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ABSTRACT
Mammals are widely used by microbiologists as a model host species to study infectious diseases of
humans and domesticated livestock. These studies have been pivotal for our understanding of
mechanisms of virulence and have allowed the development of diagnostics, pre-treatments and
therapies for disease. However, over the past decade we have seen efforts to identify organisms
which can be used as alternatives to mammals for these studies. The drivers for this are complex and
multifactorial and include cost, ethical and scientific considerations. Galleria mellonella have been
used as an alternative infection model since the 1980s and its utility for the study of bacterial disease
and antimicrobial discovery was recently comprehensively reviewed. The wider applications of G.
mellonella as a model host, including its susceptibility to 29 species of fungi, 7 viruses, 1 species of
parasite and 16 biological toxins, are described in this perspective. In addition, the latest
developments in the standardisation of G. mellonella larvae for research purposes has been reviewed.
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Introduction

For the past two decades, microbiologists have sought
alternatives to mammals for studying the molecular basis
of virulence and for testing antimicrobial drugs. In
April’s issue of Virulence, Tsai et al.1 reviewed the exten-
sive body of literature which reports the value of Galleria
mellonella (Greater wax moth) larvae as a model for
investigating bacterial pathogens. The authors highlight
many of the attractive features of this model: when com-
pared with mammals, G. mellonella larvae are cheaper
and easier to maintain, they do not require specialized
laboratories or equipment and work with G. mellonella
does not require ethical approval. Unlike many alterna-
tive models G. mellonella can be maintained at 37�C. We
also think an important feature of this model is the ease
with which the larvae can be injected with precise doses
of pathogen, allowing the relative virulence of strains
and mutants to be compared. As Tsai et al1 point out,
these features of the G. mellonella model should even
allow high throughput screens to be carried out on a
scale that would not be ethically or financially possible
using mammals. In this perspective we highlight some of
the applications of the G. mellonella model beyond work
with bacterial pathogens, including fungal, viral, micro-
biota and toxin research. We also comment on some of
the key points raised by Tsai et al1 and which they high-
light as barriers to the wider use of this model by the

community including the requirement for standardised
Galleria and the lack of a genome sequence.

G. mellonella as a model to study fungal pathogens

G. mellonella was first described as a model for studying
human fungal pathogens in the yeast Candida albicans2

where larval susceptibility to fungal challenge was used
to distinguish between pathogenic and non-pathogenic
C. albicans strains.2 G. mellonella has since been used as
a model to distinguish between the virulence of different
strains of fungi2,3 and their relative virulence at 30�C and
37�C.4

G. mellonella has also been useful to identify virulence
determinants by screening for attenuation of mutants.
The results of these studies correlate well with studies
performed in mice as well as data from infected
humans.5 For example, a positive correlation between
the virulence of C. albicans mutants when tested in Balb/
c mice or in G. mellonella larvae has been observed.6 In
the human fungal pathogen Aspergillus fumigatus dele-
tion mutants of cpcA, sidA, sidF and paba were avirulent
in G. mellonella while deletion mutants of sidC and sidD
demonstrated attenuated virulence. These results were
comparable with data derived from assessments made in
mammalian models such as mice.5 These studies show
that pre-screening of C. albicans and A. fumigatus
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virulence mutants in G. mellonella may significantly
reduce the number of mammalian animals needed to
assess changes in virulence.

G. mellonella has subsequently been used to study
other fungal pathogens including Aspergillus fumiga-
tus,5,7 Histoplasma capsulatum,8 Paracoccidioides lutzii,
Fusarium species9,10 and other Cryptococcus species11

(Full list of fungal species tested in G. mellonella is
summarised in Table 1).

As well as studying virulence in C. albicans12-15 the
larvae have been used as a model to study tissue invasion
capabilities between biofilm producing and non-produc-
ing isolates,3 the role of the filamentation phenotype in
virulence16 and as a model to screen for efficacy of anti-
fungal compounds.4,17

G. mellonella to study virus

As well as a model for studying bacterial and fungal
pathogens, there are a few reports of the use of G. mello-
nella to investigate viral disease, and not surprisingly
most of these studies have involved insect pathogenic
viruses such as Tipula iridescent virus (TIV)18 and Inver-
tebrate Iridescent Virus 6 (IIV6).19 In some cases the lar-
vae have been challenged with virus, in others
haemocytes isolated from the larvae have been infected
(A full list of viruses tested in G. mellonella summarised
in Table 2). The Galleria model has not, so far, been
shown to be suitable for research into viral pathogens of
mammals. This may be because insect cells are incubated
at 25 – 30�C which may not support the growth of mam-
malian viruses. In addition, viruses often show tropism
toward cells bearing specific receptors that may not be
shared by mammalian and insect cell lines.

G. mellonella to study toxins

In a limited number of studies preparations from either
bacteria or fungi have been injected into G. mellonella to
study their toxicity. In many cases the toxins studied are
known to be insecticidal and G. mellonella larvae provide
a good model to further investigate toxicity. For example,
the bacteria Pseudomonas fluorescens is able to protect
crop plants from fungal root disease. However, insecti-
cidal toxin (Fit toxin) produced from some strains of P.
fluorescens (CHA0 and Pf-5) has been shown to be a
potent insect toxin. A study by Pechy-Taar and col-
leagues showed that low doses of P. fluorescens were able
to kill the larvae while a deletion mutant of the Fit toxin
was significantly attenuated.20 To understand the modes
of action of toxins produced by pathogenic fungi of
insects such as cyclosporins, beauverolides and destrux-
ins21,22 the use of G. mellonella has moved beyond a
whole animal system to include the preparation of cell
lines to study the effect of fungal toxins on the perfor-
mance of immune competent hemocytes in vitro. Quan-
tification of the effect of these toxins on attachment,
spreading and phagocytic activity has been measured.

Table 1. Fungal species tested in G. mellonella.

Fungi Assay Reference

Aspergillus flavus Virulence 39

Aspergillus fumigatus Virulence 5,7

Aspergillus terreus Virulence, antibiotic resistant
and sensitive isolates

40

Candida Africana Virulence, assessing
antifungal compounds

41

Candida albicans Biofilm formation, invasion,
filamentation assay, virulence

2,3,12,

16,42,43

Candida glabrata Virulence 43

Candida krusei Virulence, assessing
antifungals compounds

43,44

Candida metapsilosis Virulence 45

Candida orthopsilosis Virulence 45

Candida parapsilosis, Virulence 43,45

Candida tropicalis Virulence, assessing
antifungals compounds

43,46

Conidiobolus coronatus
(non-human pathogen)

Insect immunology,
assessing fungal compunds

47,48

Cryptococcus gattii Virulence 11

Cryptococcus neoformans Virulence, host immune
responses, assessing
antifungal compounds

4, 49,50

Fusarium cerealis Virulence, assessing
antifungal compounds

9

Fusarium culmorum
(non-human pathogen)

Virulence 7

Fusarium oxysporum Virulence 7,10

Fusarium proliferatum
(non-human pathogen)

Virulence 7

Fusarium solani Virulence 7

Fusarium verticillioides Virulence 7

Histoplasma capsulatum Virulence 8

Madurella mycetomatis
(non-human pathogen)

Induce grain formation 51

Metarhizium robertsii
(non-human pathogen)

Virulence 52

Paracoccidioides brasiliensis Virulence 53

Paracoccidioides lutzii Virulence 8

Penicillium marneffei Virulence, phagocytosis 54

Pneumocystis murina Virulence 55

Rhizopus coincides Virulence, thermotolerance 56

Saccharomyces cerevisiae Virulence 2

Scedosporium aurantiacum Virulence, substrate utilization 57

Trichosporon asteroids Virulence, Assessing
antifungal compounds

58

Trichosporon inkin Virulence, Assessing
antifungal compounds

58

Trichosporon asahii Virulence, Assessing
antifungal compounds

58

Table 2. Virus’ tested in G. mellonella.

Virus Assay Reference

Bovine herpes simplex
virus-1 (BHSV-1)

Nodulation 59

Densonucleosis virus Infectivity 60

Invertebrate iridescent virus 6 Infectivity 19

Iridovirus Infectivity 60

Mycovirus Infectivity 61

Nodamura virus Infectivity, muscle
cell modification

62

Tipula iridescent virus TIV Infectivity, gamma
radiation responses

18,63
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With the development of G. mellonella as a model to
investigate the roles of toxins in human disease similar
methods have started be applied to explore the modes of
action of toxins from pathogenic fungi and bacteria of
humans. For example, the fumagillin toxin from Asper-
gillus fumigatus has been shown to suppress the cellular
immune response of the G. mellonella larvae by inhibit-
ing the action of haemocytes and this made the larvae
more susceptible to a subsequent challenge with A. fumi-
gatus.23 In another study extracellular gelatinase (GelE)
and serine protease (SprE) produced by Enterococcus fae-
calis were injected into G. mellonella.24 GelE degraded
antimicrobial peptides such as cecropin produced by the
larvae and this finding stimulated subsequent studies
showing that GelE was able to hydrolyse the C3a compo-
nent of complement and mediate the degradation of the
a chain of C3b. In addition, the protease SprE produced
by E. faecalis showed no virulence in either insect hae-
molymph or in human serum. However, larvae are resis-
tant to toxins such as the Clostridium perfringens a- and
epsilon-toxins (unpublished data) which are active
against mammalian cells. Considering that C. perfringens
epsilon-toxin binds to specific cellular receptors this
finding is not surprising. However, as a membrane active
phospholipase C the a-toxin is active against many cells
types. These studies show that G. mellonella can be used
to study some, but not all, extracellular compounds, such
as toxins, of both bacteria and fungi.

Applications of G. mellonella to study microbiota

G. mellonella has been used as a model host to under-
stand the composition of the microbiota of holometabo-
lous insects during metamorphosis.25 However, normal
microbiota has been implicated as a critical defense
against invading pathogens in humans and there is a
growing body of evidence supporting a role for G. mello-
nella as a model host in which to study these interac-
tions.26 Not only do insect and mammalian
gastrointestinal tracts share similar tissues, anatomy, and
physiological functions but the microvilli of the Lepidop-
teran midgut contain Enterococci, Lactobacilli, and Clos-
tridial Firmicutes that are also found in the intestinal
microvilli of mammals.27-29 The gut microbiota of insects
are solely maintained by the innate immune system and
it has been suggested that microbial diversity of the
microbiota may be responsible for specific immune phe-
notypes.30 Co evolution of the innate immune response
and microbiota can therefore be investigated in insect
models without cross-talk with the adaptive immune
responses of mammals and G. mellonella has been estab-
lished as a model in which to study co evolution.31

Standardisation of G. mellonella larvae

Tsai et al have identified the lack of standardised larvae
as a significant barrier to the wider adoption of this
model. G. mellonella have been commercially available
as food for captive reptiles and birds and as fishing bait,
and larvae bred for these purposes have been widely
used in research. Preliminary studies with standardised
G. mellonella larvae (TruLarvTM32) suggest that they pro-
vide statistically more reproducible results. Therefore,
further studies with these standardised larvae are now
warranted. In addition, a program to genome sequence
these standardised larvae is ongoing and the data will be
released into the public domain when completed.

In mammalian model hosts, a variety of end points
which are guided by welfare considerations are
employed to assess response to a pathogen or com-
pound. End points in G. mellonella infection models
include survival rate, which can be assessed up to 5 d
post infection, or longer with some fungal pathogens,
facilitating the calculation of a maximum half lethal
dose (LD50); expression of antimicrobial proteins in
response to infection; production of lactate dehydroge-
nase as a marker of cell damage and biophotonic
imaging to measure proliferation of bioluminescent
microorganisms responsible for larval infection.33-37 A
pathological scoring system was recently proposed by
Loh et al. 38 in which an assessment of larval mobility,
cocoon formation, melanisation and survival was used
to assess larval health.

In conclusion, the relevance of G. mellonella as a
model host for bacterial pathogens and for screening
antimicrobial compounds has now been firmly estab-
lished. Now that G. mellonella has been successfully
established as a model host for microbiology, new appli-
cations are being tested. For example, G. mellonella as an
eco toxicological test organism to study the effects of nat-
ural or man-made chemicals, as a model host for micro-
biota research and as a model host for studying toxins.
Limitations associated with G. mellonella are currently
being addressed, both through the development of stand-
ardised larvae for research, genome sequencing projects
and the development of pathology scores for more
sophisticated end points. The power of G. mellonella as a
model host lies not only in its ability to improve the effi-
ciency of research through decreased cost and time asso-
ciated with the use of mammalian model hosts, but also
in the ability to increase the scale and therefore the statis-
tical power of experiments. Also, as results have been
shown to correlate well with those in mammals, G. mel-
lonella provides a powerful and adaptable initial screen
to reduce reliance on experimental mammals.
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