistance and immunotherapy.

5.1. Acquired Resistance to Anti-EGFR Therapy. Resistance to
targeted therapy can be classified into intrinsic (primary)
or acquired (secondary) resistance. Intrinsic resistance is
usually defined as immediate failure of treatment, whereas
acquired resistance is defined as the disease progression
following a period of clinical response. By far, best studied
is the resistance to EGFR tyrosine kinase inhibitors in lung
cancers [92]. In additional to testing for EGFR mutations for
first-line targeted therapy, examination of the most prevalent
acquired resistance mutation, EGFR p.T790M, has become
a common clinical practice to select patients for third-
generation tyrosine kinase inhibitors [92]. The whole picture
of acquired resistance mechanisms in CRC was not fully
understood until the last few years, presumably because of
lack of second-line targeted therapy to overcome acquired
resistance and concern of risk for tissue biopsy. Mutational
profiling of cell-free circulating tumor DNA (ctDNA) in
the blood (so-called liquid biopsy) provided an alternative
noninvasive approach to uncover the genetic landscape of
acquired resistance mechanisms in CRC [44, 93-96].

Several mechanisms underlying acquired anti-EGFR
resistance in CRC have been reported [97-99]. While muta-
tions responsible for acquired resistance to small molecule
kinase inhibitors often occur within the kinase domain, there
is significant overlap between the intrinsic and acquired
genomic alterations leading to anti-EGFR resistance in CRC.
These include mutations in the KRAS, NRAS, BRAF, and
MAP2K1 within the MAPK pathway [97-99], mutations
involving codons 464, 465, 467, 491, 492, and 494 within the
extracellular domain [93, 100, 101] and codons 714 and 794
within the kinase domain of EGFR [102], and amplification
of the KRAS, MET, and EBRR2 genes [93-95]. Acquired
resistance mutations commonly involve codons 12, 13, and
61 of the KRAS gene and codon 61 of the NRAS gene in
contrast to codons 12 and 13 of the KRAS gene in the primary
resistance setting. The reported acquired EGFR mutations
were rare or not seen in CRCs prior to anti-EGFR ther-
apy [103]. Recently, whole exome sequencing accompanied
with in vitro study of anti-EGFR sensitivity has recognized,
albeit infrequently, mutations in the ERBB2, EGFR, FGFRI,
PDGFRA, and MAP2KI as potential mechanisms underlying
primary resistance as well as the tyrosine receptor adaptor
gene, IRS2, in tumors with increased sensitivity to anti-EGFR
therapy [102].

5.2. Tumor Heterogeneity Associated with Anti-EGFR Resis-
tance. A phenomenon relevant to drug resistance is tumor
heterogeneity [104, 105]. Comprehensive analysis by NGS has
revealed remarkable genetic variation between and within



tumors. Genomic heterogeneity seen in tumors prior to or
after targeted therapy poses a major challenge to precision
cancer medicine. Tumor heterogeneity associated with pri-
mary or acquired anti-EGFR resistance has been well doc-
umented in lung cancers. Presence of the EGFR p.T790M
mutation in a minor subpopulation of tyrosine kinase
inhibitor-naive tumors predicts an inferior response to the
first-line EGFR tyrosine kinase inhibitors [106, 107]. Some
of the best evidence of tumor heterogeneity associated with
acquired resistance in lung cancers is the reciprocal relation-
ship between the EGFR p.T790M mutation and transforma-
tion of small cell carcinoma. In patients with multiple resis-
tant metastases showing separate adenocarcinoma and small
cell carcinoma components, p.T790M was often detected only
in the adenocarcinoma component [108, 109], while small
cell carcinoma component carried RBI mutations, but not
p-T790M [108-110].

As mentioned previously, CRC with “acquired” RAS
mutations may arise from a small subpopulation present
within the original tumor before anti-EGFR therapy or as
a consequence of continued mutagenesis over the course of
targeted treatment [44]. Tumor heterogeneity associated with
intrinsic KRAS mutations carries an inferior response to anti-
EGFR therapy [45]. The observation of multiple acquired
resistance mutations in plasma ctDNA from the same patients
also suggested tumor heterogeneity associated with acquired
anti-EGFR resistance in CRC [44, 93, 94, 96]. Recently,
Russo et al. confirmed that tumor heterogeneity associated
with acquired anti-EGFR resistance may affect lesion-specific
response to the second-line targeted therapy and that plasma
ctDNA is a better source of specimens for comprehensive
capture and dynamic monitoring of resistance mutations
than tissue specimens which are subjected to risk and spatial
selection bias of a core biopsy [99].

Strategies have been proposed to overcome acquired
resistance associated with tumor heterogeneity. One potential
strategy is to combine anti-EGFR therapy with MEK or
ERK inhibitors [94, 97]. Although tumor heterogeneity may
lead to metastatic lesions demonstrating different resistance
mechanisms, these mutations are biologically convergent on
the MAPK pathway to sustain activation of MEK and ERK.
This was supported by a study of ctDNA showing one or
more acquired resistance mutations in the genes involved
in the MAPK pathway in 23 of 24 patients [96]. Another
potential strategy is to identify intrinsic resistance mutations
associated with tumor heterogeneity by using ultrasensitive
assays to examine plasma ctDNA. Preclinical studies have
shown that combining anti-EGFR therapy with other kinase
inhibitors may be effective in tumors harboring mutations or
amplification in ERBB2, MET, EGFR, FGFRI, and PDGFRA
genes [93,102].

5.3. Anti-PD-1 Immunotherapy in CRC Patients. Immune
checkpoint blockage inhibition has provided an alternative
option for treatment of metastatic solid tumors [111-115].
In particular, antibody-mediated blockade of programmed
death 1 (PD-1) or programmed death ligand 1 (PD-L1) can
induce durable disease-free survivals, albeit only in a portion
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of patients with advanced melanomas, lung cancers, and blad-
der cancers [114-116]. Several clinical trials targeting immune
checkpoint have also been conducted in gastrointestinal can-
cers, including CRC [117]. In 2015, Le and colleagues reported
that MSI is a marker to predict the benefit of pembrolizumab,
an anti-PD-1 immune checkpoint inhibitor, in CRC and
other solid tumors [91]. These results are consistent with the
pathogenesis of MSI in hereditary or sporadic CRC with
defect in the mismatch repair machinery. Defective mismatch
repair causes hypermutation of the genome, including MSI,
and generates tumor neoantigens [118, 119]. CRC with MSI
also demonstrated highly upregulated expression of multiple
immune checkpoint molecules, including PD-1 and PD-LI1
[119]. These may explain the profound lymphocyte infiltration
as well as better outcomes and response to anti-PD-1 mono-
clonal antibody in CRCs with MSI [91, 120, 121].

5.4. Predictive Biomarkers for Immune Checkpoint Block-
age Therapy. Currently, researchers have been aggressively
exploring potential markers to select candidates who will
benefit from immune checkpoint blockage therapy. These
include expressional levels and gene amplification of PD-LI
(116, 122-124], MSI status [91], and genomic hypermutation
[91, 111, 125, 126]. Although strong PD-L1 expression has been
reported in a subset of CRCs [127, 128] and appears to predict
repose to anti-PD-L1 therapy [116, 122-124], the definition
of PD-L1 positive CRC needs further standardization and
validation in a clinical diagnostic setting. In addition, tumors
in response to immune checkpoint blockage may not have
strong PD-LI expression [117]. MSI test is a routine assay
in most molecular diagnostics laboratories for screening
HNPCC. The revised NCCN guideline (version 2.2016) has
suggested screening for HNPCC (Lynch syndrome) in CRC
patients aged 70 year or younger and those older than
70 who meet the Bethesda guidelines (http://www.nccn.org/
professionals/physician_gls/f_guidelines.asp). Further studies
are warranted to elucidate if the MSI assay or immunohis-
tochemical stain of the mismatch repair machinery com-
ponents (MLH1, MSH2, MSH6, and PMS2) may become a
standard of care for those solid tumors with a higher inci-
dence of MSI, such as CRC and endometrial cancer [129].
Mutation load may prove to be the most important pre-
dictor for immune checkpoint blockage therapy [91, 111, 125,
126]. MSI occurs in a subset of hypermutated tumors with
defective mismatch repair machinery. There are many mech-
anisms causing a mutator phenotype with hypermutations,
such as exposure to external mutagens (e.g., cigarette smoke
and UV radiation), endogenous mutagens (e.g., reactive oxy-
gen species), and mutations in the POLE or POLDI genes
encoding the DNA polymerases [130]. Tumors with hyper-
mutation caused by these alternative mechanisms are antic-
ipated to have enhanced sensitivity to checkpoint blockade.
Germline or somatic mutations in the regions encoding
exonuclease domain of POLE and POLDI1 impair polymerase
proofreading and lead to an exceedingly high rate of base
substitution mutations [131-133]. Results from the Cancer
Genome Atlas showed hypermutation in 16% of CRC, includ-
ing three-quarters with MSI and one-quarter with POLE
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TABLE 1: Molecular diagnostics markers of CRC currently used in established standard care or potentially being used in the near future.

Clinical utility Markers”

Diagnostic markers

BRAF [79, 80]; MSI [129]

Predictive markers

(i) Primary resistance to anti-EGFR mAb

(ii) Secondary resistance to anti-EGFR mAb

(iii) Immune checkpoint blockage therapy

KRAS and NRAS [7, 8, 12, 14-19]; BRAF [7, 20-22]; PIK3CA [7]; other potential
markers (ERBB2, EGFR, FGFRI1, PDGFRA, and MAP2K1) [102]

Mutations in the MAPK pathway (KRAS, NRAS, BRAE and MAP2KI) [97-99];
EGER [93,100-102]; amplification of KRAS; MET; ERBB2 [93-95]

PD-L1 expression [116, 122-124]; MSI [91]; genomic hypermutation [91, 111, 125, 129]

Prognostic markers

BRAF [81-83]; MSI [84, 85]; POLE [135]

*The numbers in the parentheses indicate the references cited in this article.

mutations [134]. A recently study [135] investigating associ-
ation between POLE mutations and prognosis in more than
4500 stage II/III CRC patients shows the pathogenic somatic
POLE mutations were detected in approximately 1.0% of
CRCs. POLE mutations were mutually exclusive with MSI.
Compared with MSS POLE wild-type CRCs, POLE-mutant
CRCs showed increased CD8+ lymphocyte infiltration and
expression of cytotoxic T-cell markers and effector cytokines,
with a level similar to that observed in immunogenic MSI
tumors. Both POLE mutations and MSI status were associated
with significantly reduced risk of recurrence compared with
MSS CRCs in multivariable analysis. Higher POLE mutation
rates (7-12%) have also been reported in endometrial cancers
[136, 137], similarly characterized by a robust intratumoral
T-cell response [138], and carry an excellent outcome [136,
137]. POLE mutations in CRC, though uncommon, may be
associated with a favorable response to anti-PD-1 or anti-
PD-L1 immunotherapy. However, the excellent prognosis
demonstrated in this group of patients also underscores the
importance of POLE mutations in precision medicine.

In summary, MSI is a routine clinical assay not only
being suitable for screening for HNPCC but also being poten-
tially predictive for immune checkpoint blockage therapy.
However, testing for MSI status picks up only those CRCs
with defective mismatch repair machinery, but not other
hypermutated tumors. Whole exome sequencing is certainly
a robust approach to define hypermutation. Currently, it may
not be practical to perform whole exome sequencing as a
daily clinical routine to select patients for immune checkpoint
blockage therapy. Alternatively, NGS assays may be designed
to include a panel of genes to identify tumors with a high
mutation load for potential treatment with immunotherapies
as well as driver mutations for targeted therapy [139]. Further
clinical trials are also needed to guide through the complexity
in selecting targeted therapeutic agents in combination or in
sequence with immune checkpoint blockage inhibitors [140].

6. Conclusion

The established and/or potential key molecular markers
in molecular diagnosis of CRC are briefly summarized in
Table 1. Current guidelines from several organizations recom-
mend testing extended RAS genes to select CRC patients for
anti-EGFR targeted therapy. The BRAF p.V600E mutation is

also highly likely to predict for anti-EGFR resistance. More
studies are needed to elucidate the role of PIK3CA mutations.
The convergence of recent advances in molecular technology
and rapid expansion of targeted therapeutics is transforming
the approach in clinical molecular diagnostic laboratories
from the traditional “one test-one drug” paradigm to the mul-
tiplexed genotyping platform, especially NGS. In the clinical
diagnostic setting, NGS assays demonstrate a high sensitivity,
a broad reportable range, and a precise measurement of
mutant allele frequency. Eventually, NGS will become the
most cost-effective assay as more and more genetic alterations
have demonstrated clinical utility. In this era of precision
cancer medicine, pathologists play crucial roles in molecular
diagnostics. They are responsible for preserving tumor tissues
with adequate quantity and quality of nucleic acids for
molecular tests. Tumor cellularity estimated by pathologists
provides an important parameter for postanalytic quality
assessment of the assays and results. Recently studies have
identified more potential intrinsic resistance mutations and
uncovered the landscape of acquired resistance mechanisms.
Tumor heterogeneity associated with anti-EGFR resistance
poses challenges to targeted therapeutics in CRC. Strate-
gies have been proposed to overcome anti-EGFR resistance
resulting from tumor heterogeneity. Immune checkpoint
blockage therapy has emerged as a critical alternative option
for metastatic cancers with durable progression-free survival,
although long term follow-up has not been achieved. In
addition to the MSI test, further efforts to develop assays
amenable in clinical molecular diagnostic laboratories are
warranted to select CRC patients for targeted therapy and/or
immunotherapy.
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