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Diversification of DnaA dependency for DNA
replication in cyanobacterial evolution
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Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA
is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication
at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in
plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent
mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on
DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus
PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an
episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants
than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis
sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already
lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed
that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such
an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.
The ISME Journal (2016) 10, 1113–1121; doi:10.1038/ismej.2015.194; published online 30 October 2015

Introduction

Chromosomal DNA replication is a fundamental
process required to inherit the genetic information
to progeny in both prokaryotes and eukaryotes.
Replication in most bacteria, which have single copy
genome, is initiated at an oriC region, whereas in
eukaryotes and some archaea, the process is initiated
at multiple origins. Initiation of bacterial DNA
replication is regulated by the DnaA initiator protein.
DnaA binds to the DnaA box located at oriC to
facilitate the unwinding of duplex strands (Katayama
et al., 2010; Scholefield et al., 2011); consequently,
replisome complexes are recruited to the unwinded
oriC. As such, DnaA is essential for DNA replication
initiation in most bacteria. Indeed, with the excep-
tion of certain symbiotic species, there are no known
free-living, DnaA-independent bacteria (Akman
et al., 2002; Ran et al., 2010; Nakayama et al., 2014).

Cyanobacteria are prokaryotes that utilize an
oxygen-producing photosynthetic system and share
a common ancestor with chloroplasts. Cyanobacteria

display morphological and ecological diversity
relating to structural characteristics (for example,
rod shaped, coccus and filamentous) and environ-
mental habitat (for example, ocean, fresh water,
desert) (Herrero and Flores, 2008). Among many
cyanobacteria, three typical freshwater cyano-
bacteria, Synechococcus elongatus PCC 7942 (rod
shape), Synechocystis sp. PCC 6803 (coccus) and
Anabaena sp. PCC 7120 (filamentous) (hereafter
S. elongatus, Synechocystis and Anabaena), have
been used as model organisms for the study of
cyanobacterial physiology such as photosynthesis,
circadian rhythm, nitrate fixation and development
(Herrero and Flores, 2008). Molecular phylogenetic
analysis of DNA sequence converge to a mono-
phyletic origin for plastid (Criscuolo and Gribaldo,
2011; Shih et al., 2013; Li et al., 2014; Ochoa de Alda
et al., 2014), meaning that the plastid originated
from a single primary endosymbiosis in which a
heterotrophic protist engulfed and retained a cyano-
bacterium in its cytoplasm. However, the identifica-
tion of the nearest current cyanobacterial species
remains controversial (Deusch et al., 2008; Criscuolo
and Gribaldo, 2011; Shih et al., 2013; Li et al., 2014;
Ochoa de Alda et al., 2014) and then characteristics
of the ancestral cyanobacterium are largely unclear.

Few studies have focused on the mechanism of
cyanobacterial DNA replication, as it was believed to
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be similar to the bacterial mechanism. Indeed, the
dnaA gene and several replication-related factors are
conserved in many cyanobacteria. Our recent studies
in S. elongatus revealed that replication is initiated at
the DnaA box-containing oriC region (Watanabe et al.,
2012) by a light-dependent mechanism (Ohbayashi
et al., 2013); this suggests that replication is
DnaA dependent, as in typical bacteria. In contrast,
the dnaA gene is not essential for cell viability
in Synechocystis (Richter et al., 1998), although
additional characteristics were not addressed. The
dnaA gene is inactivated by a transposon insertion in
the symbiotic cyanobacterium Nostoc azolla (Akman
et al., 2002) and is not conserved in the diatom
endosymbiont that is of cyanobacterial origin (termed
a spheroid body) with a 2.7-Mb genome (Ran et al.,
2010). Moreover, recent study suggested that most
of the DNA replication enzymes in chloroplast
originated from cyanobacteria and others (Moriyama
and Sato, 2014), and the vestige of symbiotic evolution
was observed. However, the only dnaA ortholog is
not conserved in chloroplasts of plants and algae
for which the genomes have been sequenced
(Supplementary Table S1), except for Cucumis
sativus. It is possible that the dnaA gene of C. sativus
is derived from horizontal gene transfer or genome
sequence data of C. sativus include some contamina-
tions because this dnaA gene matches that of
Enterobacter cloacae ECNIH5, ECR091 and ECNIH3
at 100% according to blast search. These suggest that
dependence on DnaA varies among cyanobacteria and
was lost before the emergence of symbiosis and when
or how DnaA-independent mechanisms were
acquired in chloroplast has been mysterious.

In this study, we examined DnaA dependency
on DNA replication in three model freshwater
cyanobacteria. We demonstrate the diversification
of DnaA dependency in the cyanobacterial
lineage. We observed that S. elongatus was DnaA
dependent, but could adapt to dnaA deletion by
plasmid integration into the genome; in addition,
dnaA deletion conferred an advantage in long-term
culturing conditions. Conversely, Synechocystis and
Anabaena were DnaA independent, and replication-
sequence analysis suggested multiple replication
origins, unlike many other bacteria.

Materials and methods

Bacterial strains and culture conditions
Wild-type (WT) and mutant strains of S. elongatus
PCC 7942, Synechocystis sp. PCC 6803 and Anabaena
sp. PCC 7120 were grown at 30 °C in BG-11 liquid
medium under white light (50 μmolm−2 s−1) with
2% CO2 aeration. To synchronize cell proliferation,
cells were cultured for 10 days until they reached the
stationary phase, and were then diluted with fresh
BG-11 medium, such that the optical density at
750 nm (OD750) was 0.2. After culture for 18 h in the
dark, the culture was transferred to the light condition

(time 0) to restart cell growth; OD750 and cell
number were measured 3 h later. To assess cell
growth, synchronized cells were labeled with
bromodeoxyuridine (BrdU) for 1–4 h and examined
by immunocytochemistry using an antibody against
BrdU (Roche Diagnostics, Tokyo, Japan); BrdU
incorporation was assessed using microscopy and
western blot analysis (100 ng DNA). Cell viability
was evaluated using SYTOX Green (Invitrogen,
Carlsbad, CA, USA) staining.

Antiserum against SyfDnaA
Mouse anti-SyfDnaA antiserum was generated as
follows: the full-length dnaA gene (Synpcc7942_1100)
was PCR-amplified using primers dnaA-F-BamHI
and dnaA-R-SalI (Supplementary Table S3) and the
fragment was cloned into pDEST-cold-TF (Imamura
et al., 2008). The resulting vector was transformed into
Escherichia coli strain Rosetta 2(DE3)pLys (Takara Bio
Inc., Otsu, Japan). Protein purification and polyclonal
antibody generation (Japan Lamb Co., Ltd, Hiroshima,
Japan) were performed as previously described
(Watanabe et al., 2013).

Replication-sequencing (Repli-seq) analysis
BrdU-labeled DNA was isolated by immuno-
precipitation, and a library was prepared for next-
generation sequencing using an Illumina genome
analyzer (San Diego, CA, USA), as previously
described (Watanabe et al., 2012).

Pulsed-field gel electrophoresis analysis and Southern
blot hybridization
Cells were embedded in agarose, lysed with lysozyme
and proteinase K (Bio-Rad Laboratories, Inc., Hercules,
CA, USA), digested with NdeI (Takara Bio Inc.) and
subjected to pulsed-field gel electrophoresis under
conditions recommended by the manufacturer
(Bio-Rad: switch time, 1–10 s; run time, 20 h; angle,
120°; voltage gradient, 6 V cm−1 in 0.5× Tris-buffered
EDTA at 14 °C). The gel was then transferred to a
Hybond-N+ nylon membrane (GE Healthcare Japan,
Tokyo, Japan), hybridized with digoxigenin-labeled
probes generated by PCR using primers specific to
each region (Supplementary Table S3, Southern
blotting), and detected using a digoxigenin High Prime
DNA Labeling and Detection Starter Kit II (Roche
Diagnostics, Tokyo, Japan) according to the manufac-
turer’s instructions.

RNA sequencing analysis
Total RNA was extracted from each strain as
previously described; rRNA was removed from 1 μg
of total RNA using the Ribo-Zero Magnetic Kit for
Gram-Negative Bacteria (Epicentre, Madison, WI,
USA), and a library was constructed with the
remaining RNA using the NEBNext mRNA Library
Prep Master Mix Set for Illumina (New England
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Biolabs, Herts, UK). In total, 17 791 908, 22 260 758
and 16 294 140 sequence reads were obtained for WT
and ΔdnaA-1 and -2, respectively, that were mapped
to the S. elongatus reference genome. Reads per
kilobase (kb) per million mapped reads were
calculated using CLC Genomics Workbench software
version 7.0.4 (CLC Bio, Germantown, MD, USA).

Phylogenetic analysis
Phylogenetic relationship between cyanobacteria was
analyzed by 16S ribosomal RNA sequences using
MEGA ver. 6.06 (Tamura et al., 2013). The sequence
acquired from Cyanobase (http://genome.microbedb.
jp/cyanobase) were aligned by MUSCLE, and
phylogenetic tree was generated by the neighbor-
joining method based on the alignment file, from
which probability was confirmed by the 1000-time
trial using the bootstrap method. The graphics of
phylogenetic tree was arranged by Fig Tree version
1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

Results

Functional role of DnaA in DNA replication and effect
of dnaA deletion in S. elongatus
We analyzed DnaA protein expression and evaluated
the protein’s ability to bind oriC in S. elongatus.
DnaA was constitutively expressed (Figure 1a and
Supplementary Figure S1a) and bound to oriC but not
to the opposite region (ter) (Figure 1b), indicating that
it acts as an initiator protein in S. elongatus.
To determine whether replication initiation can occur
in a DnaA-independent manner as in Synechocystis
(Richter et al., 1998), we constructed a dnaA deletion
mutant. After two rounds of selection, 18 colonies
were isolated during the stationary growth phase
with complete disruption of the dnaA gene
(Supplementary Figures S1b and c), from which two
mutants (ΔdnaA-1 and -2) were selected. Expression
of the DnaA protein was undetectable in these
disruptants (Figure 1a), but cell growth was compar-
able to that of the WT strain (Figure 1c). Replication
was assayed by pulse-labeling cells with BrdU using
thymidine kinase transductants (Watanabe et al.,
2012), followed by immunocytochemical analysis
of BrdU incorporation (Figure 1d). The ratio of
BrdU-positive cells was reduced by 450% in dnaA
disruptants compared with that of the WT strain at
each time point (Figure 1e). These results suggest that
dnaA deficiency decreases the replication initiation
frequency and that DnaA plays an important role in
the initiation of DNA replication in S. elongatus.

Elucidation of the origin of DNA replication in dnaA
disruptants
Given that ΔdnaA-1 and -2 exhibited DNA replica-
tion activity, we performed Repli-seq analysis to
identify the replication initiation site. BrdU-labeled
DNA was immunoprecipitated using an anti-BrdU

antibody and analyzed using next-generation
sequencing. In the WT strain, a large number of
sequencing reads was mapped only at oriC, as shown
in our previous study (Watanabe et al., 2012)
(Figure 2a). Interestingly, in dnaA disruptants, the
peak was observed in two different regions
(Figure 2a), indicating that DNA replication was
initiated from sites other than oriC.

To test whether a DnaA-independent replication
mechanism was acquired by a suppressor mutation,
we performed whole-genome sequencing of dnaA
disruptants. Surprisingly, the 46 kb pANL plasmid,
which is extra-chromosomal in WT S. elongatus
(Chen et al., 2008), was integrated into the ΔdnaA-1
and -2 chromosome at different sites, although there
were no other mutations. Moreover, Southern
blotting and capillary sequencing revealed that all
pANL copies were integrated in the middle of the
Syn7942_0826 gene in ΔdnaA-1 and in the intergenic
region between Syn7942_1297 and Syn7942_1298 in
ΔdnaA-2 (Figure 3 and Supplementary Figure S2),
respectively. These integration sites were identified
as new replication origins by Repli-seq analysis
(Figures 2a and 3, and Supplementary Figure S2).
Interestingly, capillary sequencing also revealed that
the chromosome sequence was shifted to the
plasmid sequence at 7 or 3 bp (GAAAATC or ACC)
homologous regions in ΔdnaA-1 and -2, respectively
(Supplementary Figure S2). These findings indicate
that plasmids were integrated by homologous
recombination via single crossovers at short homo-
logous sequences. We also investigated the involve-
ment of the DNA helicase DnaB, which forms the
pre-priming complex with DnaA at oriC, and then
DnaB binds to the oriC region related to the other
region. Preferential binding at this site was not
detected in dnaA disruptants, although DnaB was
found to bind the oriC region rather than other
regions in WT (Supplementary Figure S3), indicating
that dnaA disruptants could not recruit DnaB to the
oriC region. These results revealed that the DNA
replication origin in dnaA disruptants was shifted
from oriC to a plasmid integration site, strongly
suggesting that the DnaA/oriC system shifted to
a plasmid-based DNA replication initiation system.

Increased viability of dnaA disruptants under long
culture conditions
The reason why diversification of DnaA dependency
occurred in cyanobacteria is unclear. The functional
significance of dnaA deficiency was investigated
by assessing cell growth in dnaA disruptants. The
loss of DnaA function could have been advantageous
on survival in certain environmental conditions
if cyanobacteria had evolved a variety of DnaA
dependence mechanisms. Although we tested the
growth and viability under some stress conditions,
including high light, low and high temperature
and oxidative stress, significant differences
were not observed. However, after long culture
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periods, viability was notably higher in ΔdnaA-1
and -2 compared with that of WT cells (Figures 4a
and c). A viability assay was performed using
SYTOX Green that exclusively stains dead cells. At
4 and 5 weeks after inoculation, ∼ 60% viability was
observed in both ΔdnaA-1 or -2 disruptants,
in contrast with respective viabilities of 32% and
20% in WT cells. DnaA protein was expressed until
6 weeks (Figure 4b) in WT cells, indicating that
DnaA was very stable in long culture conditions.
These results indicate that deletion of the dnaA gene
conferred a survival advantage to S. elongatus;
indeed, the disruptants were isolated from stationary
phase cultures (Supplementary Figure S1b). Thus,
these culture conditions could be necessary to obtain
complete dnaA disruptants. The mechanistic basis
for the enhanced survivability of ΔdnaA-1 and -2 was
investigated by performing a transcriptome analysis.
In stationary phase cultures of dnaA disruptants,

transcription of many metabolism-related genes,
including the gene encoding adenosine triphosphate
synthase and genes involved in photosynthesis and
carbon metabolism, was downregulated compared
with that of the WT strain (Supplementary Figure S5
and Supplementary Table S2). These data suggest
that disruptants maintained a low level of metabolic
activity during the stationary phase to preserve
cellular energy and enhance viability. DnaA could
also directly regulate expression of these genes,
given its function as a transcription factor in many
bacteria (Messer and Weigel, 1997; Ishikawa et al.,
2007; McAdams and Shapiro, 2009).

DnaA is not essential for DNA replication and cell
growth in Synechocystis and Anabaena
To determine whether dnaA is universally required
for DNA replication, we constructed dnaA deletion
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mutants in model cyanobacteria Synechocystis and
Anabaena that are more closely related to chloroplasts
than S. elongatus, as shown in a phylogenetic tree
(Turner et al., 1999; Falcon et al., 2010; Shih et al.,
2013; Ochoa de Alda et al., 2014) (Figure 5a and
Supplementary Figure S6). We readily obtained dnaA
deletion mutants using Synechocystis and Anabaena,
in contrast to S. elongatus. In these genera, growth and
DNA replication in the disruptants were indistin-
guishable from those in WT cells (Figures 5b and c).
Deletion of the dnaA box-containing predicted oriC
region (POR) could also be obtained in Synechocystis,
and replication and cell growth were unaffected
in the Synechocystis POR-deletion mutant. We
verified whether these mutants possessed a suppres-
sor mutation such as plasmid integration, as detected
in S. elongatus using a next-generation sequencing
approach. No mutations or plasmid integrations were
detected in Synechocystis and Anabaena, indicating
that these utilized a DnaA/oriC-independent system of
DNA replication.

To identify alternative replication initiation sites,
a Repli-seq analysis was performed using a WT
Synechocystis strain. There were no peaks observed
at either POR or other genomic regions (Figure 2b),

although a replication origin could be detected in
the case of a single origin. This finding suggests
that there are multiple replication origins that fire
asynchronously, as in eukaryotic nuclear chromoso-
mal replication. Leading and lagging strand replica-
tion are subjected to different mutational pressures,
resulting in an asymmetric genomic composition
(Lobry and Sueoka, 2002; Lobry and Louarn, 2003),
including GC skew, that has been used to predict the
DNA replication origin at the shift point of GC skew
(Frank and Lobry, 1999; Arakawa and Tomita, 2007).
However, in Synechocystis, the replication origin
was not predicted from GC skew, as there are many
shift points (Watanabe et al., 2012). Moreover, these
genomic compositions suggest the multiple replica-
tion origin in some prokaryote (Gao, 2014, 2015).
These also support our hypothesis that Synechocystis
has multiple replication origins.

Discussion

Freshwater cyanobacteria such as S. elongatus have
evolved and diversified while maintaining a depen-
dence on DnaA for the initiation of DNA replication,
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with dnaA disruptants acquiring a survival advantage
in the stationary phase. In contrast, DNA replication
in cyanobacteria that are closely related to chloroplasts,
such as Synechocystis and Anabaena, is DnaA
independent. Thus, DnaA dependency corresponds to
the phylogenetic relationship and then we propose that
ancestral cyanobacteria acquired DnaA-independent
mechanism before symbiosis as a fundamental biolo-
gical phenomenon and such a cyanobacterium facili-
tated the evolution of symbiosis.

In the S. elongatus dnaA disruptants, an episomal
plasmid was integrated into the chromosome,
and chromosomal replication was initiated using the
plasmid initiation system. In E. coli, it is known
that the replication origin of a plasmid or phage is
integrated into the chromosome in oriC- and dnaA-
defective mutants (Lindahl et al., 1971; Nishimura
et al., 1971; Louarn et al., 1982; Gowrishankar, 2015).

These strains, which depend on exogenous elements
for their replication, displayed no advantageous
compared withWT in both E. coli and Bacillus subtilis.
In contrast, the S. elongatus dnaA disruptant not only
exhibited normal growth, but also displayed increasing
cell viability in long culturing conditions. Interestingly,
polyploid archaea tolerate the deletion of all replica-
tion origins and mutants exhibit a faster growth rate
compared with WT counterparts (Hawkins et al.,
2013). Freshwater cyanobacteria are also polyploid
and their chromosomes are replicated asynchronously;
that is, they may not initiate replication only once per
chromosome per cell cycle (Chen et al., 2012;
Jain et al., 2012; Watanabe et al., 2012) in contrast to
bacteria that have a single chromosome copy and
therefore tightly regulate replication initiation via the
DnaA/oriC system. Thus, polyploidy and asynchro-
nous replication could have enabled the acquisition of
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DnaA-independent replication control and facilitated
DnaA-independent growth under various environmen-
tal conditions in freshwater cyanobacteria.

The S. elongatus dnaA disruptants were viable
under conditions of nutrient starvation (Figure 4),
suggesting that DnaA dependence not only affected
DNA replication, but also environmental adaptation
during cyanobacterial evolution. In fresh water,
changes in environmental conditions such as nutrient
availability are common. Therefore, freshwater
cyanobacteria can survive for long periods without
nutrients. In contrast, nutrients are constant in the
ocean owing to the occurrence of waves. Thus,
considering DnaA dependence with respect to the
natural habitat of cyanobacteria, it can be concluded
that marine and freshwater species are DnaA depen-
dent and DnaA independent, respectively. Marine
cyanobacterial dnaA gene expression oscillates with
the cell cycle (Holtzendorff et al., 2001), and a GC
skew pattern is consistent with that of the oriC region
(Watanabe et al., 2012), suggesting that these species
use DnaA for DNA replication, similar to other
well-characterized bacteria. In this respect, the fresh-
water cyanobacterium S. elongatus is closely related
phylogenetically to marine cyanobacteria (Figure 5a).

Among photosynthetic microorganisms, cyano-
bacteria are the only primary symbionts that have
evolved into plastids (Reyes-Prieto et al., 2007).
Subsequently, the reorganization of genetic material
and regulatory mechanisms, including those pertain-
ing to DNA replication, occurred between the
nucleus and the symbiont (Kleine et al., 2009;
Moriyama et al., 2014). Twinkle, an organelle DNA
helicase and primase, is shared by plastids and
mitochondria in green plants, whereas cyanobacter-
ial dnaB helicase and dnaG primase are conserved in
red algae. Thus, the evolutionary history of DNA
replication from a cyanobacterial to a plastid system
can be discerned from genetic evidence. Interest-
ingly, dnaA is the only gene that is not conserved
between red algae, the cyanobacterial symbiont
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Nostoc azollae (Ran et al., 2010) and the spheroid
bodies (Nakayama et al., 2014) of diatoms. We have
shown that cyanobacteria have the capacity to shift
the DNA replication initiation system from chromo-
somal to plasmid type by dnaA deletion. In red algae
plastids, the substitution of cyanobacteria-type DNA
polymerase (Pol III) with a plasmid-type (Pol I-like)
(Moriyama et al., 2011, 2014) suggests that polymer-
ase reorganization occurred at early stages of
symbiosis. We propose that the DnaA-independent
replication initiation system in cyanobacteria accel-
erated the reorganization of replication components
and that this flexibility in DNA replication yielded a
preadaptive genotype that enabled symbiosis.
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