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The effect of microbial colonization on the host
proteome varies by gastrointestinal location
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Endogenous intestinal microbiota have wide-ranging and largely uncharacterized effects on host
physiology. Here, we used reverse-phase liquid chromatography-coupled tandem mass spectrometry
to define the mouse intestinal proteome in the stomach, jejunum, ileum, cecum and proximal colon
under three colonization states: germ-free (GF), monocolonized with Bacteroides thetaiotaomicron
and conventionally raised (CR). Our analysis revealed distinct proteomic abundance profiles along
the gastrointestinal (GI) tract. Unsupervised clustering showed that host protein abundance primarily
depended on GI location rather than colonization state and specific proteins and functions that
defined these locations were identified by random forest classifications. K-means clustering of
protein abundance across locations revealed substantial differences in host protein production
between CR mice relative to GF and monocolonized mice. Finally, comparison with fecal proteomic
data sets suggested that the identities of stool proteins are not biased to any region of the GI tract, but
are substantially impacted by the microbiota in the distal colon.
The ISME Journal (2016) 10, 1170–1181; doi:10.1038/ismej.2015.187; published online 17 November 2015

Introduction

The human gut harbors a complex ecosystem of
microbes, comprising as many as 100 trillion
bacterial cells (Whitman et al., 1998). Collectively,
these bacteria constitute our microbiota, which
outnumbers human cells in the body by a factor of
10 (Savage, 1977). The gut microbiota modulates
various aspects of host physiology, including nutri-
tional status, metabolism and immune-system
maturation (Gill et al., 2006; Chow et al., 2010).
Furthermore, the composition of the gut microbiota
has been implicated in several human diseases,
including type 1 diabetes (Wen et al., 2008), obesity
(Ley et al., 2006; Turnbaugh et al., 2006), asthma

(Penders et al., 2007) and inflammatory bowel
disease (Frank et al., 2007; Penders et al., 2007;
Maslowski and Mackay, 2011). DNA sequencing
technologies have enabled the profiling of microbial
communities and their association with human
health and disease (Eckburg et al., 2005; Gill et al.,
2006; Ley et al., 2006). Although these studies
yielded key insights into host–microbe relationships,
the direct effects that microbes have on host
proteomes have only begun to be measured
(Verberkmoes et al., 2009; Erickson et al., 2012;
Lichtman et al., 2015; Muth et al., 2015). New tools
to discover host-derived factors within the intestinal
lumen hold tremendous potential for discovering
molecular mediators of host–microbe interactions
and deriving mechanistic understandings of this
complex, biologically important system.

Recently, we described the first mass
spectrometry-based proteomics approach for speci-
fically interrogating host proteins that are secreted
into the gastrointestinal (GI) lumen and shed into
stool (Lichtman et al., 2013). Although host
responses to changes in microbial composition were
previously investigated in a targeted manner
(Cash et al., 2006; Martens et al., 2008; Suzuki and
Fagarasan, 2008), this novel technique allows the
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discovery of unanticipated host proteins that
respond to and shape changes to the microbiota.
One powerful aspect of this approach is that the stool
host proteome could integrate interactions occurring
throughout the length of the GI tract. Considering the
diversity in structure, function and cell types
throughout the gut, understanding where proteins
are produced and the extent to which feces can serve
as a gut-wide survey is of utmost importance for
future investigations.

Here, we investigate the effects of microbial
colonization on host protein expression as a function
of location along the GI tract. Examination of the
spatial distribution of host proteins makes it possible
to associate them with discrete intestinal niches.
Using gnotobiotic mice, we determined that the GI
tract region had a larger impact on host protein
abundances than did the microbial colonization state,
and that changes in microbial colonization affected
patterns of protein abundance and diversity in a
location-specific manner. Comparison of these data
with fecal proteome data sets allowed us to measure
the extent to which the stool proteome serves as a
proxy for characterizing the proteins found along the
entire GI tract. We conclude that stool proteins
provide a reasonable global snapshot of host protein
expression throughout the length of the GI tract, but
the host proteome is continually manipulated by
microbes as they transit the lower GI tract. This
regional approach to examine host proteomics fills an
important gap in our understanding of the interde-
pendence between the commensal microbiota and
host physiology and responses to colonization.

Results

Regional protein composition varies among
colonization states and across the length of the GI tract
To investigate the expression of host proteins along
the GI tract, we compared mice harboring one of
three gut microbial colonization states (n=3 per
state): (1) germ-free (GF), (2) colonized with a single
commensal microbe, Bacteroides thetaiotaomicron
(BT) and (3) conventionally raised (CR) with a
normal, pathogen-free mouse microbiota. BT was
chosen based on its status as a common and
abundant member of the human microbiota that
has been extensively characterised (Hooper et al.,
2000; Martens et al., 2008; Mahowald et al., 2009;
Sonnenburg et al., 2010). We analyzed the luminal
contents of five GI regions dissected from each
experimental animal: (1) stomach, (2) jejunum,
(3) ileum, (4) cecum and (5) proximal colon. Luminal
material was processed as previously described
(Lichtman et al., 2013) (Materials and methods),
and analyzed via LC-MS/MS (liquid chromato-
graphy-coupled tandem mass spectrometry). We
identified 853 unique proteins (Supplementary
Table S1) across the three colonization states and
five locations after filtering the results to a 1%

peptide false discovery rate (FDR) for each mass
spectrometry run and an experiment-wide 5%
protein FDR. Proteins were quantified by spectral
counts normalized by protein length and total
spectral assignments.

As many as 11 proteins (average of 7.0 ± 1.6)
identified from any of the five luminal regions
individually accounted for at least 3% of the total
host-protein mass from that region, as estimated by
spectral counts (Figure 1a, Supplementary Table S2).
These high-abundance proteins in aggregate consti-
tuted an average of 52 ± 11% of the total host protein
abundance estimated in this way, ranging from
36±12% in stomach samples from GF mice to
63±4% in jejunum samples from GF mice
(Figure 1a). Anionic trypsin-2 and chymotrypsin-
like elastase family member 2A were the highest
abundance proteins across all locations and coloni-
zation states (Figure 1a). The ubiquitous presence of
these proteases throughout the GI tract and the high
jejunal abundance of co-lipase, a lipase coenzyme
secreted by the pancreas (Lowe, 2002), supports our
data set’s validity due to their previous description
in numerous studies. Notably, the fifth most abun-
dant protein was an uncharacterized protein with
predicted alpha-amylase activity (Figure 1a), sug-
gesting that this approach has utility in functionally
annotating in silico-predicted open reading frames.

GI host-protein expression is primarily driven by
location rather than colonization state
Visual inspection of abundance-weighted protein
representation suggested greater similarity across
colonization states than GI locations (Figure 1a).
To quantify this similarity, we pooled each set of
triplicate analyses and counted the number
of proteins shared across each colonization state at
each GI location (Figure 1b). Although the degree of
overlap varied between colonization states, the
number of proteins shared between any two coloni-
zation states always outnumbered the proteins
specific to any particular state (Figure 1b). Moreover,
GF and BT mice were generally much more similar
to each other than either one was to CR mice, with
the exception of the stomach, where GF and CR
samples had the greatest overlap (Figure 1b).

We next counted the total number of proteins
shared across each GI region regardless of coloniza-
tion state (Table 1). These data suggest that ~ 65% of
proteins occur in every examined GI region.
We further note that the cecum and proximal colon
were most similar in the proteins they express
(Table 1), in accordance with their spatial proximity
along the GI tract. Eighteen proteins were identified
in every sample, independent of location, coloniza-
tion state and replicate (Supplementary Table S3),
consistent with their high abundance throughout the
GI tract. The observation that host proteins are
observed throughout the GI is consistent with a
model in which proteins produced in a proximal
region of the GI tract are not degraded as they transit
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to distal regions. Alternatively, these proteins could
be expressed ubiquitously throughout the gut.

To further assess the similarities between the
protein profiles of each region and colonization state
in each sample, we used spectral count-estimated
abundances to calculate the Shannon–Weiner diver-
sity index, an information-theoretic measure in
which higher values indicate higher diversity
(Magurran, 2004). Host-protein diversity was lower
in contents from CR mice than from BT mice
(proximal colon) and GF mice (proximal colon and
cecum) (Figure 1c). To address whether the differ-
ences in diversity were due to host proteome
richness (number of proteins) or evenness (expres-
sion level of the proteins), we compared the number
of proteins found in each region and colonization

state. Significantly more proteins were identified
from GF mice than from CR mice in both the cecum
and the proximal colon (Figure 1d). This suggests
that the GF host-protein populations we were able to
observe by LC-MS/MS are richer than those of CR
mice. Additionally, in GF samples, highly abundant
proteins (each constituting at least 3% of total
protein abundance) represented 46% and 51% of
the total protein abundance in the cecum and colon,
respectively, compared with 64% and 67% in CR
mouse samples (Figure 1a). These data suggest that
similar numbers of proteins are present in all
colonization states, but increased bacterial load in
the large intestines of CR-colonized mice resulted in
a commensurate decrease in the number of identifi-
able host proteins. This notion is supported by our
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Figure 1 Protein abundance varies by location along the gut as well as by colonization state. (a) Each slice corresponds to the abundance
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blue). (b) The number of unique proteins in the indicated colonization state. All overlaps between colonization states were significant
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observation that of the 518 718 and 509 276 MS/MS
spectra acquired from all GF and CR specimens,
respectively, a substantially larger proportion (17%
vs 12%) was confidently assigned to host proteins
derived from GF animals. Thus, the absence of
microbial proteins gives the mass spectrometer more
opportunities to measure host proteins in proportion
to their underlying abundances. We conclude that
since decreased microbial complexity can enhance
the identification of low-abundance host proteins,
caution should be exercised when comparing low-
abundance proteins across multiple colonization
states.

Our observations suggested that both GI region and
colonization state affect the host proteome. To
identify the major driver of proteome variation, we
applied unsupervised clustering methods to our
abundance profiles (Materials and methods). Princi-
pal component analysis (PCA) revealed that luminal
contents clustered predominantly based on GI location
rather than on colonization state (Figures 2a and b).
Hierarchical clustering of the protein profiles further
demonstrated the similarity between connected
regions of the gut; we observed five prominent
clusters, each consisting mainly of samples from
one or two adjacent locations in the GI tract
(Supplementary Figure S1). To minimize the effects
of stochastic noise contributed by low-abundance
proteins, further clustering was performed with the
72 most abundant proteins across all samples
(Figure 2c); the resulting groupings closely matched
those generated by clustering the entire protein data
set (Supplementary Figure S1). Samples from the
stomach clustered farthest from the rest of the data
set, consistent with our observation that the
third principal component primarily distinguished
stomach-derived material (Figure 2a). In contrast,
samples from the proximal colon and the cecum
clustered together (Figure 2c, Supplementary Figure
S1), although PCA identified greater distinction
between these two contiguous GI regions
(Figure 2a). Samples from the ileum and the jejunum
also co-clustered; the jejunum samples formed a

sub-cluster within the larger ileum cluster (Figure 2c,
Supplementary Figure S1). Four samples did not
cluster according to location, colonization state or
mouse replicate (Figure 2c). These samples and
samples that clustered away from their correspond-
ing replicates were from CR mice, indicative of the
greater variability in the CR mouse proteome
compared with GF and BT states as we previously
observed (Lichtman et al., 2013).

Whether considering all proteins identified here,
or just those with the greatest abundance, hierarch-
ical clustering demonstrated that luminal protein
abundances generally corresponded to GI location.
To demonstrate the feasibility of identifying region-
specific proteins, we used random forests to generate
a classifier of samples into locations (stomach,
jejunum/ileum and cecum/proximal colon), based
on 247 proteins with total relative abundances
greater than 0.01. Across all mice, the out-of-bag
(OOB) error rate was only 24%, indicating a high
level of classification accuracy. Consistent with
hierarchical clustering (Figure 2c), the high varia-
bility of CR host proteomes contributed to these
animals’ misclassification. Based on this, we recal-
culated random forest classifiers for two subgroups
consisting of the BT/GF and the CR mice. These
classifiers resulted in OOB error rates of 0% and
93%, respectively, further demonstrating the
negative impact of CR variability on classification.
These results further illustrate the variability that
exists in the conventional mouse proteome.

Since hierarchically clustering the most abundant
proteins (Figure 2c) re-capitulated sample relation-
ships derived from whole-proteome data set cluster-
ing (Supplementary Figure S1), we explored how
few proteins could be used to obtain the same
clusters. Restricted protein sets that best distin-
guished these regions would be inherently valuable
for understanding biological functions specific to
each region. We created new random forest classi-
fiers, now based only on the top 10% of proteins
with high importance in the initial random forest
analysis (Supplementary Table S4), rather than
abundance alone. The error rates for these new
reduced classifiers performed at least as well as the
entire set of proteins (OOB error rates of 22%, 0%
and 60% for all, BT/GF and CR mice, respectively).
Additional cross-validation was performed by creat-
ing classifiers leaving out one mouse at a time for
each colonization state and predicting the perfor-
mance based on the remaining mice. This resulted in
error rates of 22%, 0% and 53%, very similar to the
OOB rates. Thus, the small subsets of proteins
designated here could classify gut locations with
comparable effectiveness to the entire proteome.
Furthermore, this smaller set out-performed the
proteome-wide classification for the variable CR data
sets. Most interestingly, only one protein, chymopa-
sin, was shared between the GF/BT classifier (22
proteins) and the CR classifier (12 proteins).
Together, these data support the role of the

Table 1 Proteins persist throughout the GI tract

Percentage of
proteins found
in {region}…

…that were also found in {region}

Stomach Jejunum Ileum Cecum Prox col

Stomach 100 77.8 68.7 88.3 73.4
Jejunum 65.1 100 64.6 74.1 71.5
Ileum 65.1 77.6 100 73.3 74
Cecum 67.5 74.5 62.8 100 81.6
Prox col 71 77.8 68.7 88.3 100

Abbreviation: GI, gastrointestinal. Identified proteins were pooled
from all three colonization states. Each entry is the percentage of
proteins found in the region indicated in the row which were also
found in the region indicated in the column.
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Figure 2 Unsupervised clustering shows that variation in the host-secreted proteome is driven by GI location rather than by colonization
state. (a, b) PCA of the normalized spectral counts for the 853 proteins identified in any of the 45 experimental samples, plotting principal
component 1 against principal components 2 (left) or 3 (right). (c) Hierarchical clustering of the abundances of the 72 most abundant
proteins using Euclidean distance and average linkage metrics. The five clusters denoted by boxes are comprised mainly of samples from
one or two adjacent locations along the GI tract. Samples are labelled with the mouse, colonization state and region with the labels of
samples that clustered correctly based on location colored black.
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microbiota in expanding the phenotypic variability
in the host intestinal mucosa.

Ontological classes predict functional differences
across GI locations and colonization states
To assess the functional relevance of location and
colonization state-specific protein representation in
the GI, we assigned gene ontologies (GOs) to each of
the 853 proteins in our data set (Materials and
methods) and repeated PCA and hierarchical
clustering on the resulting 1520 unique functional
annotations. Strikingly, the primary principal
component accounted for 486% of observed varia-
tion, and promoted region-specific sample segrega-
tion (Supplementary Figure S2). Accordingly,
hierarchical clustering of GO assignments grouped
GI regions more tightly than individual animals or
colonization state (Supplementary Figure S3), con-
sistent with clustered protein abundances (Figure 2,
Supplementary Figure S1). Samples from the
stomach again differed from the remaining GI
regions (Supplementary Figure S3), indicating diver-
gent functions of stomach proteins compared with
proteins in the rest of the GI tract. The functions of
proteins in the proximal colon and cecum were
indistinguishable from each other in this analysis;
however, samples from the ileum and jejunum
formed distinct groups, indicating a lesser degree of
functional equivalency between these regions in
comparison with protein abundances (Figure 2c).

To demonstrate the feasibility of identifying
region-specific functions, we used random forests
to classify samples according to GI location (sto-
mach, jejunum/ileum and cecum/proximal colon),
based on the 257 GO terms with total relative
abundance greater than 0.1. Across all mice, the
OOB error rate was only 24%, similar to classifica-
tion using protein identities. As expected consider-
ing hierarchical clustering analysis (Supplementary
Figure S3), when random forests were generated for
four locations (stomach, jejunum, ileum and cecum/
proximal colon), as opposed to grouping the jejunum
and the ileum, the OOB error rate remained low
(33%). In both cases, the OOB error rates were much
higher for CR than for GF/BT mice (53% vs 7% for 4
locations) as seen previously. We then determined
the functions that were most important for differ-
entiating these locations by creating new random
forests based on the 10% of GO terms with the
greatest importance from the original classifier
(Supplementary Table S5). Peptidase activity,
inflammatory response, cell adhesion and cell pro-
liferation functions were among the most discrimi-
nating ontologies, consistent with location-specific
regulation of these GI functions. Taken together,
these results indicate that variation in both protein
abundance and functionality is more strongly influ-
enced by GI location than by the colonization state of
the host.

Protein-abundance patterns change according to GI
location
Global evaluations of protein and GO assignments
support the notion that host-derived luminal pro-
teins are effective descriptors of GI regions and
colonization states. The activities of specific host
proteins, however, are expected to drive the global
protein differences measured across each GI region.
To associate proteins with their most prominent GI
regions, we applied k-means clustering to the
abundances of the 72 most abundant proteins
(Materials and methods). Relative abundances were
z-score normalized before conducting k-means clus-
tering on the refined data set, with the most coherent
protein groups assigned to five, five and six distinct
and unique expression clusters for GF, BT and CR
samples, respectively (Figure 3). To measure over-
lapping abundance patterns between colonization
states, we calculated the squared Euclidean distance
between cluster centroids for all pairwise compar-
isons between colonization states. The smallest
distances between BT clusters and GF clusters
ranged from 0.03 to 3.7 arbitrary units, while the
smallest distances between CR clusters and GF
clusters ranged from 1.27 to 7.30 arbitrary units
(Figure 3). In general, the expression patterns of
luminal samples from BT mice were more closely
related to those of GF mice than CR mice (Figure 3).
This is consistent with our assessment of global
protein counts (Figure 1b), further supporting the
conclusion that a complex microbiota substantially
alters host-protein expression throughout the GI
tract, though to a lesser extent than GI location.

The large dynamic range of these clusters indicates
that the proteins in each have functional relevance to
specific GI regions. We assessed the functional
significance of observed protein-abundance distribu-
tions (Table 2) from the ontological features of each
cluster (Supplementary Table S6). As expected from
GI anatomy, salivary (for example, alpha-amylase 1,
androgen-binding protein gamma and 16.5 kDa sub-
mandibular gland glycoprotein) and stomach-
specific (for example, gastrokine-1 and gastricsin)
proteins were found in the clusters with high
abundance in the stomach and low abundance in
other locations (Supplementary Table S6). Proteins
known to be secreted into the GI tract in the
duodenum (for example, pancreatic triacylglycerol
lipase, co-lipase (Lowe, 2002) and chymotrypsino-
gen B) as well as other proteases (for example,
elastase 1 and carboxypeptidase A1) were present in
clusters that had the highest expression in the
jejunum and the ileum (Supplementary Table S6).
Clusters of proteins that were most highly expressed
in the cecum and proximal colon included anionic
trypsin-2 and acidic mammalian chitinase
(Supplementary Table S6), which also have high
jejunal expression in conventional mice, indicating
microbiota-dependent expression in the proximal gut.
Several uncharacterized proteins (Supplementary
Table S6) were highly abundant across the five
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locations (Supplementary Table S4); the abundance
patterns identified here may provide novel insight
into their function.

The host fecal proteome captures the proteome of each
region of the GI tract
To test the extent to which the fecal proteome
reconstitutes host-protein expression throughout the
gut, we compared the proteins previously identified
in feces (Lichtman et al., 2013) with those identified
at each location along the GI tract (Materials and
methods). Although host-centric fecal proteome
surveys did not directly represent the full diversity
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Figure 3 K-means clustering reveals distinct patterns of protein abundance along the GI tract. K-means clustering (Materials and
methods) on z-score-normalized, highly abundant proteins for six clusters in data from CR samples and five clusters in data from GF and
BT samples. Numbers associated with arrows are the squared Euclidean distance and the number of proteins in common between the
non-GF cluster (BT or CR) and the indicated GF cluster. For example, 28 of 35 proteins in the top BT cluster were found in the top GF
cluster and collectively indicated a squared Euclidean distance of 0.03. St, stomach; Jej, jejunum; Ile, ileum; Cec, cecum; Col,
proximal colon.

Table 2 The fecal host-secreted proteome is representative of
global proteome composition across the GI tract

Region % Proteins found in feces
that are found in region

% Proteins found in region
that are found in feces

Stomach 56.8 63.9
Jejunum 61.9 54.4
Ileum 54.0 57.4
Cecum 68.3 60.4
Prox col 66.7 63.9

Pairwise comparisons between the fecal proteome determined from
Lichtman et al. (2013) and the proteome identified at each location
along the GI tract.

Host proteome varies by gastrointestinal location
JS Lichtman et al

1176

The ISME Journal



of host-protein expression along the GI (Table 2), the
overlap in protein identity between feces and any
single region of the gut was statistically significant
(hypergeometric Po2× 10− 29). Moreover, proteins
found in any single GI region were no more likely
to be present in stool than proteins detected in any
other region (Table 2). This includes comparisons
between fecal proteins and those associated with the
distal gut, which by proximity would be expected to
demonstrate the greatest degree of similarity.

Two hypotheses could explain why the stool did
not demonstrate more similarity to the distal end of
the gut: either the host-derived proteome is physi-
cally transformed during its transit between the
proximal colon and feces, or inter-experiment
variability overshadowed relatively subtle correla-
tions between these matrices across different sets of
mice. To assess this, we compared the abundances of
proteins identified from GF (Supplementary Table
S7) and CR (Supplementary Table S8) proximal
colon samples with stool samples from two (GF) or
three (CR) sets of mice (n=2–4 mice per set). In the
case of GF mice, the correlations of protein abun-
dances between any two stool samples were not
significantly greater than the correlations between
any stool sample and any sample from the proximal
colon (Figure 4a). These data support sampling bias
as the underlying explanation for differences
between the distal gut host proteome and the fecal
proteome of GF mice. Conversely, the correlations
between any two stool samples collected from CR
mice were significantly greater than the correlation
between any stool sample and colon sample
(Figure 4b). We conclude from this analysis that
whereas stochastic sampling contributes to observed
differences between the proximal colon and fecal
proteomes, the presence of microbiota in the distal
colon exacerbates these differences through their
continued influence on host proteins as they transit
through the remaining GI tract.

Discussion

Here we have presented a spatially resolved compar-
ison of host proteins detected along the GI tract. We
also evaluated how the expression of host proteins is
influenced by three microbiota-colonization states.
Our major findings are that: (1) the overlap in protein
profiles is greatest between very simple microbiota
states (BT and GF); (2) variation in protein abun-
dance is driven primarily by location rather than by
colonization state; and (3) proteins identified in fecal
samples generally represent proteins that originate
throughout the GI tract, although they do not directly
provide a nuanced representation of any given GI
location. Although previous studies monitored the
host-secreted proteome of fecal samples (Lichtman
et al., 2013) or focused on targeted processes across
GI locations (Vaishnava et al., 2011), ours is the first
study to generate a global view of host proteins along
the GI tract and across different colonization states.
This work provides a rich data set that should
accelerate future studies of location-specific host-
protein expression. Proteins that we have identified
as acting as location classifiers could provide GI
biomarkers of microbiota-related diseases and host
colonization states.

Taken together, our analyses provide a global
perspective on the host contribution to the GI
luminal proteome and specific candidate proteins
that should guide future investigations into the
outstanding issues mentioned above. From a broad
perspective, our finding that GI-specific GOs (for
example, ‘peptidase activity’) emerged as being
significantly enriched over nondescript ones (for
example, cell part) supports the utility of our
approach. Considering individual proteins, several
detected in our data set are currently uncharacter-
ized and these data may suggest functional roles for
these proteins. We also detected, at lower
abundance, antimicrobial proteins REG3γ and
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Figure 4 Differences between proximal colon and stool samples are microbiota dependent. Spearman correlation coefficients were
calculated for the comparison of any two samples from the proximal colon and stool of (a) GF and (b) CR mice as seen in Supplementary
Tables S6 and S7 (*Po0.01, n.s. = not significant by unpaired, two-tailed t-test).
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alpha-defensin as well as inflammatory proteins
serotransferrin and S100A9 that are likely to be good
markers of increased inflammatory status under
conditions that deviate from the ‘healthy’ conditions
surveyed here. More generally, measuring host-
protein expression in intestinal tissues across loca-
tions and colonization states (by proteomics or
transcript-based measurements) will enable the
evaluation of correlations between region-specific
protein production and luminal protein abundance.
Such a complementary study would provide insight
into the extent of protein carryover between GI
locations, and how the microbiota changes host gene
expression in a global sense. Likewise, microbial
community information such as 16S rRNA sequen-
cing would allow the clustering of particular micro-
bial taxa with host-protein expression. By
demonstrating the power of host-centric proteomics,
this study establishes a roadmap for necessary work
to further elucidate this complex aspect of the host–
microbe relationship.

One challenge of our approach is the introduction
of analytical and biological noise from bacterial
proteins. As seen in the number and diversity of
proteins identified in CR compared with GF mice
(Figures 1c and d), the presence of bacterial proteins
greatly increases the abundance threshold at which
host proteins can be identified. This limitation
reduces the ability to sensitively distinguish biologi-
cal causes of altered protein representation from
technical obstacles. In addition, the experimental
methodology implemented here does not account for
glycosylated and phosphorylated peptides; it has
been estimated that almost 50% of all mammalian
proteins are glycosylated and that a third are
phosphorylated (Zhang et al., 2010). Thus, future
studies that probe this unqueried segment of the
host-secreted proteome could help to clarify and
extend our results. For example, we predict that
there will be significant colonization-dependent
differences in immunoglobulin profiles, given that
there is a large difference in serum immunoglobulin
profiles between GF and CR mice (Meeuwsen et al.,
1989). We expect that application of more nuanced
enrichment and fractionation protocols, as deployed
in other proteome investigations (Zaia, 2008; Wang
et al., 2011), hold the potential to provide even
greater insight into the host proteins directing and
responding to the commensal microbiota.

Materials and methods
Animal handling
In total, 45 protein extract samples were measured.
Three Swiss-Webster mice in each of the three
colonization states (GF, BT and CR) were killed,
and luminal contents were obtained from the
following locations of each mouse: stomach, jeju-
num, ileum, cecum and proximal colon. The small
intestine was sectioned into 16 equal segments, of
which sections 5–10 were identified as jejunum and

sections 11–15 were identified as ileum. The
proximal colon was identified as the first 1–2 cm of
large intestine distal to the cecum. All animal
experiments were performed in accordance with
the guidelines of the Institutional Animal Care and
Use Committee of Stanford University.

Sample preparation
Sample preparation was conducted as previously
described (Lichtman et al., 2013). Briefly, luminal
contents of dissected intestine sections were
extracted, immediately frozen in liquid nitrogen
and stored at − 80 °C until use. Luminal contents
were suspended in 500 μl of solution (8 M urea,
100mM NaCl, 25mM Tris, pH 8.2 with cOmplete
protease inhibitors (Roche, Indianapolis, IN, USA)),
and then thoroughly disrupted by vortexing. Inso-
luble material was pelleted by centrifugation (2500 g
for 8min at room temperature), followed by ultra-
centrifugation (35 000 g for 30min at 4 °C) to pellet
bacteria. The final supernatant was reduced and
alkylated with iodoacetamide, followed by fractiona-
tion using a reverse-phase C-4 cartridge (Grace
Vydak, Columbia, MD, USA) as previously described
(Lichtman et al., 2013). Proteins in the 60%
acetonitrile fraction were digested into peptides
using trypsin (Promega, Madison, WI, USA; V5111)
overnight at 37 °C and desalted using C-18 Sep-pak
cartridges (Waters, Milford, MA, USA).

Mass spectrometry
Desalted, tryptic digests were analyzed by LC-MS/MS
on an LTQ-Orbitrap Velos mass spectrometer (Thermo
Scientific, Santa Clara, CA, USA). Briefly, peptides
were eluted over a 180-min gradient from a 15-cm C-18
reverse-phase column. The mass spectrometer
acquired tandem mass spectra using a top-10, data-
dependent acquisition workflow; MS1 was collected in
the orbitrap at 60 000 resolution and subsequent MS/
MS was acquired in the ion trap. Peak lists were
generated with the msConvert algorithm (Chambers
et al., 2012) (v. 3.0.45). Spectra were assigned to
peptides using the SEQUEST (Eng et al., 1994)
algorithm (v. 28.12), and searching a protein sequence
database consisting of the mouse proteome (Uniprot,
downloaded 30 October 2012), and reversed ‘decoy’
versions of these proteins (Elias and Gygi, 2007). Data
from each individual sample were filtered to a 1%
peptide FDR and subsequently filtered to an
experiment-wide 5% protein FDR using a linear
discriminant analysis (Huttlin et al., 2010). All raw
data are available on PRIDE (Vizcaíno et al., 2013) with
the data set identifier PXD002838. Spectral counts for
each individual protein within a given sample were
divided by the total assigned counts within the same
sample and further normalized by protein length.

Protein-abundance comparisons
Each section of the protein-abundance pie charts
represents the summed abundance across all
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replicates for a given experimental condition. The
core proteome (independent of colonization state)
was determined using the ‘mintersect’ function from
the MATLAB File Exchange. Proteins were included
in the core proteome if they were identified in at
least one replicate across all locations and coloniza-
tion states. The significance of the overlaps was
assessed using the cumulative hypergeometric
distribution.

Shannon–Weiner diversity index
Shannon–Weiner diversity indices were calculated
using the ‘index_SaW’ function, available on the
MATLAB File Exchange, on normalized abundance
data. One-way analysis of variance was conducted
on the Shannon–Weiner indices for each location
along the GI tract using the ‘anova1’ function in
MATLAB, and Tukey-Kramer tests were performed
using the ‘multcompare’ function to determine
which colonization states within a location were
associated with significant differences in diversity.

Unsupervised clustering methods
PCA was performed on the normalized spectral
counts for the 853 identified proteins by first
generating a covariance matrix of all 45 samples.
We performed hierarchical clustering on the data set
of normalized spectral counts using Euclidean
distance and average linkage metrics with Cluster
(de Hoon et al., 2004; v. 3.0) and Treeview
(Saldanha, 2004; v. 1.1.6r4). PCA and hierarchical
clustering were also performed on the 2991 GO terms
associated with this data set.

Random forest analysis
For each of three groupings (all mice, BT and GF
mice, and CR mice), we performed a three-stage
classification analysis. First, we generated a random
forest classifier using the R package randomForest
(Liaw and Wiener, 2002) based on all proteins in
each group with total relative abundances 40.01.
Each random forest consisted of 10 000 trees and
classified samples according to three locations:
stomach, small intestine (jejunum/ileum) and large
intestine (cecum/proximal colon). Second, we
selected the proteins in the top 10th percentile of
importance from each random forest, based on the
mean decrease in Gini score. These proteins served
as the basis for a new random forest classifier with
the same parameters as before. Third, we confirmed
the OOB error rates by performing leave-one-out
cross-validation within each grouping; classifiers
based on the proteins selected in the second step
were trained based on all mice except one, and
locations of the five samples from the remaining
mouse were predicted from the classifier.

The same random forest procedure was applied to
the 1520 unique GO terms classified into three
(stomach, small intestine, large intestine) or four
locations (stomach, jejunum, ileum, large intestine).

We selected the GO terms in the top 10th percentile
of importance from each random forest based on the
mean decrease in Gini score.

GO analysis
To facilitate the analysis of the relative abundances
of GO terms, the murine gene association file was
downloaded from the European Bioinformatics Insti-
tute website (Dimmer et al., 2012). Using MATLAB,
we generated a binary vector indicating the presence
or absence of each GO term for every protein, and
multiplied the normalized spectral count for any
given sample and protein by the corresponding
binary GO vector. Finally, we summed the normal-
ized abundances for each GO term across all proteins
within each sample.

K-means clustering
We used mean abundances across the three mouse
replicates to perform k-means clustering, with
squared Euclidean as the distance metric and
41000 replicates per run. Clustering was carried
out separately for each colonization state; cluster
numbers of 8, 12 and 16 were tested for each state.
Proteins in clusters of low abundance (o8×10− 3

arbitrary units) were removed from the data set. The
remaining high-abundance proteins were normal-
ized across location using the ‘zscore’ function in
MATLAB. These normalized, high-abundance
proteins were then re-clustered using k-means with
trials of five, six and seven clusters. To compare
clusters across colonization states, we used squared
Euclidean distance to compare the centroids of each
of the six and five clusters from CR and BT mice,
respectively, to the centroids of each of the five
clusters from GF mice; the GF cluster that was most
similar to each CR cluster and BT cluster was
selected based on the shortest distance between
centroids.

Determination of correlation between gut and fecal
proteomes
Fecal proteome and host-secreted gut proteome
samples were compared by identifying the total
number of proteins in the overlap between each pair
of data sets. The core fecal proteome was generated
from previously published data from the stool of
mice with the colonization states used here
(Lichtman et al., 2013). Raw data from only the
60% protein fraction (used in this study) were
re-processed using the steps described above, includ-
ing peptide and protein FDR filtering and quantifica-
tion. Proteins were included in the fecal or location-
specific proteome if they had been identified in any
one of the three colonization states. The significance
of overlap between any two regions was calculated
using the hypergeometric distribution.

Proximal colon contents were compared with fecal
proteomes from several different experiments by
calculating the Spearman correlation coefficient for
each binary comparison, considering only the proteins
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that were identified in at least one of the two samples,
using the ‘spearmanr’ function in the SciPy python
package. The results were clustered (Euclidean
distance, average linkage) by rows and columns.
Significant differences in correlation were calculated
using Student’s two-tailed, non-paired t-test.

Analysis of relative GO term abundances according to
colonization state
The data set containing the normalized GO term
abundances across all samples was subdivided into
three groups, each containing data from the 15 samples
encompassing a given colonization state. These three
groups were then condensed by summing the GO term
abundances across all locations along the GI tract. To
compare the abundances of the three replicates for
each colonization state, we used the ‘anova1’ function
in MATLAB for each GO term to determine the
significance of differences between all pairs of the
three colonization states. The FDR and the correspond-
ing q-values were calculated using the ‘mafdr’ function
in MATLAB on the set of all anova1-derived P-values.
A q-value threshold of 0.01 was selected and the GO
terms that met this threshold were recorded, along
with the corresponding mean and standard deviation
of the normalized abundance for each GO term in each
colonization state. To determine the specific pairs of
colonization states that differed significantly for each
GO term, we used the ‘multcompare’ function in
MATLAB on the statistics generated by anova1 using a
P-value threshold of 0.01.
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