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Abstract

Louis Henry Sullivan, the father of skyscrapers, famously stated “Form ever follows function”. In 

this short review, we will focus on the relationship between form (structure) and function 

(dynamics) in the brain. We summarize recent advances on the quantification of directed- and 

weighted-mesoscopic connectivity of mammalian cortex, the exponential distance rule for 

mesoscopic and microscopic circuit wiring, a spatially-embedded random model of inter-areal 

cortical networks, and a large-scale dynamical circuit model of money’s cortex that gives rise to a 

hierarchy of timescales. These findings demonstrate that inter-areal cortical networks are dense 

(hence such concepts as “small-world” need to be refined when applied to the brain), spatially 

dependent (therefore purely topological approach of graph theory has limited applicability) and 

heterogeneous (consequently cortical areas cannot be treated as identical “nodes”).
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Introduction

Recent years have witnessed a sea-change in our knowledge of the microscopic local cortical 

circuits and mesoscopic long-distance connectivity between cortical areas. We recently 

published a series of papers reporting a new dataset of quantitative- and weighted- inter-

areal connectivity in the macaque monkey cortex [1••, 2, 3••]. Moreover, two separate teams 

reported datasets on the mouse whole-brain connectome [4••, 5••]. The findings revealed 

that the inter-areal connectivity at the mesoscopic level are dense (more than 50% of all 

possible connections are present) and dependent on spatial distances between cortical areas. 

These findings have highlighted limitations of theoretical analysis of brain circuits in terms 

of purely topological networks with sparse connectivity, and have led to the proposal of an 
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alternative class of spatially embedded random networks which could be more fruitful in 

Neuroscience [6••, 7]. In this review, we summarize recent advances and discuss to what 

extent those findings are valid across scales from micro- to mesoscopic cortical circuits, and 

between primate and rodent.

Whereas structural connectivity is essential for understanding the constraints of brain 

function, it alone is insufficient to predict the dynamical behavior of neural circuits. 

Consider two identical neurons interconnected by mutually inhibition. Given this 

connectome, can one predict the network’s behavior? It turns out that experimentation and 

theory have uncovered multiple possibilities. First, both neurons may simply remain silent. 

Second, in response to inputs, the system may behave as a switch, causing only one neuron 

to be active at any one time. Third, if the neurons are endowed with a slow adaptation, each 

could take turns to be active leading to a “half-center” oscillator, which is the core of 

rhythmic central pattern generators. Finally, under certain conditions, the two neurons can be 

perfectly synchronized, spike by spike: the two neurons fire at the same time, leading to 

mutual inhibition after a brief delay, and when this inhibition has decayed they can fire again 

together [8]. This simple example illustrates that dynamical behavior often cannot be 

deduced from anatomy in a straightforward fashion; physiology and modeling are important 

for discovering the dynamical operations of neural circuits.

To tackle the brain-wide complex dynamics, which give rise to neuronal function and 

behavior, several groups have developed large-scale dynamical models [9••, 10, 11••]. In 

particular, combining monkey interareal connectivity with data on the areal differences in 

the number of spine counts per pyramidal neuron [12], a new model naturally exhibits a 

hierarchy of timescales [11••]. These findings exemplify a fruitful interplay between theory 

and experimentation in discovering general principles of how large-scale brain systems 

work. This progress has opened the door to tackle complex brain dynamical phenomena 

including neural avalanches [13] and lognormal distribution of firing rates [14••] in future 

research.

Spatially embedded microscopic and mesoscopic cortical connectivity

Local neuronal networks in the cortex exhibit non-random configurations with a wide range 

of synaptic strengths [15]. Because the connections within local areas account for about 80% 

of the total connections of the cortex [1••], the local circuits constitute a large part of the 

cortical machine. A recent investigation described the functional organization of synaptic 

strength in the local circuit thereby making a major contribution to our understanding of the 

cortex [16••]. In a first instance, these authors used natural images in vivo to look at the 

correlation of activity in neighboring neurons in the supragranular layers of the mouse visual 

cortex, before completing whole cell recordings of the same neurons in a slice preparation. 

These technically challenging experiments revealed the functional organization of the local 

circuit; the strong reciprocal connections are mostly found between pairs of neurons with 

high correlated responses whereas neurons with uncorrelated response are infrequently and 

weakly connected. These findings, extended to showing that cells with similar receptive 

fields were preferentially connected, are highly significant because they go some way to 

explaining how recurrent excitation of the supragranular layer neurons amplifies and 
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sharpens weak thalamic inputs [17], or produces self-sustained persistent activity in a 

number of cortical areas [18]. These results suggest that local circuit neurons may form 

subnetworks [19, 20, 21, 22], that could provide an important infrastructure supporting 

global and local integration.

One interpretation of the strongly interconnected neighboring neurons in the supragranular 

layers is that they constitute cell assemblies. In a sensory area, these cell assemblies not only 

encode sensory input but also integrate contextual information such as reward, attention and 

expectation [21]. These contextual interactions are derived largely from the network of long-

range inter-areal connections (see Figure 1). The inter-areal graph in macaque has a density 

of 67%, with individual target areas receiving inputs from between 30 to 80 source areas 

suggesting high levels of global interactions [2]. The specificity of the inter-areal network is 

derived from connection weights being highly heterogeneous and conforming to a distance 

rule, namely the weight of connection between two areas decays exponentially with their 

wiring distance (Figure 1) [1••]. These findings make it possible to propose a statistical 

algorithm that predicts many of the observed anatomical features of the inter-areal cortical 

network including the existence of a network core, the distribution of cliques, global and 

local weight based communication efficiencies and overall wire-length minimization [3••]. 

The spatially embedded properties of the interareal network reflect morphological 

constraints such as folding and the spatial clustering of sensory, motor and cognitive areas. 

The interareal and local networks share a number of features including lognormal 

distribution of weights and an exponential decline in connection weight [2, 1••, 15, 23], 

suggesting that binary connectivity in the brain is rooted in physical and geometrical 

properties, opening the possibility for a general model of cortical connectivity including 

local connectivity.

The exponential distance rule stands out from network models applied to the brain 

connectivity that typically are purely topological and do not take spatial organization into 

consideration [24•]. Motivated by the recent anatomical findings, Song et al. recently 

proposed a spatially embedded cortical network model [6••]. In this model the cortex is 

described as a continuum in space, which is partitioned into a discrete number of areas. 

Connections are established, point-to-point, using a simple “axonal growth rule” inspired by 

developmental neurobiology. The model captures the salient quantitative statistics of the 

monkey data, including the inter-areal connection probability as a function of wiring 

distance or functional similarity distance between two cortical areas, the five-order of 

magnitude range of connection weights. Furthermore, the model also reproduces key 

network properties such as sequence of in- or out-degree, and distribution of three-node 

motifs (Figure 2). This work suggests a novel class of spatially embedded random networks 

that are generative and of potential importance for understanding the brain connectomics.

Similarity and differences between primate and rodent

Much recent work on the functional connectivity of local circuits has been carried out in 

mice, which is warranted given the high selectivity of cortical receptive fields in this species. 

Last year two groups reported directed- and weighted-connection data of the mouse brain 

[4••,5••]. The inter-areal weights of the whole brain span 104 fold, whereas intra-cortical 
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connection weights vary over two orders of magnitude [4••]. While the inter-areal cortical 

connection weight distribution is well fit by a lognormal distribution in both species, the 

range of weight values seem to be significantly narrower (102 fold) in mouse compared to 

monkey (105 fold). Presently it is unclear whether this discrepancy is due to differences in 

brain size or to rodent primate differences in scaling, as the connection strength measured by 

both groups depends on neuron number), or technique (intensity of EGFP signals labeled by 

a anterograde tracer versus count of neurons labeled by a retrograde tracer) used for weight 

quantification. Regardless, neither technique directly measured the physiological synaptic 

strengths. While we lack functional data at this level, the synaptic ultrastructure of inter-

areal connections show a skewed distribution with a wide range of values [25], suggesting 

that inter-areal synapses could show a similar range in weight or strength values as do local 

synapses. Physiological studies [26, 15, 23, 16] revealed synaptic strengths in the 

microcircuit spanning two orders of magnitude. Note that, at least for nearby pairs of 

neurons (within a couple of hundreds of microns), the probability of connection decreases 

with distance but the synaptic strength (measured by the amplitude of excitatory 

postsynaptic potential) remains constant [15, 23]. It remains to be seen whether the range of 

physiologically defined synaptic weights are similar for local versus long-distance 

connections, and across species.

Other important differences between rodent and primate cortical biology need to be 

considered. First, the scaling rules for rodents and primates are very different [27••], 

allowing considerable increases in neuron number via increased brain size and neuronal 

density in primates compared to rodents. Secondly, human and non-human primate 

corticogenesis shows unique features that could have important structural as well as 

functional consequences [28•]. A specialized germinal zone named the OSVZ largely 

generates the supragranular layers of the primate cortex. The precursors of the OSVZ show 

very different lineage relationships to those observed during mouse corticogenesis. During 

evolution there is an increase in the number of neurons in the supragranular layers [29], due 

to the primate-specific high incidence of proliferative divisions of OSVZ precursors.

Recent studies of corticogenesis suggest that members of local assemblies are clonally 

related [30]. This suggests that the intricate lineages of the primate OSVZ precursors will 

lead to larger and perhaps more complex interconnected assemblies in the supragranular 

layers of the primate compared to the rodent. The supra- and infragranular layers differ in 

their coding strategies; whereas supragranular layers exhibit sparse coding, infragranular 

layers exhibit dense coding [31]. Sparse coding leads to greater efficiency but at the cost of 

increased numbers of neurons in agreement with the expansion of the primate supragranular 

layers. Hence, in the primate, the expanded supragranular layer could argue for an increased 

role of sparse coding.

Recently it has been suggested that feedback connections could serve to stabilize reliable 

propagation of information coding in spike times through the cortex [32]. The hierarchical 

organization of interareal connections and their interaction with the local circuit is thought to 

implement predictive coding, according to which predictions (i.e. expectations) descend the 

cortical hierarchy and prediction errors ascend the hierarchy [33]. Would the precision of 

feedback connections be sufficient to allow the cortical network to learn the statistical 
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regularities of the sensory input? Indeed in the primate this might be relatively more feasible 

than in the rodent because there is a high precision feedback pathway in the upper part of the 

primate supragranular layers [2]. In the primate there are two feedback streams, one in the 

supragranular layers that contains uniquely cortical projecting neurons, and one in the 

infragranular layer which houses the subcortical projecting neurons [34]. The feedback 

stream in the supragranular layers is point-to-point, contrasting with the diffuse feedback 

stream in the infragranular layers. Hence the primate counterstream organization would have 

a fine grain supragranular feedback system conveying predictions in a sparse coding system 

and a more classical infragranular course grain feedback system conveying predictions in a 

dense coding system.

From structure to dynamics: a hierarchy of timescales

The advance of the diffusion tensor imaging (DTI) technique has led to the perspective of 

non-invasive and quantitatively mapping of connections of the human brain, making it 

possible to study the structure-dynamics relationship using dynamical “whole-brain” 

modeling [35•, 9••, 10]. However, DTI has some inherent limitations compared to axonal 

tracer method [36, 37], and it does not provide directional or hierarchical information about 

interareal connectivity.

Recently, we developed a dynamical model of the primate cortical system, with inter-areal 

connections constrained by the recently published weighted- and directed- connectivity data 

for monkeys [11••]. We assumed that all local areas share an excitatory-inhibitory recurrent 

architecture described by the same mathematical model. However, certain network 

properties exhibit heterogeneity quantitatively. In particular, the strength of synaptic 

excitation varies from area to area, which was calibrated by the anatomical data on the 

number spines per pyramidal neuron [12]. Interestingly, a hierarchy of timescales emerges in 

this model system: early sensory areas show brief, transient responses to input (appropriate 

for sensory processing), whereas higher association areas such as the prefrontal cortex 

integrate inputs over time and exhibit persistent activity (suitable for decision-making and 

working memory). Such a hierarchy of “temporal response windows” is supported by fMRI 

and MEG observations [38,39,40•], our model suggests a large-scale circuit mechanism for 

this important characteristic of large-scale cortical organizations. It is well known that, in an 

isolated local circuit, the time constant of dynamics could be larger with strong recurrent 

excitation [18]. However, the pattern of the timescale hierarchy in the large-scale model has 

been shown to critically depend on interareal connection loops. For instance, an area with 

relatively weak local connections may display slow reverberatory dynamics as a result of 

being part of a large feedback system. This explains why the dominant timescale of a 

cortical area is not a monotonic function of its position along the brain’s hierarchy (Figure 

3D). A theoretical work mathematically identified classes of network architecture that give 

rise to a hierarchy of disparate timescales differentially localized in different regions of a 

network [41].

A segregation of timescales, that are heterogeneously distributed in different parts of the 

cortical system has a least two conceptual consequences that need to be considered. Spatial 

differences in neuron response led to a reappraisal of the concept of receptive field by 
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indicating that there are responses beyond the classical receptive field. Similarly, we need to 

elucidate what is the integration of a signal from a higher area with a long time constant on a 

neuron with a short time constant in a lower area. Differences in time scales should be 

contrasted to the idea of scale-free neural dynamics [42,43•,44,45]. Insofar as scale-free 

dynamics is defined by the lack of a characteristic timescale, does it imply a homogeneity of 

(however complex) neural dynamics regardless of the cortical location? Future experiments 

will determine more precisely to what extent neural dynamics differ across cortical areas. At 

the same time, this question can be investigated in computational modeling constrained by 

new anatomical data.

Concluding remarks

The quest for the principles of cortical function have to explain the “skeleton of strong 

connections in a sea of weak connections at the level of the local circuit [15, 46] and the 

highly skewed distribution of inter-areal connection weights linking areas across different 

sensory, motor and cognitive modalities [2]. The insight from the recent work [16••] points 

to an experimental approach to tackle the local aspects of the cortical network, and a similar 

approach is now becoming technically feasible for the inter-areal cortical network. This 

work raises many conceptual questions such as the relationship between large-scale 

population codes and circuit connectivity and the topology of interconnected subnetworks 

[21]. However, while work in the rodent is in many ways cutting edge, benefitting as it does 

from numerous technological advantages, we need to keep in mind the important qualitative 

differences in the rodent and primate brain. The advent of genetic engineering in the primate 

promises to greatly facilitate future research in this direction. Establishing a firm link from 

structure to function is essential to understand complex neural dynamics.
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• We review recent work on mesoscopic, directed- and weighted- 

connectivity of monkey and rodent.

• New data led to the proposal of a spatially-embedded random network 

model for the mammalian cortex.

• Several important differences between primate and rodent are 

highlighted.

• A large-scale dynamical model of the primate cortex gives rise to a 

hierarchy of timescales.
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Figure 1. 
Inter-areal connections of macaque monkey cortex. (A) A retrograde tracer is injected in a 

(target) area, and relative weight of connection between a source area and the target area is 

quantified by the fraction of labelled neurons (FLN), which is the number of labelled 

neurons in the source area divided by the total number of labelled neurons. (B) The analysis 

is carried out with a number of cortical areas, leading to a weighted- and directed- inter-areal 

network connectivity. (C) FLNs span five order of magnitudes and are fit by a lognormal 

distribution. (D) FLN between a pair of cortical areas is an exponential function of their 

distance, with the characteristic distance length of ~ 11 mm. Adapted with permission from 

[1••].
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Figure 2. 
A spatially embedded random network model of large-scale cortical system. (A) The model 

cortex is a continuous volume in a 3D Euclidean space in the shape of a spheroid, here 

represented in 2D as an ellipse for illustration purposes. Top: N areal centers are chosen 

randomly from the spheroid (plus symbols), and the configuration of the areal centers 

defines the parcellation of the model cortex into N areas (various colors) through a Voronoi 

partition of the spheroid, i.e., each area is the set of points closer to a given center than to 

any other center. Middle: The source of an axon (blue dot) is sampled uniformly from within 

the spheroid, and the direction of the axon is determined by the sum of the forces which 

attract the axon to the areal centers. The individual forces decay with the distance to the 

areal centers (arrows) according to an inverse power law, with the strengths represented here 

by the red intensity from light (weak) to dark (strong) red. Bottom: With the direction fixed, 

the axon extends from the source (blue dot) to the target (orange dot); the length is 

determined by sampling from an exponential distribution. The areas corresponding to the 

source and target of the axon are assigned according to the parcellation shown at the top. (B) 

Proportion of directed connections and occurrence of reciprocal and unidirectional pairs as a 

function of interareal (center-to-center) wiring distance in data (top) and model (bottom). 

The occurrence of reciprocal (squares) and unidirectional (triangles) connections are 

compared with p2 (orange line) and 2p(1-p) (green line), respectively, where p is the 

maximum-likelihood estimate of the proportion of directed connections (blue line). (Insets) 

Relationship between similarity and wiring distances in the edge-complete subnetwork. (C) 

Same as B but as a function of output similarity distance. (Insets) Distribution of similarity 

distances. (D) Normalized in- and out-degree sequences and clustering coefficients (for 

areas in the edge-complete subnetwork). In-degree represents input from all 91 source areas, 

for the 29 injected areas; out-degree represents output to the 29 injected areas, from all 91 

source areas. (E) Comparison of the triad motif distribution in model and data. Reproduced 

with permission from [6••].
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Figure 3. 
Hierarchy of timescales in an anatomically-constrained dynamical model of macaque cortex. 

(A) Connections between 29 areas in the macaque cortex. Strong connections are indicated 

by lines, with line thickness determined by connection strength. (B) The number of spines 

on the basal dendrites of pyramidal cells in an area is strongly correlated with the area’s 

hierarchical position determined by the pattern of laminar projections. This is incorporated 

into the model, in which the excitation input strength is larger in areas higher in the 

hierarchy. (C) Stochastic activity fluctuations are fast in Area V1 but much slower in 

dorsolateral prefrontal cortex area 9/64d. (D) Autocorrelation functions in response to white-

noise input to area V1, from which a dominant time constant was extracted for each cortical 

area. The model shows a hierarchy of timescales, with sensory areas and association areas 

characterized by short versus long timescales, respectively. Reproduced with permission 

from [11••].
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