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ABSTRACT

Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to
estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale
map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in
MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression
trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis
of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen
response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed
experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation.
Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with
high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival.
Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes
cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-
level framework for identifying functional interactions that shape the temporal dynamics of gene expression.
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INTRODUCTION

Breast cancer remains a prevalent cause of cancer-related
death in women worldwide and is categorized into at least
five molecular subtypes that differ from each other in terms
of biomarkers, etiology, and treatment modalities (Sabatier
et al. 2014). By far themost predominant forms of breast can-
cer are those that stain positive for the estrogen receptor
(ER+). The ER, in particular ERα (encoded by the ESR1
gene), has been widely studied in breast cancer (Creighton
et al. 2006; Oh et al. 2006; Zhou and Slingerland 2014).
ERα binds to estrogen (usually estradiol or E2), dimerizes,
and translocates to the nucleus where it recruits coactivators
or corepressors to estrogen response elements (EREs) (Zhou
and Slingerland 2014). ERα is thought to be the primary re-
ceptor involved in the estrogen response of both normal and
breast cancer cells (Higa and Fell 2013).

In response to estrogen, ERα stimulates a transcriptional
program involving both coding (Frasor et al. 2003; Rae
et al. 2005; Creighton et al. 2006; Gaube et al. 2007; Bourdeau
et al. 2008; Chang et al. 2008) and noncoding (Bhat-Naksha-
tri et al. 2009; Castellano et al. 2009) RNAs. While numerous
studies have investigated the coding transcriptional program,
only a few studies have investigated the role played by micro-
RNAs (miRNAs). Several miRNAs have been reported to play
a role in breast cancer including miR-221/222, which is in-
volved in drug resistance (Rao et al. 2011), and miR-21,
which directly targets and regulates numerous tumor sup-
pressors (Zhu et al. 2007, 2008; Frankel et al. 2008; Qi et al.
2009). In one study, miR-375 was identified as an epigeneti-
cally deregulated miRNA that amplifies estrogen signaling in
ER+ breast cancers (Simonini et al. 2010). Importantly, in
that study, the inclusion of miR-375 in a newer microarray
probe set allowed the authors to identify a role for miR-
375 in ER+ tumors. This highlights the importance of
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investigating miRNA expression via high-throughput se-
quencing, which is more sensitive and less biased thanmicro-
arrays, and could potentially expand the set of miRNAs with
potential relevance to the estrogen response.
Although high-throughput sequencing has increased in

popularity and decreased in cost over the last decade, it has
not been extensively applied toward the study of the gene ex-
pression response to estrogen. While microarray studies have
identified a working set of estrogen-responsive genes and
miRNAs, these studies are limited by several factors. Firstly,
microarrays can only identify targets for which probes exist
and are subject to cross-hybridization errors (Casneuf et al.
2007). Secondly, to date, most studies have assessed only
one or two time points in response to estrogen, which fails
to capture the full dynamic responses of ERα targets. ERα
is known to cyclically bind to EREs and initiate bursts of tran-
scriptional activity (Shang et al. 2000; Reid et al. 2003), and
individual estrogen-responsive mRNAs have been shown to
exhibit diverse dynamical patterns of expression following es-
trogen stimulation (Bourdeau et al. 2008). Finally, to date no
study has quantified both coding and noncoding RNAs in the
same total RNA in response to estrogen. The estrogen re-
sponse is highly dependent on the conditions of the study
(Wiese et al. 1992), and small changes in experimental design
make it difficult to combine multiple studies together. In
summary, the body of work on the estrogen response has
demonstrated that ERα signaling enacts a dynamic and mul-
tilayered gene expression program, but we have very little un-
derstanding of how estrogen-stimulated regulatory networks
change over time. The study of regulatory networks is greatly
enhanced by the inclusion of temporal data, as it expands
static interaction diagrams into dynamic models that can un-
cover complex behaviors, such as the generation of expres-
sion thresholds (Mukherji et al. 2011), or the existence of
stable points that allow the cell to maintain expression in
the absence of continued stimulation.
In this study, we investigate the global response to estrogen

stimulation by analyzing paired messenger (mRNA) and
miRNA measurements over time in MCF-7 breast cancer
cells. We identify three major patterns of gene expression fol-
lowing estrogen stimulation and uncover miR-503 as an im-
portant estrogen-induced master regulator of the overall
estrogen response. Based on these computational predic-
tions, we confirm experimentally that miR-503 suppresses
proliferation in MCF-7 cells, and we identify a new target
of miR-503, the oncogene ZNF217. These results provide a
quantitative understanding of the temporal response of
mRNAs and miRNAs to estrogen stimulation, and suggest
that miR-503 is a candidate therapeutic target for treatment
of breast cancer.

RESULTS

To study the dynamics of gene expression in response to es-
trogen stimulation, we performed a parallel set of time-series

measurements for mRNAs and microRNAs (Fig. 1). We cul-
tured MCF-7 cells (a luminal A-type/ER+ cancer cell line) in
stripped (estrogen-starved) media for 72 h to synchronize
cells in an estrogen-free state. At time zero, we supplemented
the media with 10 nM β estradiol (E2) and maintained the
cells in this media for 1–24 h. At each of 10 time points
(hourly from 0 to 6 h after E2, and 8, 12, and 24 h after
E2), with three independent biological replicates for each,
cells were harvested and used to prepare both small RNA
and poly(A)+ RNA libraries from the same total RNA sample
for high-throughput sequencing. The poly(A)+ RNA libraries
had an average read depth of ∼65 million reads (>90% of
reads aligned uniquely), and the small RNA libraries had
an average read depth of ∼32 million reads (∼90% of reads
aligned) (Supplemental Table S1). The expression levels of
selected genes and miRNAs were confirmed by RT-qPCR
(Supplemental Fig. S1).

Dynamics of estrogen-regulated mRNAs

Differential gene expression was calculated for each time
point relative to time zero. Those genes with a mean normal-
ized expression count across the time series of at least 500,
and a significant (adjusted P-value <0.05) greater than or
equal to twofold change relative to time zero at any time dur-
ing the 24 h, were considered to be estrogen-responsive. In
total, 1546 genes met these criteria. Using this condensed
data set, we then examined the dynamics of gene expression.
By clustering the time series, we were able to stratify the
1546 genes into three temporal patterns of gene expression

FIGURE 1. Experimental design. MCF-7 cells were cultured in stripped
media for 72 h, then 10 nM E2 was added to the media. RNA was har-
vested at 0, 1, 2, 3, 4, 5, 6, 8, 12, and 24 h post E2, and paired small RNA
andmRNA-seq libraries were generated. Each data set was subject to dif-
ferential expression analysis, and interactions were predicted between
miRNAs and target mRNAs.

Gene expression dynamics of the estrogen response
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(Fig. 2A; Supplemental Table S2). The first class includes 468
genes that show transient induction in response to estrogen.
For example, the gene encoding the forkhead transcription
factor, FOXC1, which is an important biomarker of basal-
like breast cancer (Jensen et al. 2015), is lowly expressed at
time zero, exhibits a brief but significant increase in expres-
sion, and then stabilizes at a new equilibrium state ∼5 h after
estrogen stimulation (Fig. 2B). Both peak times and peak
widths are variable within this class. Approximately 11% of
the genes in this list have previously been identified (by
meta-analysis of microarray studies) to be up-regulated at
∼4 h after estrogen stimulation (Jagannathan and Robin-
son-Rechavi 2011). The second class includes 608 genes
that exhibit overall decreases in expression over time. These
“repressed” genes include ESR1 (gene encoding ERα),
ERBB2, GATA3, and ZNF217 (Fig. 2C)—all critical genes
to the etiology of breast cancer (Sørlie et al. 2001; Usary
et al. 2004; Oh et al. 2006; Cohen et al. 2015). ZNF217, a no-

table member of this class of genes, is a Krüppel-like finger
(KLF) protein that acts as a transcriptional regulator that am-
plifies the estrogen response in breast cancer (Cohen et al.
2015) and has been identified as a biomarker of poor survival
in patients with Luminal A (ER+) breast tumors (Frietze et al.
2014). Approximately 40% of the genes in the repressed class
were previously identified as down-regulated at 24 h after
estrogen stimulation (Jagannathan and Robinson-Rechavi
2011). Finally, 470 genes are induced by estrogen stimulation.
Included in this class are TFF1 (Fig. 2D; Supplemental Fig.
S1) and CTSD (Supplemental Fig. S1), for which there exists
a detailed time course of ChIP data showing cyclic occupancy
of ERα on their promoters (Shang et al. 2000; Reid et al.
2003). Approximately 56% of these genes have been previ-
ously identified as up-regulated at 24 h post-estrogen stimu-
lation, including known breast cancer genes BRCA1, BRCA2,
and E2F1 (Suter and Marcum 2007). Gene ontology (GO)
analysis indicates that each of these three classes of genes is
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FIGURE 2. Gene expression response to estrogen stimulation. (A) The expression profile of 1546 mRNAs that have a significant (adjusted P-value
<0.05) greater than or equal to twofold change at one ormore time points in response to estrogen stimulation, and a mean normalized expression of at
least 500 across the time series. Genes are clustered into three classes (transient, repressed, and induced). (B) Expression profile of FOXC1, an example
of a transient gene. (C) Expression profile of ZNF217, an example of a repressed gene. (D) Expression profile of TFF1, an example of an induced gene.
All plots show the mean of three biological replicates as a blue line with a box and whisker plot showing the variation in normalized expression among
the replicates. (E) Selected results from Gene Ontology analysis of genes in the transient class. (F) Selected results from Gene Ontology analysis of
genes in the repressed class. (G) Selected results from Gene Ontology analysis of genes in the induced class.
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enriched for distinct functional categories (Fig. 2E–G). The
transient group of genes shows enrichment for GO terms
dealing with cell migration and motility (Fig. 2E), the re-
pressed group for terms involving mammary development
and differentiation (Fig. 2F), and the induced category for
functions relevant to cell cycle progression (Fig. 2G). Taken
together, this analysis reveals a complex and multilayered
gene expression program with different temporal patterns
of expression associated with distinct cellular functions.
It is important to note that our high-resolution temporal

analysis identified many estrogen-responsive genes that
would have been missed had we taken a more conservative
approach and examined only one or a few time points. We
find that 59% (n = 905) of the estrogen-responsive genes ex-
hibit greater than or equal to twofold change at three or fewer
time points; furthermore, 34% (n = 528) of the estrogen-re-
sponsive genes exhibit greater than or equal to twofold
change at only a single time point (Fig. 3A). This observation
that a large proportion of estrogen-responsive genes is signif-
icantly altered at only a few time points, and not necessarily at
the same time points, is evident in all three classes of response
patterns (Fig. 3B). These data highlight the added value of a
high-resolution temporal analysis. For example, consider

nuclear corepressor 2 (NCOR2), which is a member of the
same nuclear receptor super-family as ERα, and has been as-
sociated with early tumor recurrence in breast cancer (Smith
et al. 2012). NCOR2 is only greater than or equal to twofold
up-regulated at three of the 10 time points analyzed (2–4 h
post-estrogen stimulation) (Fig. 3C, adjusted P-value = 4 ×
10−17 at 2 h, 1 × 10−11 at 3 h, 2 × 10−9 at 4 h post E2).
A study designed to assess estrogen-responsive genes at 12
or 24 h post-stimulation would detect virtually no difference
in gene expression levels of NCOR2. Additionally, within the
repressed class, a group of genes drops significantly in expres-
sion in the first 2 h after estrogen stimulation, but then recov-
ers at an expression level roughly 60% of the expression at
time zero (Supplemental Fig. S2A). Both GATA3 (Fig. 3D)
and ESR1 are members of this class, and these encode tran-
scription factors that not only regulate each other (Eeckhoute
et al. 2007) but also coregulate many target genes (Kong et al.
2011). GATA3 is greater than or equal to twofold down-reg-
ulated only at 2 h post-estrogen. Nearly half of the genes in
the induced class reach a greater than or equal to twofold
up-regulation (adjusted P-value <0.05) at only a single time
point (Fig. 3B). Finally, BRIP1 (BRCA1 interacting protein
C-terminal helicase 1; Fig. 3E) is an example of a gene in

A
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B

FIGURE 3. Most genes reach greater than or equal to twofold change at few and disparate time points. (A) The number of time points during the 24 h
collection for which each of the 1546 estrogen-responsive genes reaches a greater than or equal to twofold change from time zero. (B) The number of
time points during the 24 h collection for which genes within the three classes reach a greater than or equal to twofold change from time zero. (C) The
expression profile ofNCOR2, a representative gene from the transient class, reaches greater than or equal to twofold change from time zero at three of
the time points. (D) The expression profile of GATA3, a representative gene from the repressed class, reaches greater than or equal to twofold change
from time zero at one time point. (E) The expression profile of BRIP1, a representative gene from the induced class, reaches greater than or equal to
twofold change from time zero at three of the time points. All plots show the mean of three biological replicates as a blue line with box and whisker
plots showing the variation in normalized expression among the replicates, and regions greater than or equal to twofold different than time zero are
shaded in gray.
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the induced class that is detected as differentially expressed at
only three time points (all after 8 h post-estrogen stimula-
tion). These observations demonstrate the dynamic nature
of gene expression in response to estrogen and the impor-
tance of collecting and analyzing high-resolution time-series
data to fully capture these dynamics.

We also identified two groups of genes displaying opposite
temporal responses to estrogen. The first group of 170 genes
displays a temporal response to estrogen similar to that of
GATA3 (Supplemental Fig. S2A). The importance of both
GATA3 and ERα in regulating the estrogen response has
been established (Kong et al. 2011); therefore, these 170
genes may include other members of this regulatory network,
either additional coregulators of ERα or genes regulated by
these transcription factors. The second group includes 118
genes that exhibit a temporal response to estrogen that is op-
posite of the GATA3-like genes (Supplemental Fig. S2B). The
opposite temporal responses of these groups suggest a possi-
ble inhibitory relationship between members of the two
groups. To further explore this inverse relationship, we
sought to identify potential negative regulators of ESR1 or
GATA3 within the anti-GATA3 group. To that end we as-
sessed the correlation between both ESR1 and GATA3 and
genes within the anti-GATA3 group in The Cancer Genome
Atlas (TCGA) breast cancer data set (https://tcga-data.nci.nih
.gov/tcga/). The transcription factor FOXC1 (Fig. 2B), an im-
portant biomarker of basal-like breast cancer (Jensen et al.
2015), is a member of the anti-GATA3 group and is anticor-
related with GATA3 expression in TCGA data (Supplemental
Fig. S2C; Pearson’s r =−0.602). This analysis confirms previ-
ous findings that FOXC1 and GATA3 are involved in a switch
(Supplemental Fig. S2D) between basal-like and luminal-like
expression programs in breast cancer (Tkocz et al. 2011), and
indicates that the high-resolution time-series data may iden-
tify novel factors that underlie this switch.

Dynamics of estrogen-regulated miRNAs

To understand how the temporal gene expression patterns
are regulated, we next sought to characterize the dynamics
of miRNA expression in response to estrogen. Small RNA-
seq data were processed as previously described (Baran-Gale
et al. 2013) to identify robustly expressed miRNAs and their
isoforms (isomiRs). Resulting miRNA counts were normal-
ized using a reads-per-million-mapped (RPMM) transfor-
mation. We detected 308 miRNAs with a mean expression
of at least 50 RPMM across all samples (Supplemental
Table S3). Consistent with previous studies of MCF-7 cells
(Bhat-Nakshatri et al. 2009), among the most highly ex-
pressed miRNAs in the data set are miR-21-5p, miR-200c-
3p, the let-7 family, and miR-93-5p.

To identify estrogen-responsivemiRNAs, the expression of
each miRNA was normalized to the mean of the three repli-
cates at time zero. Of the 308 expressed miRNAs, 10 exhibit-
ed a fold change of at least 1.5 (uncorrected P-value ≤0.05) at

some time point during the 24 h (Fig. 4A), and five miRNAs
had a fold change greater than two (uncorrected P-value
≤0.05; miR-503, miR-424-3p, miR-1247-5p, miR-196a-1-
5p, and miR-196a-2-5p). The miRNA with the highest fold
change following estrogen stimulation is miR-503 (Fig. 4B),
with an approximately sixfold increase by 24 h post-estrogen
stimulation. Interestingly, the second-most strongly in-
creased miRNA is miR-424-3p (Fig. 4C), which is encoded
on the same primary transcript as miR-503. Although litera-
ture corresponding to miR-424 usually refers to miR-424-5p,
in our data miR-424-3p is more consistently expressed across
replicates, has a higher mean expression across the time se-
ries, and has a greater fold increase than miR-424-5p. miR-
1247-5p exhibits a threefold increase in response to estrogen
stimulation, and both paralogs of miR-196a-5p (Fig. 4D) are
approximately twofold increased by 4 h after estrogen
stimulation.

Computational prediction of miRNA–mRNA
regulatory interactions

We next explored the potential regulatory interactions be-
tween miRNAs and mRNAs in the temporal response to es-
trogen using our previously published miRNA target site
enrichment algorithm, miRhub (Baran-Gale et al. 2013).
miRhub identifies candidate master miRNA regulators by
identifying those miRNAs that are predicted to target and
regulate a gene set of interest significantly more than expect-
ed by chance. We sought to not only identify potential
miRNA–mRNA regulatory interactions throughout the en-
tire time course but to determine the specific time points at
which these interactions were most significant. To do this,
we used the characteristic directions method (Clark et al.
2014) to identify the sets of genes whose combined expres-
sion best distinguish the expression profiles between consec-
utive time points (Supplemental Table S4). We then assessed
all expressed miRNA families to determine whether any are
candidate “master regulators” of these sets of “characteristic
genes.” Using this approach, miR-503 consistently emerged
as the most significant candidate master miRNA regulator
(Fig. 4E). It was particularly prominent at time points 1, 2,
3, and 4 h post-treatment. Thus, miR-503 is both the most
estrogen-responsive miRNA as well as the miRNA with the
largest predicted impact on the dynamic gene expression re-
sponse to estrogen.
Following our identification of miR-503 as a potential

master regulator of the estrogen response, we next sought
to identify potential targets of miR-503. Our miRNA target
site enrichment analysis revealed 28 genes that are predicted
targets of miR-503 (Fig. 5A). One of the predicted targets,
CCND1 (Fig. 5B), has already been validated as a target of
miR-503 and the repression of CCND1 by miR-503 has
been reported to inhibit proliferation in breast cancer cell
lines (Long et al. 2015). Another predicted target, ZNF217
(Fig. 5C), has not been reported as a miR-503 target but
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was recently identified as both a biomarker and an oncogene
in breast cancer (Cohen et al. 2015). As a final example, RET
(Fig. 5D) is a proto-oncogene that is reported to be transcrip-
tionally up-regulated in numerous human cancers (Plaza-
Menacho et al. 2014). Other genes within the list of potential
miR-503 targets provide potentially interesting insights into
the estrogen response regulatory network in breast cancer
and warrant further study (Fig. 5A).
Among these predicted miR-503 targets, ZNF217 is of par-

ticular interest because of its known mechanistic role in the
estrogen response. ZNF217 binds to many of the same pro-
moters as the three transcription factors that coordinate the

overall response to estrogen stimulation
(ERα, GATA3, and FOXA1) (Kong
et al. 2011; Frietze et al. 2014). Addi-
tionally, the C terminus of ZNF217 phys-
ically binds to the hinge domain of
ERα and enhances recruitment of ERα
to EREs (Nguyen et al. 2014). We carried
out ChIP-X enrichment analysis (ChEA)
(Chen et al. 2013) and found that
ZNF217 binding sites are overrepresent-
ed in estrogen-responsive genes in our
data set (Supplemental Fig. S3). During
the first 4 h post-estrogen treatment,
the behavior of ZNF217 bears a strong re-
semblance to that of GATA3. However,
unlike GATA3, ZNF217 fails to recover
from greater than twofold repression
and remains twofold down-regulated
for the rest of the time course. In fact,
the first time point that ZNF217’s fold
difference in expression deviates from
that of GATA3 is at 4 h post-estrogen
stimulation. At that same time point
(hour 4), miR-503 reaches an approxi-
mately twofold increase relative to time
zero. Taking together these compelling
observations with the etiological rele-
vance of ZNF217 to breast cancer, we
selected ZNF217 as a potential target of
miR-503 for further investigation.

The role of miR-503 and ZNF217
in cellular proliferation
and breast cancer

To validate the repression of ZNF217 by
miR-503, we carried out 3′-UTR reporter
gene assays. Specifically, we cotransfected
miR-503 in MCF-7 cells with dual-lucif-
erase expression vectors containing a
Renilla luciferase reporter gene (internal
control) and a Firefly luciferase reporter
gene linked to either the wild-type

ZNF217 3′-UTR or a mutated version of the ZNF217 3′-
UTR reporter with two adenosines inserted between the bas-
es opposite of nucleotides 3 and 4 in the predicted miR-503
target site (Fig. 5E). This mutation abolishes the perfect
match to the miR-503 seed region, and therefore is expected
to compromise the efficacy of miR-503 targeting. We found
that miR-503 significantly (P = 0.003) reduces the relative
levels of the wild-type ZNF217 3′-UTR reporter, whereas
the mutation in the miR-503 target site rescues this effect
completely (Fig. 5F). Additionally, overexpression of miR-
503 in MCF7 cells resulted in significant repression (∼30%
loss, P = 0.026) of ZNF217 protein at 48 h after transfection

A B
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FIGURE 4. miRNA expression response to estrogen stimulation. (A) The expression profile of 10
miRNAs that have a≥1.5mean fold change of at least one time point in response to estrogen stim-
ulation and a mean normalized expression of at least 50 RPMM. The expression profiles of
miRNAs were clustered using a hierarchical clustering method. (B) Expression profile of the
strongest responding miRNA, miR-503. (C) Expression profile of miR-424-3p. (D) Expression
profile of miR-196a-1-5p. All plots (B–D) show the mean of three biological replicates as a
blue line with box and whisker plots showing the variation in normalized expression among
the replicates. (E) This plot shows the −Log10(uncorrected P-value) of enrichment for each
miRNA family among the genes that is characteristic of the change in expression between each
time interval. miRNA families on the x-axis are sorted by decreasing significance (sum across
all time intervals).

Gene expression dynamics of the estrogen response

www.rnajournal.org 1597

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.056895.116/-/DC1


(Supplemental Fig. S4). Together, these results indicate that
miR-503 represses ZNF217 in MCF-7 cells via direct target-
ing of its 3′-UTR. Furthermore, ZNF217 has a demonstrated
role in promoting proliferation in several models of breast
cancer. Specifically, silencing of ZNF217 results in reduced
proliferation in several breast cancer cell lines (including
MCF-7), and overexpression of ZNF217 increases prolifera-

tion in the same cell lines as well as in xenograft tumors
(Thollet et al. 2010). The established role of ZNF217 as an on-
cogene combined with these findings strongly support miR-
503 as a candidate tumor suppressor in breast cancer.
The role of miR-503 in opposing proliferation has been

very recently investigated in breast cancer (Long et al. 2015;
Polioudakis et al. 2015), prostate cancer (Guo et al. 2015),

A
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FIGURE 5. Potential miR-503 targets. (A) The expression profile of 28 miR-503 targets mRNAs that are characteristic of the difference in gene ex-
pression between consecutive time points. The expression profiles of miRNAs were clustered using a hierarchical clustering method. (B) Expression
profile of miR-503 and validated target, CCND1. (C) Expression profile of miR-503 and predicted target, ZNF217. (D) Expression profile of miR-503
and predicted target, RET. All plots (B–D) show the mean of three biological replicates as a blue line with box and whisker plots showing the variation
in log2 (fold change) between replicates. (E) miR-503 target site in the ZNF217 3′-UTR. A dual-luciferase reporter was used to validate the response of
ZNF217 to miR-503. The reporter was mutated by inserting two A’s (red) to disrupt the seed region binding of miR-503. (F) Response of the ZNF217
reporter and mutant reporter with and without 10 nM miR-503 mimic. Significance assessed using a Student’s t-test.
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and osteosarcoma (Chong et al. 2014). One previous study in
MCF-7 cells demonstrated that overexpression of miR-503
was able to inhibit cell cycle progression through repression
of CCND1 (Long et al. 2015). Based on our findings that
miR-503 targets ZNF217, which promotes cell cycle progres-
sion (Li et al. 2014), we hypothesized that the anti-prolifera-
tive effect of miR-503 resulted from a G1 arrest. To test this
prediction, we transiently transfected MCF-7 cells with miR-
503 mimic (50 nM). Cells were pulsed for 2 h with EdU and
fixed at 48 and 72 h after transfection. For each cell, the total
EdU signal was plotted against the total DNA signal, and cell
cycle stage was assigned. We found that MCF-7 cells trans-
fected with miR-503 have a significantly reduced percentage
of cells in S phase compared to mock transfection (Supple-
mental Fig. S5A). This observation was observed at both 48
h (P-value = 0.01) and 72 h (P-value = 0.03) after transfec-
tion with miR-503 (Supplemental Fig. S5B). We validated
the anti-proliferative effect of miR-503 by showing a reduced
amount of Ki67 protein (Supplemental Fig. S6).
Furthermore, data from patient cohorts confirm that low

expression of ZNF217 (Supplemental Fig. S7A; Győrffy
et al. 2009; Frietze et al. 2014) and high expression of miR-
503 (Supplemental Fig. S7B; Antonov 2011; Lyng et al.
2012; Antonov et al. 2013) in breast cancer is significantly as-
sociated with improved survival (P = 0.038 for ZNF217 and
P = 0.000437 for miR-503). Together, these data confirm
that miR-503 inhibits proliferation in MCF-7 cells, and that
the oncogene ZNF217 is a novel target of miR-503. These
findings motivate further mechanistic studies to determine
the extent to which the anti-proliferative role of miR-503 is
mediated through suppression of ZNF217.

DISCUSSION

An extensive body of literature exists detailing the impor-
tance of ERα in breast cancer, both as a biomarker of cancer
severity and as a therapeutic target. Additional studies have
highlighted the importance of various miRNAs in the etiolo-
gy of breast cancer (Bhat-Nakshatri et al. 2009). In this study,
we provide the first detailed high-throughput sequencing
time course of paired mRNA and miRNA expression in re-
sponse to estrogen stimulation in MCF-7 cells. These data
have provided a wealth of insight into the dynamics of the es-
trogen response. We observe similar temporal responses for
genes that encode the transcription factors previously report-
ed to be involved in positive feedback loops (ERα and
GATA3; Eeckhoute et al. 2007) and opposite temporal re-
sponses for genes encoding transcription factors reported
to inhibit each other (GATA3 and FOXC1; Tkocz et al.
2011). These temporal relationships allow us to make infer-
ences about the estrogen-stimulated regulatory network
and enhance our understanding of the timing of the cascade
of signaling stimulated by estrogen in breast cancer.
This study is one of the few to investigate the temporal re-

sponse of RNAs to stimuli in breast cancer, and is the first se-

quencing based study to investigate the matched temporal
response of coding and noncoding RNAs to estrogen stimu-
lation in breast cancer. A previous study used microarrays to
investigate the response of genes and miRNAs to estrogen
stimulation (Cicatiello et al. 2010) but, interestingly, did
not identify miR-503 as a significantly expressed miRNA.
This discrepancy underscores the importance of using
high-throughput sequencing and fine-grained time resolu-
tion to study the dynamics of gene expression.
Estrogen stimulation induces a dynamic and varied re-

sponse in 1546 mRNAs and 10 miRNAs. The transient class
of estrogen-stimulated mRNAs contains genes that peak for
various lengths of time and at different time points following
estrogen stimulation (Fig. 6A). Such behavior may be due to
an incoherent feed-forward loop architecture, wherein both a
target gene and its repressor are activated leading to a pulse
in gene expression (Alon 2007). The repressed category also
exhibits significant variation, with a large group of genes be-
having similarly to GATA3 (an initial drop in expression fol-
lowed by a recovery at a new baseline expression level).
Finally, the induced class of estrogen-responsive mRNAs ap-
pears to either continually increase throughout the experi-
ment as TFF1 (Fig. 2D) or level off at some new higher
expression level. Among the estrogen-responsive miRNAs,
miR-503 emerges as the most strongly responsive miRNA,
though others that are greater than twofold changed (miR-
424-3p, miR-1247-5p, miR-196a-1-5p, and miR-196a-2-
5p) warrant further investigation as well.
Interestingly, we also noted that a group of transient

mRNAs has the exact opposite expression pattern to the
GATA3-like group of repressed mRNAs (an initial increase
followed by a reversion to a lower but still up-regulated ex-
pression level). A representative example of this group is
FOXC1 (Fig. 2B), an important regulator of Basal-like breast
cancer and a repressor of GATA3 (Tkocz et al. 2011). FOXC1

A

B

FIGURE 6. Summary. (A) Potential mechanism behind regulation of
the three classes of estrogen-responsive genes. (B) Summarymechanism
showing the interaction of the estrogen-responsive genes ESR1 and
ZNF217 and the estrogen-responsive miRNA miR-503.
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and GATA3 appear to be involved in a double-negative-feed-
back loop (mutual inhibition) that may influence the transi-
tion between luminal-like and basal-like tumor phenotypes
(Supplemental Fig. 2D). Tkocz and colleagues showed that
knockdown of GATA3 in luminal cells resulted in the expres-
sion of basal-like markers and cell morphology, while knock-
down of FOXC1 in basal-like cells resulted in the expression
of luminal markers and cell morphology (Tkocz et al. 2011).
It is interesting to observe this pulse in a master regulator of
the basal-like phenotype in response to estrogen. One expla-
nation for this behavior is that the transition from estrogen-
free media to estrogen-rich media may displace the ligand
unbound estrogen receptor from its target sites and allow ex-
pression of genes that were repressed by the receptor in the
absence of ligand. The introduction of estrogen would pre-
sumably then lead to the ligand-bound estrogen receptor re-
pressing those same genes.

Among the targets (direct or indirect) of the ERα regulato-
ry circuit are ZNF217 and miR-503 (Fig. 6B). ZNF217 is a
transcriptional regulator that works together with ERα to
amplify the estrogen response in breast cancer (Cohen et al.
2015). However, despite the association of ERα with the pro-
motion of proliferation, ZNF217 is repressed in response to
estrogen stimulation in our data, as well as in previously pub-
lished data (Cicatiello et al. 2010; Jagannathan and Robinson-
Rechavi 2011). Consistent with the repression of ZNF217, the
genes encoding the main transcription factors involved in the
estrogen response (ESR1 and GATA3) are also repressed at
the early time points. Together, these data indicate that there
may be a built-in mechanism to (i) avoid the ZNF217-in-
duced attenuation of the estrogen response and (ii) limit fur-
ther stimulation of the estrogen response pathway. In this
study, we identify three major patterns of gene expression fol-
lowing estrogen stimulation: (i) transient, (ii) induced, and
(iii) repressed. Among the genes repressed by estrogen stim-
ulation is the oncogene ZNF217, which has been shown to
enhance proliferation in ovarian (Li et al. 2014) and breast
cancer (Thollet et al. 2010). Additionally, we have shown
that the estrogen-induced miRNA, miR-503, targets the 3′-
UTR of ZNF217 and that while miR-503 is induced in re-
sponse to estrogen, the oncogene ZNF217 is reduced. In sup-
port of this relationship, data from breast cancer patient
cohorts show that high expression of ZNF217 is associated
with worse survival (Győrffy et al. 2009; Frietze et al. 2014),
while high expression of miR-503 is associated with im-
proved survival (Antonov 2011; Lyng et al. 2012; Antonov
et al. 2013). Furthermore, while this manuscript was under
review, another study was published demonstrating that the
GATA3-driven expression of miR-503 represses ZNF217 in
prostate cancer (Jiang et al. 2016). Together, these observa-
tions point to the complexity of the estrogen-signaling net-
work and further highlight the beneficial aspects of the
estrogen response. Several studies have recently shown that
miR-503 may be a potent tumor suppressive miRNA. One
such study showed that miR-503 targets CCND1 and reduces

proliferation in both MCF-7 and MDA-MB-231 cells (an ER
[−] Claudin-low model) (Long et al. 2015). Others have
shown that miR-503 reduces proliferation and metastasis in
prostate cancer (Guo et al. 2015), in osteosarcoma (Chong
et al. 2014), and in hepatocellular carcinoma (Li et al.
2015). Furthermore, loss of miR-503 has been reported in
several human cancers and is associated with poor prognosis
in cervical cancer (Yin et al. 2015). The induction of miR-503
in response to estrogen stimulation has anti-proliferative ef-
fects, likely through its repression of both CCND1 and
ZNF217. Combined with the information that miR-503 is
down-regulated in human cancers, these results indicate that
miR-503 presents a new candidate therapeutic option for
the treatment of breast cancer.Moreover, this study highlights
the benefits of integrative analysis of the global response of
model systems to relevant stimuli. Such studies can direct fur-
ther research in primary tumors and disease models.

MATERIALS AND METHODS

Cell culture and estrogen treatment

The Perou Laboratory at UNC Chapel Hill generously provided the
MCF-7 cells used in these experiments. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) with Ham’s F-12
nutrient mixture, 15 mM HEPES, and sodium bicarbonate
(Sigma; #D6434). Media was supplemented with 10% charcoal-
stripped serum (Sigma; #F6765) and 5% GlutaMax (Gibco;
#35050-061). For each biological replicate, a single plate of cells
was split into 10 separate cell culture plates (one for each time
point). Cells were maintained in the stripped serum media for 72
h, then the time zero batch of cells was scraped from the plate, pel-
leted and flash frozen in ethanol dry ice slurry. For the remaining
cells (other time points), media supplemented with 10 nM β-estra-
diol (Sigma; #E2758) was added at time zero, and cells were collect-
ed at 1, 2, 3, 4, 5, 6, 12, and 24 h after addition of E2-media.

Sequencing and differential expression analysis

MCF-7 cells were lysed and RNA was isolated using the Norgen
Total RNA Purification Kit (#17200). Only samples with an RNA
Integrity Number (RIN) of 9 or higher, as measured by Agilent
Bioanalyzer 2100, were considered for further analysis. Small RNA
libraries were generated using the Bioo Scientific NEXTflex V2 kit
(#5132-03) and sequenced on the Illumina HiSeq 2000 platforms.
Small RNA-seq reads were trimmed using cutAdapt (−O 10 –e
0.1) (Martin 2011) to remove remnants of the 3′-adapter sequence,
then the first four and last four nucleotides of small RNA-seq reads
were trimmed to remove the degenerate nucleotides in the adapters.
Subsequent mapping of trimmed reads to the human genome and
miRNA/isomiR quantification were performed exactly as previously
described (Baran-Gale et al. 2013). The threshold used to classify
miRNAs as robustly expressed was set at a mean of 50 RPMM across
the time series.

RNA-seq libraries were generated from the same total RNA isolat-
ed above using the Illumina TruSeq stranded mRNA library prep kit
(#RS-122-2101) and were sequenced on the HiSeq2500 (2 × 50).
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Reads were aligned to the human genome (hg19) using MapSplice
(2.1.4) (Wang et al. 2010), and transcript abundance was quantified
using RSEM (v1.2.9) (Li and Dewey 2011). Finally, differentially ex-
pressed genes were identified using DEseq2 (1.4.5) (Love et al.
2014). The threshold used to classify mRNAs as robustly expressed
was set at a mean normalized count of 500 across the time series to
allow us to robustly detect changes in expression that may be well
below the mean of the time series.

Clustering

To cluster the dynamic responses of estrogen-regulated genes, 1D
interpolation was preformed using a piecewise cubic Hermite inter-
polating polynomial (Fritsch and Carlson 1980) to estimate the ex-
pression at unmeasured time points. Next, the response of each gene
was subjected to 1D wavelet decomposition (Mallat 1989) using a
Daubechies 3 wavelet. Finally, the vectors of wavelet coefficients
were hierarchically clustered and split into three clusters.

Gene set and miRNA target site enrichment

Enrichment of the three classes of estrogen-responsive genes within
GO biological processes categories was assessed using the
PANTHER overrepresentation test (Mi et al. 2013). A selection of
the most significant categories is depicted in Figure 2E–G. miRNA
target site enrichment was conducted by (i) identifying the list of
miRNA families whose members have a mean expression of 50
RPMM, (ii) identifying lists of “characteristic genes” whose change
in expression best describes the difference between consecutive time
points (Clark et al. 2014), and (iii) using our miRNA target site en-
richment algorithm (miRhub) (Baran-Gale et al. 2013) to identify
miRNA families that act as “master regulators” of the “characteristic
gene sets.” miRNA target site predictions used in the miRhub en-
richment algorithm are derived from TargetScan5.2 (Grimson
et al. 2007).

Real-time quantitative PCR analysis

Using total RNA from above, complementary DNA (cDNA) was
synthesized using the TaqMan miRNA Reverse Transcription kit
(Applied Biosystems; #4366596) according to themanufacturer’s in-
structions, or using the High-capacity RNA-to-cDNA kit (Applied
Biosystems; #4387406). Real-time PCR amplification of miRNAs
was performed using TaqMan miRNA assays in TaqMan Universal
PCR Master Mix (Applied Biosystems; #4304437) on a Bio-Rad
CFX96 Touch Real Time PCR Detection system (Bio-Rad Laborato-
ries, Inc.). Reactions were performed in triplicate using RNU66 as
the internal control. Real-time PCR amplification of mRNAs was
performed using SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad Laboratories, Inc.; #1725271) on a Bio-Rad CFX96 Touch
Real Time PCR Detection system (Bio-Rad Laboratories, Inc.).
Reactions were performed in triplicate using RPS9 as the internal
control. All TaqMan assays used in this study were purchased
from Applied Biosystems, Inc. and include miR-503 and RNU66.

Luciferase reporter analysis

We utilized a dual-luciferase reporter system (GeneCopoeia;
# HmiT018728) in which the 3′-UTR of ZNF217 was fused to the

end of Firefly luciferase. The construct also contains Renilla lucifer-
ase, which can be used as an internal control. Next, we mutated the
vector to interfere with the binding of the miR-503 seed region (nu-
cleotides 2–8) using a QuikChange II XL Site-Directed Mutagenesis
Kit (Agilent; #200521). Two A’s were added in the miR-503 target
site of ZNF217 to induce a bulge in the target site opposite of nucle-
otides 3 and 4 of miR-503’s seed. MCF-7 cells were transiently trans-
fected with the wild-type or mutant reporter with or cotransfected
with miRIDIAN microRNA Human hsa-miR-503-5p mimic
(Dharmacon #C-300841-05-0005) and with the vector.
Luminescence was measured 48 h after transfection using the Luc-
Pair Duo-Luciferase Assay (GeneCopoeia; # LPFR-P030) on a
Promega GloMax Multi+ Detection System luminometer.

Cell proliferation

Cell proliferation was measured using the Click-iT EdU Alexa Fluor
488 Imaging Kit (Invitrogen; # C10337). MCF-7 cells were transfect-
ed with 50 nMmiR-503mimic or with transfection reagent only and
were cultured for 46 or 70 h. Cells were then pulsed with EdU for 2 h
before cells were fixed according to the Click-iT protocol. Finally,
EdU was labeled with Alexa Fluor 488 dye, DNA was stained with
Hoechst and were imaged at 20× on an inverted fluorescence micro-
scope with a Nikon TI Eclipse camera. Image segmentation analysis
was performed using the Nikon Elements software package.

Western blots

MCF7 cells were harvested 48 h after transfection with 50 nM miR-
503 mimic or transfection reagent only (mock). Cells were lysed in
RIPA buffer with protease inhibitor. Protein concentration was de-
termined using the Pierce BCA Protein assay kit (Thermo Fisher; #
23225). Equal amounts of protein for each sample were loaded on a
Mini-PROTEAN TGX gel (Bio-Rad Laboratories, Inc.). Following
gel electrophoresis, proteins were transferred to nitrocellulose mem-
brane and blocked in 5% milk at 4°C overnight. Ki67 levels were
measured using the Anti-Ki67 antibody (Abcam; # ab15580).
ZNF217 levels were measured using the Anti-ZNF217 antibody
(Abcam; # ab48133). β-Actin levels were measured using an anti-
β-actin antibody (HRP) (Abcam; # ab20272).

Survival analysis

Overall survival of ER+ breast cancer patients based on ZNF217
high/low status was evaluated using the Kaplan–Meier plotter
(http://kmplot.com/; Győrffy et al. 2009; Frietze et al. 2014). The fol-
lowing parameters were used on the breast cancer database: Affy ID
= 203739_at; survival = OS; split patients by =median; ER status =
ER positive; derive ER status from gene expression data = checked;
database version = 2014 (n = 4142). Overall survival of ER+ tamox-
ifen-treated breast cancer patients based onmiR-503 high/low status
was evaluated using the MiRUMIR tool (Antonov 2011; Antonov
et al. 2013), using a data set from Lyng et al. (2012) (GSE37405).

DATA DEPOSITION

RNA-seq and small RNA-seq libraries are available at the Gene Ex-
pression Omnibus (GEO) under the accession number GSE78169.
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SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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