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Tamoxifen Induces Cytotoxic Autophagy in Glioblastoma
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Abstract

Glioblastomas (GBMs) are the most common and aggressive pri-
mary human malignant brain tumors. 4-Hydroxy tamoxifen (OHT)
is an active metabolite of the tamoxifen (TMX) prodrug and a well-
established estrogen receptor (ER) and estrogen-related receptor an-
tagonist. A recent study from our laboratory demonstrated that OHT
induced ER-independent malignant peripheral nerve sheath tumor
(MPNST) cell death by autophagic degradation of the prosurvival
protein Kirsten rat sarcoma viral oncogene homolog. Because both
MPNST and GBM are glial in cell origin, we hypothesized that
OHT could mediate similar effects in GBM. OHT induced a
concentration-dependent reduction in cell viability that was largely
independent of caspase activation in a human GBM cell line and 2
patient-derived xenolines. Further, OHT induced both cytotoxic
autophagy and a concentration-dependent decrease in epidermal
growth factor receptor (EGFR) protein levels. A GBM cell line ex-
pressing EGFR variant III (EGFRVIII) was relatively resistant to
OHT-induced death and EGFRVIII was refractory to OHT-induced
degradation. Thus, OHT induces GBM cell death through a caspase-
independent, autophagy-related mechanism and should be consid-
ered as a potential therapeutic agent in patients with GBM whose
tumors express wild-type EGFR.
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INTRODUCTION

Glioblastoma (GBM) is the most common and aggressive hu-
man primary malignant brain tumor with a median survival of
12-15 months in optimally treated patients and an overall 5-
year survival rate of <5% (1). This tumor type consists pre-
dominantly of malignant glial astrocytes (2), although a recent
report suggests a potential role for neuronal dedifferentiation
in maintenance of heterogeneous GBM (3). Resistance to apo-
ptosis is considered a hallmark of all cancer types (4) and
GBM is particularly resistant to this death mechanism, in large
part due to altered expression or mutations of apoptosis-
related proteins such as p53, BCL-2, and BCL-X; (5-7). Fur-
ther, the DNA alkylating agent temozolomide (TMZ), cur-
rently the chemotherapeutic standard for GBM (8), extends
patients’ median survival by only 3 months (9). The poor re-
sponse of GBM to TMZ is attributed to elevated expression
(via promoter hypomethylation) of the DNA repair protein
06—methy1guanine—DNA methyltransferase (MGMT) (10, 11),
resulting in specific repair of O°-alkylguanine adducts gener-
ated by TMZ (12). Therefore, more effective chemotherapeu-
tic options, particularly therapies that do not rely on induction
of apoptosis, are needed for patients with GBM.

4-Hydroxy tamoxifen (OHT) is an active metabolite of
the tamoxifen (TMX) prodrug (13) and a well-established es-
trogen receptor (ER) estrogen-related receptor antagonist (13,
14). Previous studies from our laboratory and others indicate a
potential utility of OHT to induce tumor cell death indepen-
dent of apoptosis (15, 16). An investigation into the effects of
OHT on malignant peripheral nerve sheath tumors (MPNSTs)
found an ER-independent inhibition of cell proliferation (15)
and a subsequent study from our laboratory demonstrated and
characterized OHT-induced MPNST cell death as nonapopto-
tic and mediated at least in part by autophagic degradation of
the prosurvival protein Kirsten rat sarcoma (KRAS) (16).
Given that MPNST and GBM tumors are both comprised of
glial cells, we hypothesized that OHT may induce similar
death mechanisms in GBM.

Autophagy is a conserved homeostatic mechanism that
mediates the sequestration and removal of damaged organ-
elles, misfolded proteins, and various other cellular compo-
nents bound for lysosomal degradation (17, 18). Autophagy is
also initiated in response to stress signals resulting from nutri-
ent deprivation and/or growth factor withdrawal (19).
Although normally considered to be a cell survival response,
autophagy has also been shown to mediate cell death under
certain circumstances (20). In addition to our published obser-
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vations that OHT induces cytotoxic autophagy in MPNST
cells (16), several studies have demonstrated that inhibition
of autophagy in vitro (21) and in vivo (22-24) can suppress
cell death induced by hypoxia/ischemia and in normal devel-
opment. These studies implicate the autophagic process as a
potential chemotherapeutic target for apoptosis-resistant
malignancies.

Considering the pleiotropic effects of OHT, it is likely
that 1 or more ER-independent mechanisms contribute to its
observed cytotoxic action in hormonally insensitive neo-
plasms. In the context of GBM, TMX’s mechanism of action
has long been considered inhibition of Ca®" signaling through
protein kinase C (PKC) (25-28). Since Ca’" can activate both
PKC and calmodulin, we examined both signaling arms and
effects were compared with OHT.

In this report, we extend our previous observation that
OHT induces a reduction in epidermal growth factor receptor
(EGFR) levels in MPNST and established GBM cell lines (16)
by demonstrating OHT-mediated caspase-independent cell
death in human GBM patient-derived xenolines (PDXs). Fur-
ther, OHT-induced GBM cell death was accompanied by ac-
celerated degradation of EGFR and this effect was recapitu-
lated by inhibition of Ca®" signaling. Importantly, a GBM cell
line expressing EGFR variant III (EGFRVIII) was relatively
resistant to OHT-induced death and EGFRVIII was refractory
to OHT-induced degradation, suggesting that the potential use
of OHT in GBM patients should be limited to those tumors ex-
pressing wild-type (WT) EGFR.

MATERIALS AND METHODS
Antibodies and Other Reagents

Primary antibodies were obtained from the following
sources: LC3 (Abgent, San Diego, CA #AM1800a), EGFR
(EMD Millipore, Billerica, MA #06-847), EGFRVIII (Biorbyt,
Berkeley, CA #orb47907), ATGS (Cell Signaling, Danvers, MA
#8540), GAPDH (Cell Signaling, #2118), AKT (Cell Signaling
#9272), phosphorylated AKT (pAKT) S473 (Cell Signaling
#9271), pAKT T308 (Cell Signaling #4056), and P-tubulin
(Santa Cruz Biotechnology, Dallas, TX #sc-9104). Secondary
antibodies were HRP-conjugated goat anti-rabbit (Bio-Rad, Her-
cules, CA #1662408) and horse anti-mouse (Cell Signaling
#7076). OHT was obtained from EMD Millipore (#579002).
BOC-aspartyl (Ome)-fluoromethyl ketone (BAF) was purchased
from MP Biomedicals (Santa Ana, CA #03FKO011). Bafilomycin
Al (Baf Al) was purchased from AG Scientific (San Diego, CA
#B1183). Staurosporine was obtained from Sigma (St Louis,
MO # S5921). Ro-31-8220 (Ro-31) was purchased from Tocris
(Bristol, UK #125314-64-9); trifluoperazine (TFP) and cyclo-
heximide (CHX) were purchased from Sigma (#T8516 and
#C1988, respectively).

Cell Culture

USTMG cells (referred to hereafter as U87) were cul-
tured in DMEM containing 1% penicillin/streptomycin (Invi-
trogen, Carlsbad, CA), 1% L-glutamine (Sigma), and 10% fetal
bovine serum (Fisher Scientific, Waltham, MA). US7MG cells
stably expressing EGFRVIII (U87vIII) were provided by

Dr G Yancey Gillespie of the University of Alabama at Bir-
mingham. The origin of U87VIII cells has been previously de-
scribed by Mishima et al (29). JX6 and X1016 GBM PDXs
were obtained from Dr G. Yancey Gillespie (IRB approval
X050415007) and cultured in neurobasal media (Fisher Scien-
tific #21103-049) supplemented with EGF (Fisher Scientific
#PHGO0311, 10ng/mL) and fibroblast growth factor (Fitzger-
ald, Acton, MA #30R-AF014, 10ng/mL). The genetic charac-
teristics of our human GBM PDXs are as follows: X1016:
Classical, WT EGFR, WT CDK4, WT PTEN, WT TP53,
CDKA4N null, undetermined MGMT; JX6: Classical, amplified
EGFRvIIl, WT CDK4, WT PTEN, WT TP53, CDK4N null,
unmethylated MGMT. All cells were incubated at 37°C in a
humidified 5% CO2, 95% air atmosphere. For cell viability
studies and caspase 3-like enzymatic activity assays, cells were
plated on 48 well-plates at a density of 25 000 cells/well- JX6
and X1016; 40 000 cells/well- U87 and U87VIIIL. For flow anal-
yses and lysate collection, cells were plated on 100 mm dishes
at a density of: 1.25 x 10° cells/dish- JX6 and X1016; 2 x 10°
cells/dish- U87 and US7vIII. Cultures were used in experi-
ments 24 hours postplating. Drug treatments were performed
in respective media supplemented with 2% fetal bovine serum
to reduce effective drug concentrations.

Cell Viability and Caspase Cleavage Assays

The calcein-AM conversion assay (Life Technologies,
Carlsbad, CA C3100MP) was employed to quantify viable cell
number after drug treatment. Caspase 3 cleavage was assessed
using the chemical substrate DEVD-7-amino-4-methylcoumarin
(AMO) (Enzo Life Sciences #ALX-260-031). Both assays were
performed as previously described (30).

Calcein/Ethidium Homodimer Staining

The LIVE/DEAD Viability/Cytotoxicity Kit (Fisher Sci-
entific, #V13241) was used to determine cell death following
24 hours of OHT treatment per the manufacturer’s instructions.
Samples were analyzed with a VACalibur flow cytometer
(Becton Dickinson) using a 488-nm laser for calcein and a
647-nm laser for ethidium homodimer-1. Analysis was per-
formed using CellQuest software, version 3.3.

Western Blotting

Whole cell lysates were prepared by aspirating media,
washing cells with 1X PBS, removing cells with a cell lifter,
and pelleting by centrifugation at 13000g for 10 minutes. Cell
pellets were resuspended in lysis buffer containing 20 mM
Tris—HCI (pH 7.4), 150mM NaCl, 2mM EDTA, 1% Triton
X-100, 10% glycerol, and a protease/phosphatase inhibitor
cocktail (Fisher Scientific #1861281). After 3 rounds of
10 minutes incubation on ice and 1 minute vortex, lysates were
clarified by centrifugation at 13 000g for 10 minutes at 4 °C.
Supernates were quantified using Pierce BCA Protein Assay
Kit (Fisher Scientific #23225) and transferred to new micro-
fuge tubes to be stored at —80 °C. Thirty-five micrograms of
protein was immunoblotted per our previously described pro-
tocol (31). Primary antibodies were used at the following con-
centrations: LC3 (1 pug/mL), EGFR (1 pg/mL), EGFRvVIII
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(1 pg/mL), ATGS (0.852 pg/mL), GAPDH (0.00484 pg/mL),
AKT (0.083 pg/mL), pAKT S473 (0.01 png/mL), pAKT T308
(0.035 pg/mL), and B-tubulin (0.2 pg/mL). Secondary antibod-
ies were HRP-conjugated goat anti-rabbit and horse anti-
mouse used at 0.18 pg/mL and 0.17 pg/mL, respectively.
Immunoreactive species were detected by enhanced chemilu-
minescence (Pierce ECL; Fisher Scientific #32106) using
Classic Blue Autoradiography Film BX (MidSci #£EBNU2; St.
Louis, MO) and a Konica SRX-101A tabletop processor.

Immunocytochemistry

EGFR (Cell Signaling #4267) primary antibody and rabbit
serum (Jackson ImmunoResearch, West Grove, PA #011-000-
001) were both used at 0.00017 mg/mL. Super Picture (Invitro-
gen #87-9263) secondary antibody was used at 0.008 pg/mL.
Immunoreactivity was detected using a tyramide signal amplifi-
cation system using a Cy3 fluorophore (0.00013mg/mL) (Per-
kin-Elmer Life Science Products, Waltham, MA #NEL744).
Hoechst (Sigma #33258, 0.02mg/mL) was used for nuclear
counterstaining. Samples were examined with a Nikon Al laser
confocal microscope using a 60x plan Apo objective and a 405-
nm laser for Hoechst or 561-nm laser for Cy3. Images were ana-
lyzed using NIS Elements 4.2 software.

RNA;

ATGS siRNA (siGENOME SMARTPool) was pur-
chased from Thermo Scientific and reconstituted according to
the manufacturer’s instructions. Cells were plated in DMEM-
10 and transfected 24 hours postplating using X-tremeGene
siRNA transfection reagent (Roche, Indianapolis, IN #04-476-
093-001) at a ratio of 5:2 (transfection reagent:siRNA). Cells
were used in experiments 48 hours posttransfection. ATGS and
nontarget (NT) siRNA sequences (used as an equimolar mix-
ture for targeting multiple transcript sequences) are as follows:
(1) 5-GGAAUAUCCUGCAGAAGAA-3'; (2) 5-CAUCU-
GAGCUACCCGGAUA-3; (3) 5-GACAAGAAGACAUUA-
GUGA-3; and (4) 5-CAAUUGGUUUGCUAUUUGA-3'.
NT siRNA sequences: (1) 5-UAGCGACUAAACACAUC
AA-3; (2) 5-UAAGGCUAUGAAGAGAUAC-3; (3) 5'-AU
GUAUUGGCCCUGUAUUAG-3'; and (4) 5'-AUGAACGU
GAAUUGCUACAA-3'.

Statistics

All data points represent mean *= SD. All experiments
were repeated at least 3 times unless otherwise stated. Statisti-
cal significance was determined by ANOVA followed by
Dunnett’s post hoc test. A p value <0.05 was considered
significant.

RESULTS

OHT Mediates Caspase-Independent Cell Death
in Human GBM Cells

One established human GBM cell line (U87) and 2
PDXs (JX6 and X1016) were used to assess OHT’s effects on
GBM cell viability. In all 3 lines tested, OHT induced a
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concentration-dependent decrease in viable cell number after
24 hours (Fig. 1A; Supplementary Fig. 1). To gain insight into
the mechanism of OHT-induced reduction in GBM cell num-
ber, a DEVD-AMC caspase 3-like enzymatic activity assay
was performed in tandem with viability studies. After 24 hours
of OHT, both PDXs exhibited an induction of caspase 3-like
enzymatic activity; in contrast, no increased activity was de-
tected in U87 cells (Fig. 1B). To assess whether caspase activ-
ity was mediating the observed OHT-induced reduction in cell
viability, a broad-spectrum caspase inhibitor, BAF, was used
in combination with OHT and viability was assessed in JX6
cells because these exhibited the greatest caspase 3-like activ-
ity following OHT treatment. Although BAF completely sup-
pressed OHT-induced caspase 3-like enzymatic activity (Fig.
1C), it produced only a slight but significant inhibition of
OHT-induced reduction in cell viability (Fig. 1D). In keeping
with the observation that OHT had no effect on caspase 3-like
enzymatic activity in U87 cells, BAF had no effect on the
OHT-induced loss of cell viability in U87 cells (data not
shown). These data support the conclusion that caspase activ-
ity is not critical for the death promoting effects of OHT on
glioma cells. To verify that the OHT-induced reduction in via-
ble GBM cell numbers was a function of cytotoxic rather than
cytostatic effects, flow cytometric analysis of calcein/ethidium
homodimer double staining was performed on U87 cells after
24 hours of OHT treatment and a concentration-dependent in-
crease in ethidium homodimer-positive (dead/dying) cells was
observed (Fig. 1E). These data indicate that OHT induces a
predominantly caspase-independent cell death in human GBM
cells, although a statistically significant increase in caspase
3-like activity was observed.

OHT Induces Cytotoxic Autophagy in Human
GBM Cells

Based on our previously published observation that
OHT induces cytotoxic autophagy in MPNST cells, we hy-
pothesized that similar effects would be observed in GBM
cells. During formation of autophagic vacuoles (AV) in the
early stages of autophagy, microtubule-associated protein 1
light chain 3o (LC3-]) is cleaved and lipidated to form LC3-II,
a molecule requisite for AV formation (32). Accordingly, we
first assessed levels of LC3-II after 24 hours OHT treatment
and found a concentration-dependent increase of LC3-II in all
3 cell lines tested (Fig. 2A). It is important to note that LC3I/
LC3II ratios possess significant variability between cells and
tumor types. Further, our lab has previously reported consider-
able variability in baseline autophagy and the levels of LC3I
and LC3II in human GBM PDXs (33). The antibody used to
detect LC3 used in this study detects both LC3I and LC3II.
Low levels of LC3I in both PDXs likely reflect a high rate of
baseline autophagy and rapid conversion of LC3I to LC3IIL
Because elevated LC3-II levels can result from induction of
AV formation as well as impairment of lysosomal AV clear-
ance, we examined the effects of OHT on LC3-II levels in
U87 cells in the presence and absence of Bafilomycin Al (Baf
Al), a vacuolar ATPase inhibitor that inhibits AV fusion with
lysosomes and the subsequent degradation of AV content.
When AV clearance is inhibited by Baf A1, OHT imparts an
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FIGURE 1. 4-Hydroxy tamoxifen (OHT) mediates caspase-independent cell death in human Glioblastoma cells. (A) OHT-treated
cells demonstrate a concentration-dependent decrease in viable cell number after 24 hours. (B) Loss of cell viability
is accompanied by significant caspase 3-like enzymatic activity in JX6 and X1016 cells. (€ and D) Broad caspase inhibition
with BOC-aspartyl (Ome)-fluoromethyl ketone modestly but significantly attenuates OHT-mediated reduction in JX6 cell
viability. (E) OHT treatment (24 hours) produces a concentration-dependent increase in ethidium homodimer-positive (Et+)

U87 cells. *p < 0.05. UT, untreated.

additional increase in LC3-II accumulation (Fig. 2B), indicat-
ing that OHT induces AV formation rather than simply in-
hibiting AV clearance. Because autophagy is typically a
prosurvival cellular response and can be observed in degener-
ating cells without being directly involved in the cell death
process per se, we evaluated the ability of OHT to kill GBM
cells when AV formation was genetically inhibited. Accord-
ingly, we performed siRNA knockdown of ATGS, a protein
required for conversion of LC3-I to LC3-II (34, 35) in U87
cells. A partial knockdown of ATGS (46%) (Fig. 2C) resulted
in a 60% reduction of OHT-induced LC3-1I accumulation
(Fig. 2D), verifying that a functional impairment of autophagy
induction was achieved by ATGS knockdown. This partial in-
hibition of AV formation was sufficient to produce significant
inhibition of OHT-induced cell death in 2 biological replicates
(Fig. 2E). Taken together, these data support the conclusion
that OHT mediates GBM cell death, at least in part, via induc-
tion of cytotoxic autophagy.

OHT Promotes Accelerated Degradation
of EGFR

We previously showed that OHT mediates human
MPNST cell death via autophagic degradation of the prosur-
vival protein KRAS and was additionally accompanied by a
reduction in EGFR levels (16). The hypothesis that OHT indu-
ces degradation of EGFR in GBM cells is supported by both
the shared lineage of MPNST and GBM cells (36, 37), and the
observation that EGFR has been shown to colocalize with
KRAS en route to degradation (38). Given the highly relevant
contribution of EGFR to GBM growth and invasiveness (39),
we evaluated the effects of OHT on this oncogenic kinase in
greater detail. For these studies, we utilized the human GBM
cell line U87 as well as an isogenic line stably expressing
EGFRVIII (referred to hereafter as U87vIIl). EGFRVIII pos-
sesses a deletion of exons 2—7, resulting in the inability to bind
any currently characterized ligand due to lack of an extracellu-
lar domain (40). However, EGFRVIII confers a low level of
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FIGURE 2. OHT-induced autophagy is cytotoxic. (A) Treatment with OHT (24 hours) yields a concentration-dependent increase
in levels of LC3-Il in U87, X1016, and |JX6 cells. (B) OHT increases autophagic flux as indicated by increased levels of LC3-Il in
U87 cells treated with both OHT and Baf A1 (100 nM) relative to OHT or Baf AT alone. (C and D) siRNA knockdown of atg5 (C)
results in a 40% decrease in OHT-induced LC3-Il accumulation (D), demonstrating a functional inhibition of autophagy. (E) atg5
knockdown results in significant protection from OHT-induced reduction in cell viability. Chloroquine (CQ) (50 uM) was used as
a positive control for LC3-Il accumulation. *p < 0.05. UT, untreated.

constitutive signaling resulting from impaired internalization
and increased protein stability (41). Although multiple mutant
forms of EGFR exist in GBM (42-44), EGFRVIII is the most
common (44, 45). We first collected total protein from U87
and U87VIII cells after 24 hours treatment with OHT. Western
blot analysis revealed a concentration-dependent decrease of
EGEFR in U87 but not of EGFRVIII in U87VIII cells (Fig. 3A).
Although EGFR in U87 cells was evaluated 3 times, we que-
ried EGFRVIII in U87VIII cells once. The observation that
EGFRVIII levels are unaffected by OHT is possibly a result of
its impaired internalization (41). Importantly, U87VIII cells
are relatively refractory to OHT-induced reduction in viable
cell number (Fig. 3B), suggesting that degradation of EGFR
contributes to the cytotoxic effects of OHT on WT EGFR-
expressing GBM cells. To determine if the observed reduction
of EGFR was a function of accelerated degradation rather than
suppression of protein expression, we treated U87 cells with
OHT with or without 100 uM CHX, a well-established protein
synthesis inhibitor. Not surprisingly given the long half-life of
EGFR and the relatively short time course of the experiment
(46), no decrease in EGFR was observed in the presence of
CHX alone whereas CHX + OHT resulted in a significant
time-dependent reduction in EGFR levels in 2 separate biolog-
ical replicates (Fig. 3C). To extend these results to GBM

950

PDXs, we examined EGFR protein levels following 24 hour
OHT treatment of JX6 cells via Western blot (Fig. 3D) and by
immunocytochemistry (ICC) (Fig. 3E). We observed a reduc-
tion in EGFR protein levels in 3 separate replicate experiments
and EGFR-like immunoreactivity in the single experiment
performed. Although Western blot data was repeated at least 3
times, ICC was performed only once. Finally, we investigated
the downstream effects of OHT on EGFR signaling and ob-
served a marked decrease in pAKT (S473) after 24 hours of
OHT treatment in U87 cells (Fig. 3F). This observation was
extended into GBM PDXs, as JX6 cells (Fig. 3G) also ex-
hibited reduction in pAKT in 2 separate biological replicates.
These data confirm a biological response to EGFR reduction
in both established human GBM cells and PDXs. Taken to-
gether these data support the hypothesis that OHT mediates
cytotoxic autophagy in human GBM cells at least in part by
decreasing EGFR protein levels and signaling through AKT.

PKC Inhibition Recapitulates Effects of OHT
on EGFR

Inhibition of Ca*" flux through endoplasmic reticulum
Ca®"release channels triggers rapid autophagy (47, 48) and
active PKC has been shown to inhibit autophagy (49). Because
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following 24 hours of OHT exposure. (F and G) Treatment with OHT (24 hours) mediates a marked reduction in active
(phosphorylated) AKT (p-AKT S473) in U87 (F) and JX6 (G) cells. UT, untreated.

OHT is known to inhibit Ca®"signaling in GBM (50-52),
which exerts a negative regulatory effect on autophagy (49), it
is possible that Ca®"signaling modulation mediates the ob-
served effects of OHT on autophagy. Previous studies from
our laboratory and others have demonstrated that inhibition of
signaling through PKC can recapitulate various effects of
OHT (15, 16). These investigations were based on observa-
tions made in the 1990s that TMX inhibits PKC activity
(53, 54). We hypothesized that the effects of OHT on EGFR
were dependent, at least in part, on Ca*" signaling inhibition.
To test this hypothesis, we collected total proteln following
treatment of U87 cells with OHT or 2 known Ca signaling
modulators that antagonize separate arms of Ca®"signaling:
Ro0-31-8220 (Ro-31) inhibits PKC while TFP inhibits calmod-
ulin. As expected, reduction in EGFR was observed in all drug
treatments (Fig. 4A). We next queried levels of pAKT at both
phosphorylation sites (S473 and T308) and observed that, as
with OHT, activation of AKT was markedly inhibited by TFP
while Ro-31 had no effect (Fig. 4B). These data demonstrate

that Ca>" modulation phenocopies the observed effects of
OHT on EGFR and downstream signaling, suggesting that the
effects of OHT on GBM cells are at least in part a function of
Ca”" signaling modulation.

DISCUSSION

GBM are the most common and deadly form of human
primary malignant brain tumor (8). Patients receiving radio-
therapy plus the most efficacious chemotherapeutic option,
TMZ, exhibit only a slight increase in median survival from
12.2 to 14.6 months compared with radiotherapy alone (55).
Compounding this dismal prognosis is the fact that roughly
50% of GBMs express the DNA repair enzyme MGMT and are
consequently resistant to TMZ (10-12). Contributing signifi-
cantly to GBM’s resistance to other chemotherapeutic
approaches is its ability to evade apoptosis. GBM cells exhibit
marked overexpression of anti-apoptotic proteins such as BCL-
2, BCL-X;, and MCL-1 (5, 56), in addition to inactivation of
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FIGURE 4. Inhibition of protein kinase C (PKC) recapitulates
the effects of OHT on EGFR. (A) PKC inhibitors Ro31 and
trifluoperazine (TFP) increase LC3-Il accumulation and reduce
EGFR protein levels after 24 hours as determined by Western
blot. (B) Phosphorylation of AKT at both S473 and T308 is
markedly reduced by OHT and TFP but not Ro31 in U87 cells
after 24 hours of treatment.

p53, a critical proapoptotic protein (7). Considered together,
additional chemotherapeutic options for GBM are desperately
needed and therapies that do not rely on induction of apoptosis
are a logical avenue of exploration.

The goal of this study was to explore the effects of OHT
on GBM cells in vitro in an effort to provide a rationale for
further investigations of OHT in GBM chemotherapy in vivo. In
support of our hypothesis that OHT can exert cytotoxic effects
on GBM cells, we demonstrate a concentration-dependent
increase in GBM cell death following OHT treatment. Although
OHT is typically utilized as an ER antagonist in the treatment of
ER-positive breast cancer, several studies have shown that ER-
negative malignancies also respond to OHT (57, 58). Further,
OHT variably induces caspase 3-like activity in GBM cells and
OHT-induced cell death is largely unaffected by broad-spectrum
caspase inhibition, suggesting a caspase-independent cell death
mechanism. Because many GBM cells are resistant to apoptotic
induction (5-7), the lack of strong caspase 3-like activity after
OHT exposure is not surprising. These data support the conclu-
sion that OHT might prove useful in the treatment of patients
whose tumors are refractory to apoptosis-targeting therapies.

Because OHT is known to induce autophagy in some
cell types (59), we queried protein levels of LC3-II, a surro-
gate marker of AVs. We observed a concentration-dependent
increase in LC3-II accumulation upon treatment with OHT
that was further increased upon inhibition of lysosomal func-
tion with Baf Al. These data confirmed that OHT-induced
autophagy in human GBM cells. Further, genetic inhibition of
autophagy via partial ATG5 knockdown in GBM cells im-
parted a significant protection from OHT-induced cell death.
Taken together, our data support the conclusion that OHT in-
duces human GBM cell death that at least in part results from
cytotoxic autophagy.
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Enhanced EGFR signaling, either through overexpres-
sion of WT EGFR or activating mutations, occurs commonly
in GBM (60, 61); thus, in addition to the WT receptor, we
also examined the effects of OHT on the most common EGFR
mutant variant, EGFRVIII (44, 45). In contrast to the WT re-
ceptor, EGFRVIII was not only refractory to OHT-induced
degradation, but it also conferred a survival advantage to U87
cells when challenged with OHT. Because EGFRVIII protein
is stable in the presence of OHT and promotes a survival ad-
vantage, we speculate that accelerated degradation of WT
EGEFR plays a role in OHT-induced human GBM cytotoxicity.
Studies from The Cancer Genome Atlas have defined 4 rela-
tively distinct molecular subtypes of GBM: classical, mesen-
chymal, neural, and proneural (62). Given that classical GBM
is characterized by aberrations in EGFR expression (63), this
subtype might prove more responsive to OHT treatment than
its mesenchymal, neural, or proneural counterparts. Our data
provide a potential explanation for observations made in vari-
ous clinical trials of TMX in GBM suggesting a 20%—40%
response rate (64, 65). Considering that these trials were per-
formed only on the basis of histologically defined GBM,
patient stratification based on molecular subtype and EGFR
mutation status has the potential to improve response rates.

Finally, given the literature connecting OHT and autoph-
agy with Ca*" modulation, we compared OHT with 2 specific
Ca’ " signaling inhibitors and observed an induction of autophagy
concurrent with decreased protein levels of WT EGFR and inhi-
bition of downstream signaling (AKT) with most drugs tested.
These data support previous work suggesting a role for Ca”" sig-
naling modulation in the effects of OHT on human GBM cell vi-
ability (64) and suggest a novel role for OHT and PKC inhibitors
in modulation of steady state EGFR protein levels.

In summary, this study elucidated a novel mechanism of
action for OHT in human GBM cells in which cytotoxicity is
at least in part autophagy-dependent and occurs concurrently
with accelerated degradation of EGFR. Although autophagy is
typically a survival-promoting process, its cell death promot-
ing function is recognized and characterized histologically by
the large scale sequestration of portions of the cytoplasm in
AVs, giving the cell a characteristic vacuolated appearance
(66). We utilized established techniques to assess autophagy
as well as flux through the pathway (67) and have demon-
strated that partial inhibition of autophagy protects against the
cytotoxic effects of OHT in human GBM cells. Additional
studies are needed to determine if the effects of OHT on
EGFR might prove useful in the context of other malignancies
that are driven by this oncogenic kinase, such as nonsmall
cell lung carcinoma (68). TMX’s FDA-approved status (69)
provides a basis for expeditious repurposing of this drug to
non-ER driven tumor types.
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