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Fully Automatic System for 
Accurate Localisation and Analysis 
of Cephalometric Landmarks in 
Lateral Cephalograms
Claudia Lindner1, Ching-Wei Wang2,3, Cheng-Ta Huang2,3,4, Chung-Hsing Li5,6,  
Sheng-Wei Chang5,6 & Tim F. Cootes1

Cephalometric tracing is a standard analysis tool for orthodontic diagnosis and treatment planning. 
The aim of this study was to develop and validate a fully automatic landmark annotation (FALA) system 
for finding cephalometric landmarks in lateral cephalograms and its application to the classification of 
skeletal malformations. Digital cephalograms of 400 subjects (age range: 7–76 years) were available. 
All cephalograms had been manually traced by two experienced orthodontists with 19 cephalometric 
landmarks, and eight clinical parameters had been calculated for each subject. A FALA system to locate 
the 19 landmarks in lateral cephalograms was developed. The system was evaluated via comparison to 
the manual tracings, and the automatically located landmarks were used for classification of the clinical 
parameters. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of landmarks 
were located within the clinically accepted precision range of 2.0 mm. The automatic landmark 
localisation performance was within the inter-observer variability between two clinical experts. The 
automatic classification achieved an average classification accuracy of 83.4% which was comparable 
to an experienced orthodontist. The FALA system rapidly and accurately locates and analyses 
cephalometric landmarks in lateral cephalograms, and has the potential to significantly improve the 
clinical work flow in orthodontic treatment.

Cephalometric radiography is commonly used as a standard tool in orthodontic diagnosis and treatment 
planning as well as in corrective and plastic surgery planning. Marking of anatomical landmarks of the skull 
and surrounding soft tissue in lateral cephalograms is an essential part of the diagnosis and planning process. 
Cephalometric landmarks are used for a number of orthodontic analyses (e.g. Schwarz, Steiner, Ricketts) where 
several linear and angular measurements are calculated from their positions1. The accuracy with which the land-
marks are located has a direct impact on the results of the performed analyses and resulting treatment decisions.

Identifying cephalometric landmarks in lateral cephalograms is a challenging problem. The skull is a highly 
complex 3D object which in a cephalogram is projected onto a single 2D plane, leading to overlapping structures. 
Furthermore, facial asymmetry, head positioning variations during image acquisition, and radiographic distor-
tion cause the left and right outlines to not be perfectly superposed, leading to duplicated structures. This, com-
bined with individual anatomical variation, in particular in pathological cases, makes it very difficult to reliably 
position cephalometric landmarks2.

Currently in clinical practice, cephalometric landmark positions are identified manually or semi-automatically 
which is very tedious, time-consuming and prone to inconsistencies within and across orthodontists. Varying lev-
els of orthodontic training and experience may have an impact on inter-observer variations, and time-constraints 
and other commitments may have an impact on intra-observer consistency3.
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A computerised system for automatic cephalometric landmark identification would help to overcome 
time-constraints and inconsistencies within and across observers. Furthermore, given the landmark positions, in 
today’s orthodontic software packages the landmark-based linear and angular measurements are automatically 
calculated. Therefore, if a computerised system was able to locate cephalometric landmarks with sufficient accu-
racy then this would have the potential to significantly improve the clinical work flow in orthodontic treatment.

Over the last three decades, several attempts had been made to create such a computerised system4–11. 
However, due to the complexity of this problem, the developed methods were unable to compete with manual 
landmark identification. In recent years, a number of IEEE International Symposium on Biomedical Imaging 
(ISBI) Grand Challenges were organised on this topic to encourage the development of better algorithms. The 
results are summarised in refs 12 and 13 and provide a benchmark for any future development.

Preliminary results of our approach were presented at the 2015 ISBI Grand Challenge in Dental X-ray Image 
Analysis, where our system was awarded the first prize13,14. Supplementary Table S1 gives a quantitative com-
parison of all seven techniques that were submitted to the 2014 and 2015 ISBI Grand Challenges when tested on 
the same dataset of 100 images. This shows that our methodology achieved an average point-to-point error of 
1.66 mm compared to errors ranging from 1.85 mm to 2.85 mm for all other techniques, demonstrating that our 
method performed significantly better than any of the other six techniques (p <  0.0001). In this paper, we expand 
on our previous results in various ways: (i) we use a large dataset of 400 images to generate and test the system;  
(ii) we show significant improvements in performance; (iii) we show extensive in-depth experimental results; and 
(iv) we analyse the all-important link to the performance of human observers (i.e. clinical experts).

The purpose of this study was to develop and validate a fully automatic landmark annotation system for the 
accurate localisation of cephalometric landmarks in lateral cephalograms and its application to the classification 
of skeletal malformations.

Materials and Methods
Ethical approval (IRB Number 1-102-05-017) for this study was obtained from the research ethics committee of 
the Tri-Service General Hospital in Taipei, Taiwan, which waived the requirement to obtain informed consent 
from all subjects. All experiments were carried out in accordance with the approved guidelines.

Dataset. Lateral cephalograms were available from 400 subjects (mean age: 27.0 years; age range: 7–76 years; 
235 females, 165 males). All cephalograms were acquired in TIFF format with a Soredex CRANEXr Excel Ceph 
machine (Tuusula, Finland) using Soredex SorCom software (3.1.5, version 2.0). The image resolution was 
1935 ×  2400 pixels with a pixel spacing of 0.1 mm.

All images were annotated (“traced”) independently by two clinical orthodontists (with six years and 15 years 
of experience, respectively), yielding a manual annotation of 19 cephalometric landmark positions as shown in 
Fig. 1. All landmarks were chosen to mark common structures used in cephalometric evaluations such as Steiner 
Analysis or Wits Appraisal15. The amount of shape variation exhibited in the dataset as outlined by the 19 land-
marks is shown in Supplementary Figure S3. For a random subset of 150 images, two sets of manual annotations 

Figure 1. Cephalogram annotation example showing the 19 landmark positions used in this study. A 
description of all landmarks is given in Supplementary Table S2.
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per orthodontist were available. Based on the manually placed landmark positions, eight clinical parameters for 
the diagnosis of skeletal malformations were defined as listed in Table 116–22.

Fully Automatic Landmark Annotation System. We have recently developed a fully automatic land-
mark annotation (FALA) system to rapidly and accurately place a number of landmark points along the outline 
of the proximal femur on pelvic radiographs23. For this study, the FALA system was modified and improved to 
enable the identification of cephalometric landmarks in lateral cephalograms.

The FALA system follows a machine learning approach where Random Forest regression-voting is used both 
to detect the position, scale and orientation of the skull (similar to Hough Forests24) and then, in the Constrained 
Local Model framework (RFRV-CLM), to locate the individual landmarks25. The first step makes the system 
robust to any variations in image acquisition, and the second step allows for the accurate placement of all 19 
landmark points. Full details are given in refs 23 and 25, here were summarise the approach. Figure 2 gives a 
schematic summary.

Random Forest regression-voting. Random Forests (RFs)26 describe an ensemble of decision trees trained inde-
pendently on a randomised selection of features. We train RF regressors from sets of images, each of which is 
annotated with landmark points x. The region of interest of the image that captures all landmark points of the 
object is re-sampled into a standardised reference frame. For every landmark point in x, a set of patches is sam-
pled at a set of random displacements di from the true position in the reference frame. To achieve robustness to 
variations in scale and orientation, patches are sampled at a range of angles and scales. Features fi(x) are extracted 
from each patch, and a regressor R(f(x)) is trained to predict the most likely position of the model point relative to 
x. We use Haar features28 as they have been found to be effective for a range of applications and can be calculated 
efficiently from integral images. For each landmark, one RF is trained to vote for (i.e. predict) the likely position 
of that landmark. During search, all trees in the RF will cast independent votes to make predictions on the land-
mark’s position.

Object detection. To detect the object of interest in the image, we apply RF regression-voting as above with a 
single pseudo landmark which is defined by the centre of a patch, or reference frame, that encompasses all 19 
landmark points. The RF regressor is applied across the image in a sliding window approach at a range of scales 
and orientations, casting votes for the centre of the reference frame into an accumulator array; using the param-
eters identified in ref. 23. Voting peaks will provide candidates for the likely position, orientation and scale of the 
object in the image. The latter is used to provide a first estimate of all landmark points which is then refined using 
the RFRV-CLM approach as summarised below.

Constrained Local Models. CLMs combine global shape constraints with local models of the pattern of intensi-
ties. Based on a number of landmark points in a set of images, a Statistical Shape Model (SSM) is trained by 
applying principal component analysis to the aligned shapes27. This yields a linear model of shape variation which 
represents the position of each landmark point l using = + +θx x P b rT ( )l l l l  where xl is the mean position of 
the point in a suitable reference frame, Pl is a set of modes of variation, b are the shape model parameters, rl allows 
small deviations from the model, and Tθ applies a global transformation (e.g. similarity) with parameters θ.

Figure 2. Schematic overview of the FALA system as described in refs 23 and 25, applied to lateral 
cephalograms. 
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RF regression-voting in the CLM framework. For a new image, given an initial estimate of the pose of the object (e.g. 
from an object detection step), the region of interest of the image is re-sampled into the reference frame, an area 
around each landmark point is searched and the relevant feature values at every position are extracted. These will be 
used for the trees in the RFs to vote for the best position in an accumulator array, yielding a 2D histogram of votes  
Vl per landmark. An SSM is then used to regularise the output of the individual landmark predictors so that the 
resulting shape is consistent with that observed across the training data. We seek the shape model and pose param-
eters {b, θ} that maximise the number of votes over all k landmark points θ = ∑ + +θ=b V x P b rQ T({ , }) ( ( ))l

k
l l l l1 , 

and apply the technique described in ref. 25 to solve this optimisation problem.
The RFRV-CLM search is applied in a coarse-to-fine two-stage approach that first uses a lower resolution of 

the reference frame to roughly estimate the position of every landmark point and then refines the results using 
a higher resolution reference frame. That is, based on the available manual annotations two RFRV-CLMs were 
trained. We apply 10 search iterations using the lower resolution RFRV-CLM and a single search iteration to 
refine the point positions using the higher resolution RFRV-CLM, after which the search terminates and the sys-
tem outputs a single position for every landmark point. The system was developed in C+ + .

The accuracy and robustness of the FALA system in placing the cephalometric landmarks was analysed using 
four-fold cross-validation experiments. All reported results were averaged over all four runs.

Fully Automatic Classification of Skeletal Malformations. The output of the FALA system (i.e. the 
fully automatically detected cephalometric landmark positions) was used to automatically determine the presence 
or absence of skeletal malformations as defined by the clinical parameters in Table 1. For this purpose, several 
measurements between landmark positions were automatically calculated, and every subject was automatically 
classified into one of three to five groups (C1, C2, C3, C4, and C5) for each of the eight clinical parameters. All 
calculations were done using custom code developed in Python.

To evaluate the performance of the fully automatic classifications, we compared them to the classifications 
obtained from the manual ground truth annotations.

Statistical Analysis. The results of the performance analysis of the FALA system are reported as 
point-to-point errors which give the absolute distance between the manual ground truth annotations and the 
automatically identified landmark positions. We defined the landmark-specific point-to-point error for landmark 
l  as  = ∑ −= m aPEL n( )/l i

n
li li1  and the image-specif ic  point-to-point  error  for  image i  as 

= ∑ −= m aPEI k( )/i l
k

li li1  with n being the number of images and k being the number of landmarks for manual 
and automatic landmark positions ml and al respectively. The overall average point-to-point error was defined 
as = ∑ = ∑= =PE i

n PEI
n l

k PEL
k1 1

i l . All PEL and PE are reported ±  standard error (SE). All PEI are presented via 
cumulative density functions (CDFs) which give the proportion of tested images that achieved a certain average 
precision range. We also report the successful detection rate (SDR) which gives the percentage of images for 
which a landmark l was located within a precision range ∈ . . . .z PEL mm mm mm mm{2 0 , 2 5 , 3 0 , 4 0 }: 

= − ≤ ×m aSDR i z n#{ : }/ 100l li li . All point-to-point errors were calculated using custom code developed 
in Matlab R2014a. All CDF curves were calculated using custom code developed in C+ +  and plotted using 
Gnuplot.

For evaluation of the automatically obtained cephalometric classification results, we report the successful 
classification rate (SCR) which gives the percentage of accurately classified images per clinical parameter: 

= = ×SCR i M A n#{ : }/ 100i i  with manually and automatically classified groups Mi and Ai respectively. We 
present the results using confusion matrices. All classification errors were calculated using custom code devel-
oped in Matlab R2014a.

Results
Improvement of the Annotation System. The FALA system is based on methodology to locate points 
on a continuous line along a bone contour. Identifying cephalometric landmarks poses a somewhat different 

ANB1 SNB2 SNA3 ODI4 APDI5 FHI6 FMA7 MW8

C1 3.2–5.7° 74.6–78.7° 79.4–83.2° 68.4–80.5° 77.6–85.2° 0.65–0.75 26.8–31.4° 2–4.5 mm

C2 > 5.7° < 74.6° > 83.2° > 80.5° < 77.6° > 0.75 > 31.4° = 0 mm

C3 < 3.2° > 78.7° < 79.4° < 68.4° > 85.2° < 0.65 < 26.8° < 0 mm

C4 — — — — — — — > 4.5 mm

C5 — — — — — — — 0< ,< 2 mm

Table 1. Overview of eight clinical measurements and their classifications used in the automated 
cephalometric evaluation16–22. 1ANB: angle between A-point (L5), nasion (L2) and B-point (L6). 2SNB: angle 
between sella (L1), nasion (L2) and B-point (L6). 3SNA: angle between sella (L1), nasion (L2) and A-point (L5). 
4Overbite depth indicator (ODI): sum of the angle between the lines from L5 to L6 and from L8 to L10, and the 
angle between the lines from L3 to L4 and from L17 to L18. 5Anteroposterior dysplasia indicator: sum of the 
angle between the lines from L3 to L4 and from L2 to L7, the angle between the lines from L2 to L7 and from 
L5 to L6, and the angle between the lines from L3 to L4 and from L17 to L18. 6Facial height index: ratio of the 
posterior face height (distance from L1 to L10) to the anterior face height (distance from L2 to L8). 7Frankfurt 
mandibular angle: angle between the lines from sella (L1) to nasion (L2) and from gonion (L10) to gnathion (L9). 
8Modified Wits Appraisal: ((xL12− xL11)/|xL12− xL11|)||xL12− xL11||.
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problem as most points occur at locally isolated positions with a lack of clearly identifiable features at the land-
mark’s position. Based on preliminary results in ref. 14, we investigated whether the parameter settings of the 
FALA system could be improved to enable the identification of isolated landmarks.

For the state-of-the-art femur annotation results in ref. 23, the parameters of the FALA system were opti-
mised using extensive experimental evaluation. Although we have seen that the methodology is generally insen-
sitive to most of the parameters, considering the problem of cephalometric landmark identification suggested 
that a re-evaluation of some of the parameters may lead to an improvement in performance. We therefore  
performed a series of experiments to analyse the impact on performance of varying several parameters for the 
high resolution refinement stage: (i) the size of the sampled patches (ps)–the larger the patch the more informa-
tion about the appearance at the landmark’s position can be encoded with the features extracted from the patch;  
(ii) the range around each landmark from where patches are sampled during training (tr) – the larger the training 
sampling range the more appearance information about the environment of the landmark can be encoded; and  
(iii) the range around each landmark from where patches are sampled during searching (sr) – the larger the search 
range the more information from the area around the estimated landmark position can be included. Depending 
on the application area, increasing or decreasing these parameters might be beneficial or distracting (see also 
discussion).

We generated and evaluated various FALA systems with a range of parameter settings and compared their 
performance to a FALA system that used the exact same parameters as suggested in ref. 23. All systems were 
generated and evaluated using the annotations of the senior doctor as ground truth for both training and testing 
(if not stated otherwise). As in ref. 23, the reference frame width for the refinement stage was 500. The results are 
summarised in Fig. 3 and show that the performance of the FALA system as presented in ref. 23 can be improved 
for the task of cephalometric landmark identification by (i) increasing ps from 20 to 30, (ii) increasing tr from  
± 15 to ± 30, and (iii) decreasing sr from ± (1.0*pr +  15) to ± (0.3*pr +  7) with pr giving the range of the landmark’s  
position across the aligned training data. Increasing/decreasing any of these parameters further did not lead to 
any improvements.

Supplementary Figure S4 visualises the voting results of the RF landmark predictors for both the original 
parameter settings as in ref. 23 and our improved parameter settings, demonstrating the more refined voting 
results for the latter.

The FALA system with the improved settings was used for all experiments described below.

Fully Automatic Annotation Results. The FALA system achieved a PE of 1.7 ±  0.02 mm and a PEI within 
2.5 mm for 95% of all 400 images. In comparison, based on all 400 annotated images, the manual inter-observer 
variability between both doctors gave a PE of 2.2 ±  0.03 mm and a PEI below 3.1 mm for 95% of all 400 images. 
Using the subset of 150 images, the intra-observer variability was 1.7 ±  0.01 mm for doctor1 (senior doctor) and 
0.9 ±  0.01 mm for doctor2 (junior doctor).

We repeated the experiments using the doctor2 annotations as ground truth for both training and testing. 
Figure 4 (left) shows the comparison of the FALA system trained on the doctor1 vs doctor2 annotations, demon-
strating that the doctor2-trained system significantly outperforms the doctor1-trained system. This highlights the 
impact of the quality of the training data on the performance of the system.

For the results in Fig. 4 (left), the fully automatic search of the doctor2-trained FALA system took on average 
24 seconds. To improve the runtime, we optimised the search such that the system would not continue searching 
an image once it has found an annotation that it considers “good enough”. We describe the latter by the average 
distance of the RF predictions for each landmark position, and assume predictions within on average 4 pixels 
in the refinement reference frame to be sufficient. Figure 4 (right) compares the doctor2-trained system with 
the runtime-improved doctor2-trained system. Both systems achieved very similar performance, yielding a PE 
of 1.2 mm and a PEI within 1.8 mm for 95% of all 400 images. The runtime-improved FALA system searched 

Figure 3. Cumulative distribution of image-specific point-to-point results for parameter optimisation of 
the FALA system: (left) comparing different combinations of patch size (ps), training range (tr) and search 
range (sr); and (right) showing the difference in performance between the original23 and the improved 
parameter settings. Error bars show the 95% confidence interval across the four cross-validation experiments.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:33581 | DOI: 10.1038/srep33581

an image in on average less than 3 seconds. Figure 5 visualises the median, 95%ile and 99%ile results of these 
experiments.

Table 2 summarises the landmark-specific annotation results for the runtime-improved doctor2-trained 
FALA system. On average 84.7%/96.3% of all landmarks (across all images) were located within a 2.0 mm/4.0 mm 
precision range. This is significantly better than the SDRs of the manual inter-observer analysis where only 
62.1%/85.0% were within a 2.0 mm/4.0 mm precision range.

Table 2 also demonstrates for which landmarks the system performed best/worst. For L10, the FALA perfor-
mance was significantly worse for all precision ranges which is in line with the manual inter-observer errors for 
L10 with a PEL of 2.69 ±  0.12 mm and SDRs of 50.25%, 57.00%, 65.25% and 79.75% for precision ranges 2.0 mm, 
2.5 mm, 3.0 mm and 4.0 mm, respectively. The largest manual inter-observer errors were found for L16 with a PEL 
of 6.57 ±  0.18 mm. The FALA performance for L16 was significantly better with a PEL of 1.23 ±  0.06 mm for the 
doctor2-trained system and a PEL of 3.87 ±  0.20 mm for the doctor1-trained system.

Fully Automatic Classification Results. We used the automatically identified landmark positions from 
the cross-validation experiments to calculate and classify the clinical parameters specified in Table 1. The results 
of comparing the automatic (i.e. from the doctor2-trained runtime-improved FALA system located landmarks) 
to the ground truth (i.e. from the doctor2 manually placed landmarks) classifications are shown in Table 3. The 
automatic classification achieved an average SCR of 78.4% (over all classes), and an overall average classification 
accuracy of 83.4% (over all subjects). The worst average SCR was achieved for FHI (63.5%), and the best for APDI 
(89.3%). Table 3 demonstrates that overall misclassification rates were low except for FHI (80.0%, C2 misclassified 
as C1) and SNA (30.7%, C3 misclassified as C1).

For comparison, Table 4 gives the results of the inter-observer errors between the two ground truth classifica-
tions, yielding an average SCR of 75.4% and an overall average classification accuracy of 79.7%. This shows that 
the automatic classification performance was within the inter-observer variability between two manual observers.

Figure 4. Cumulative distribution of image-specific point-to-point results of the FALA system tested on 
400 images: (left) demonstrating the impact of the quality of the training data on performance; and (right) 
demonstrating that the runtime-improved system does not lead to any decrease in performance. Error bars 
show the 95% confidence interval across the four cross-validation experiments.

Figure 5. Fully automatic annotation results of the runtime-improved doctor2-trained FALA system 
(sorted by PEI percentiles): (left) 50%ile/median: PEI = 1.1 mm; (middle) 95%ile: PEI = 1.8 mm; and (right) 
99%ile: PEI = 2.4 mm. 
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Furthermore, the misclassification patterns of the manual classifications were similar to the ones of the FALA 
system. This may reflect the general difficulty of reliably classifying some of these very narrow-ranged parameters 
(e.g. less than 3° difference between three classes), or may demonstrate that the FALA system “inherited” some 
of the inaccuracies from the manual training data. The latter is indicated, for example, by FHI – a parameter 
whose definition depends on the worst performing landmark L10 – showing the highest misclassification rates. 
In addition, the FALA system performed significantly better for SNA whose definition includes L5 which was 
identified by the FALA system with a PEL of 1.44 ±  0.05 mm but had an inter-observer PEL of 2.89 ±  0.15 mm. 
The superior classification performance of the FALA system for SNA might be due to the system obtaining more 
consistent results.

Supplementary Table S5 also gives the classification results for the doctor1-trained FALA system which 
achieved an average SCR of 75.8% and an overall average classification accuracy of 79.8%. Similar to the annota-
tion results, this shows that the doctor2-trained system outperforms the doctor1-trained system. However, both 
systems are within the range of the manual inter-observer variability.

Discussion
We have modified a system previously developed to identify landmarks along bone contours to successfully locate 
(isolated) cephalometric landmarks. When identifying landmarks along bone contours the difficulty lies in accu-
rately outlining the correct contour as in 2D radiographs overlaying structures may lead to a range of bone con-
tours in close proximity to the contour of interest. In cephalometric images, the challenge for most landmarks is 
slightly different as the focus is on identifying the correct landmark position independently of whether this is on 
a bone contour or not. Our experiments showed that increasing both the patch size and the training sampling 
range is beneficial for the identification of cephalometric landmarks. This is likely to be because a larger patch size 
allows for more meaningful patches covering more structure around the landmark of interest (beyond the bone 
contour at the landmark’s position), and the increased training sampling range allows the system to learn more 
about the environment of the landmark. In contrast, for the application to bone contours (e.g. proximal femur) a 
larger patch size as well as a larger training sampling range would not include much additional information as for 
most landmarks there is not much appearance variation either side of the bone contour. Furthermore, in the case 
of bone contour annotation, due to the limited information that is available locally the search range was chosen 
relatively large so as to include additional information from outside the object of interest (e.g. pelvis) to guide 
the search – which has been shown to improve performance23. However, cephalograms reflect the complexity of 
the skull and show a lot of structural information and variation. Therefore, for cephalometric landmarks, a large 
search range can lead to conflicting information in the voting arrays (see e.g. Supplementary Figure S4), and we 
found a decreased search range to be beneficial for this application. The developed FALA system for cephalomet-
ric landmark identification, hence, combines an increased patch size, an increased training sampling range, and a 
decreased search range to show improved performance.

The runtime-improved doctor2-trained FALA system achieved a PE of 1.2 mm and a PEI of 1.8 mm for 95% of 
all 400 images. Our reported SDR of 84.7% for the clinically accepted 2.0 mm precision range is an improvement 

Landmark PEL ± SE (mm)

SDR (%)

2.0 mm 2.5 mm 3.0 mm 4.0 mm

Sella (L1) 0.80 ±  0.05 96.75 98.50 98.75 99.25

Nasion (L2) 1.06 ±  0.06 85.00 90.00 91.25 96.50

Orbitale (L3) 1.24 ±  0.06 78.75 84.75 89.50 95.50

Porion (L4) 1.64 ±  0.10 79.25 83.50 86.50 89.75

Subspinale (L5) 1.44 ±  0.05 75.50 85.25 91.75 95.75

Supramentale (L6) 1.26 ±  0.05 83.00 89.50 94.50 98.75

Pogonion (L7) 1.00 ±  0.03 91.50 95.50 98.25 100.00

Menton (L8) 0.84 ±  0.03 94.75 97.50 98.75 99.25

Gnathion (L9) 0.80 ±  0.03 97.00 99.00 99.50 99.50

Gonion (L10) 2.69 ±  0.12 50.25 57.00 65.25 79.75

Incision inferius (L11) 0.89 ±  0.06 89.25 91.00 94.25 97.50

Incision superius (L12) 0.65 ±  0.05 92.25 93.50 95.25 98.50

Upper lip (L13) 1.22 ±  0.04 83.50 93.00 98.25 99.75

Lower lip (L14) 0.92 ±  0.04 94.25 97.75 98.75 99.75

Subnasale (L15) 1.15 ±  0.05 87.00 90.00 91.50 96.75

Soft tissue pogonion (L16) 1.23 ±  0.06 83.50 90.75 94.50 98.00

Posterior nasal spine (L17) 0.96 ±  0.05 94.00 95.50 96.75 97.75

Anterior nasal spine (L18) 1.49 ±  0.07 77.00 82.50 87.75 93.25

Articulare (L19) 1.43 ±  0.08 76.75 83.75 88.75 94.50

Average 1.20 ±  0.06 84.70 89.38 92.62 96.30

Table 2. Landmark-specific annotation results for the runtime-improved doctor2-traianed FALA system: 
landmark-specific point-to-point errors (PEL) and successful detection rates (SDR) for 2.0 mm, 2.5 mm, 
3.0 mm and 4.0 mm precision ranges.
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of almost 10% when compared to the 74.8% reported in ref. 13. In our experiments we found the landmark 
localisation performance of the system to be comparable to a well-trained and experienced orthodontist. Overall, 
our results suggest that the accuracy of the system lies within the inter-observer variability between two clinical 
experts. Compared to our preliminary results in refs 13 and 14, this work shows significant improvements in 
landmark localisation performance (PE of 1.66 mm vs 1.20 mm) which is attributable to the efficient utilisation 
of a larger training dataset and more consistent manual landmark placing. This study highlights the importance 
of the quality of the training data and demonstrates that the performance of our methodology directly benefits 
from improved ground truth data. We believe this to be the most accurate and robust fully automatic cephalo-
metric landmark detection system yet reported. Furthermore, our results show that using the FALA output we 
can achieve similar accuracy in automatically classifying clinical orthodontic parameters to the estimated error 
between two clinical experts.

In terms of landmark-specific analysis, the FALA performance was worse for L10. However, the results were 
within the inter-observer variability between two medical experts and were also in line with previously reported 
results13. This suggests that it is generally very difficult to place L10 accurately and consistently on lateral cepha-
lograms. The large manual inter-observer variation for L16 is likely due to the less specific definition of this land-
mark in clinical practice, as discussed in ref. 12. The better performance of the doctor2-trained FALA system for 
L16 can be explained by the system replicating the quality of the training data, and hence learning the annotation 

ANB
Automatic calculation

SNB
Automatic calculation

SNA
Automatic calculation

ODI
Automatic calculation

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Manual ground 
truth

C1 69.2% 10.6% 20.2% Manual 
ground 
truth

C1 69.7% 11.1% 19.2% Manual 
ground 
truth

C1 74.5% 11.8% 13.7% Manual 
ground 
truth

C1 80.3% 7.3% 12.4%

C2 19.5% 80.5% 0.0% C2 25.0% 73.3% 1.7% C2 15.9% 82.1% 2.0% C2 25.0% 75.0% 0.0%

C3 9.6% 0.5% 90.0% C3 6.2% 0.4% 93.4% C3 30.7% 4.6% 64.8% C3 14.5% 0.0% 85.5%

Diagonal average: 79.90% Diagonal average: 78.80% Diagonal average: 73.81% Diagonal average: 81.75%

APDI APDI Automatic 
calculationMW FHI Automatic calculation FMA Automatic calculation MW Automatic calculation

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C3 C4 C5

Manual ground 
truth

C1 87.8% 5.8% 6.5%
Manual 
ground 
truth

C1 80.1% 2.7% 17.2%
Manual 
ground 
truth

C1 62.5% 26.9% 10.6%
Manual 
ground 
truth

C1 83.8% 2.2% 6.6% 7.4%

C2 15.5% 84.5% 0.0% C2 80.0% 20.0% 0.0% C2 3.3% 96.7% 0.0% C3 2.4% 89.4% 1.2% 7.1%

C3 4.5% 0.0% 95.5% C3 9.6% 0.0% 90.4%
C3 13.5% 0.0% 86.5% C4 18.8% 0.0% 79.5% 1.8%

C5 23.9% 10.5% 0.0% 65.7%

Diagonal average: 89.26% Diagonal average: 63.51% Diagonal average: 81.92% Diagonal average: 79.59%

Average SCR over all measurements (i.e. diagonal averages): 78.4± 2.61% SE

Average accuracy over all measurements (based on all correctly classified subjects): 2669/3200 − >  83.4%

Table 3. Confusion matrices of the automatic doctor2 (i.e. automatically identified landmark positions 
by FALA system) vs the doctor2 ground truth (i.e. manually placed landmark positions) classifications for 
eight clinical measurements to diagnose skeletal malformations in 400 subjects. Diagonals give successful 
classification rates (SCR).

ANB
Automatic calculation

SNB
Automatic calculation

SNA
Automatic calculation

ODI
Automatic calculation

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Manual ground 
truth

C1 60.6% 20.2% 19.2% Manual 
ground 
truth

C1 65.7% 7.1% 27.3% Manual 
ground 
truth

C1 57.8% 30.4% 11.8% Manual 
ground 
truth

C1 77.0% 12.4% 10.7%

C2 18.2% 79.2% 2.6% C2 26.7% 60.0% 13.3% C2 13.9% 85.4% 0.7% C2 22.2% 75.0% 2.8%

C3 11.9% 2.3% 85.8% C3 5.8% 0.0% 94.2% C3 31.8% 12.5% 55.7% C3 22.0% 0.5% 77.4%

Diagonal average: 75.21% Diagonal average: 73.28% Diagonal average: 66.29% Diagonal average: 76.46%

APDI
Automatic calculation

FHI
Automatic calculation

FMA
Automatic calculation

MW
Automatic calculation

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C3 C4 C5

Manual ground 
truth

C1 70.5% 14.4% 15.1%
Manual 
ground 
truth

C1 78.4% 1.0% 20.6%
Manual 
ground 
truth

C1 55.8% 37.5% 6.7%
Manual 
ground 
truth

C1 83.1% 2.9% 8.1% 5.9%

C2 20.2% 78.6% 1.2% C2 50.0% 50.0% 0.0% C2 3.9% 96.1% 0.0% C3 1.2% 89.4% 1.2% 8.2%

C3 5.1% 1.7% 93.2% C3 8.6% 0.0% 91.4% C3 19.7% 6.1% 74.2% C4 6.3% 0.0% 93.8% 0.0%

C5 26.9% 9.0% 0.0% 64.2%

Diagonal average: 80.76% Diagonal average: 73.25% Diagonal average: 75.37% Diagonal average: 82.61%

Average SCR over all measurements (i.e. diagonal averages): 75.4 ± 1.76% SE 

AveLrage accuracy over all measurements (based on all correctly classified subjects): 2550/3200−>79.7% 

Table 4. Confusion matrices of the classifications based on the manually placed doctor1 vs the 
manually placed doctor2 ground truth annotations for eight clinical measurements to diagnose skeletal 
malformations in 400 subjects. Diagonals give successful classification rates (SCR).
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approach and consistency given by the manual annotations. This is also supported by L16 having the largest error 
amongst all landmarks for the system trained on the less consistent doctor1 annotations.

The difference in performance between the doctor1-trained and the doctor2-trained systems does not only 
show that the FALA system replicates the manual annotation accuracy but also highlights that there may be large 
annotation variations in clinical practice3. The latter may be due to different levels of training or experience, and 
other circumstances such as time pressure and physical condition (e.g. fatigue). In contrast, the FALA system is 
deterministic and will always give the same result for the same image.

As demonstrated in ref. 13, our methodology significantly outperforms alternative cephalometric landmark 
detection methods. All techniques submitted to the 2014 and 2015 ISBI Grand Challenges followed a supervised 
learning approach with RFs being the main method of choice13. We believe that the superior performance of our 
system results from a combination of: (i) applying regression-voting instead of classification; (ii) having a separate 
and efficient object detection step to reduce the noise on the votes; (iii) integrating votes from the area around 
each landmark; (iv) optimising the voting results using an SSM; and (v) following a coarse-to-fine search strategy.

All experiments were performed in a VMware running Ubuntu 14.04 LTS with a quad-core 3.6 GHz CPU 
and 4 GB RAM. Our system can be trained and run on an average PC or laptop without the requirement for any 
specialist hardware. The training of a runtime-improved FALA system as used in the cross-validation experi-
ments took about 12 hours (1 hr for the object detection, 4.5 hrs for the low resolution RFRV-CLM and 6.5 hrs 
for the high resolution RFRV-CLM). The runtime-improved FALA system searched a single image in on average 
less than 3 seconds without the need for any GPU acceleration or parallel computing, though the latter could be 
implemented to further improve the runtime of the system.

Our study has several limitations. The FALA system replicates the manual annotation approach, and although 
the system may be more accurate than the manual annotations (e.g. by learning to average out errors) the accu-
racy to which the system can be evaluated is limited by the manual annotation accuracy. In addition, albeit the 
underlying methodology is independent of the number of landmarks used, the system would need to be retrained 
to include additional landmarks. Furthermore, the performance of the system depends on (i) the quality of the 
training data; (ii) the size of the training dataset; and (iii) the shape and appearance variation exhibited in the 
training data (e.g. age, type and degree of malformations). However, if the FALA system was trained using repre-
sentative and consistent training data then it has the potential to outperform clinical experts as demonstrated by 
the performance of the doctor1-trained vs doctor2-trained systems.

In conclusion, we have developed and validated computer software for fully automatic cephalometric evalu-
ation that can rapidly and accurately locate cephalometric landmarks in lateral cephalograms, and have demon-
strated that the latter can be used for the automatic classification of skeletal malformations. The FALA system 
shows great promise for application in orthodontic software solutions to fully automatically conduct cephalomet-
ric analyses. Its deterministic properties may also contribute to the standardisation of the position of landmarks 
with less well-defined positions. Future work will include extending the FALA system to search for additional 
cephalometric landmarks. Based on our findings, it would also be interesting to investigate the correlation 
between high quality (i.e. consistent and accurate) annotations and clinical outcome. The latter may shed some 
light on the clinical importance of the quality of the annotations as well as on the validity of the clinically accepted 
2.0 mm precision range.

The runtime-improved FALA system trained on all 400 images and doctor2 annotations is freely available 
for research purposes via www.bone-finder.com. Furthermore, all images and annotations for both the junior 
and senior doctors as well as code to generate the classifications and evaluate performance are available from  
https://figshare.com/s/37ec464af8e81ae6ebbf.
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