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The human gut microbiota performs essential functions for host and well-being,
but has also been linked to a variety of disease states, e.g., obesity and type 2
diabetes. The mammalian body fluid and tissue metabolomes are greatly influ-
enced by the microbiota, with many health-relevant metabolites being consid-
ered ‘mammalian–microbial co-metabolites’. To systematically investigate this
complex host–microbial co-metabolism, a systems biology approach integrating
high-throughput data and computational network models is required. Here, we
review established top-down and bottom-up systems biology approaches that have
successfully elucidated relationships between gut microbiota-derived metabolites
and host health and disease. We focus particularly on the constraint-based model-
ing and analysis approach, which enables the prediction of mechanisms behind
metabolic host–microbe interactions on the molecular level. We illustrate that
constraint-based models are a useful tool for the contextualization of metabolomic
measurements and can further our insight into host–microbe interactions, yield-
ing, e.g., in potential novel drugs and biomarkers. © 2015 The Authors. WIREs Systems
Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

The Human Gut Microbiome

Humans harbor a complex ecosystem, the gut
microbiota, in their intestines. The collective

genome of the microbiota, the ‘microbiome’, contains
100–150 times as many genes as the human genome.1

The gut microbiota performs many important func-
tions for the host, such as digestion of nutrients,2 mat-
uration of the host immune system,3 maintenance of
epithelial cell layer integrity,4 and protection against
pathogens.5 Worldwide research efforts, including
MetaHIT1 and the Human Microbiome Project,6 have
elucidated the genetic repertoire and the phylogenetic
composition of the human gut microbiome. These
efforts have revealed that the human gut microbiome
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is dominated by two bacterial phyla, Bacteroidetes and
Firmicutes, which account for more than 90% of the
detected phylotypes.7,8 Other microbial phyla found
in the human gut microbiome include Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia.9

Moreover, the concept of three enterotypes allowing
stratification of human individuals according to their
gut microbiome composition has been proposed.9

The gut microbiome is implicated in the eti-
ology of many diseases. For instance, obesity has
been directly linked to the gut microbiota.10 The
obesity epidemic is partly caused by the high-sugar,
high-fat diet consumed in developed countries; this
diet is known to affect the composition of the gut
microbiota.10 It has been proposed that there is a
relationship between an increased ratio of Firmicutes
to Bacteroidetes and an obese phenotype in humans
and mice7,11; however, this finding has not been
consistently reproduced, and its importance remains
unclear.10 Obesity-related diseases, such as metabolic
syndrome, type 2 diabetes, and cardiovascular disease
as well as inflammatory bowel diseases, have also
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been associated with changes in the gut microbiome
composition.10 Furthermore, there is increasing evi-
dence that an altered gut microbiota is associated
with autism12 and neurodegenerative diseases, such
as Parkinson’s disease.13 An underweight status and
malnutrition in children have also been associated
with altered gut microbiota development.14 It has
been proposed that our ‘Western’ diet has resulted
in a ‘dysbiotic’, less diverse microbiota, leading to
the observed dramatic increase in lifestyle-associated
diseases.15 For instance, lower microbial gene richness
has been linked to adiposity, higher insulin resistance,
and inflammation.16 The gut microbiota contains
‘keystone’ species (e.g., Ruminococcus bromii) that
are low in abundance but specialize in important
functions, such as resistant starch degradation,17 and
these species may be partially eliminated in human
societies consuming the Western diet.15 However,
the mechanisms underlying the relationship between
the gut microbiota and disease states are still not
completely understood. While certain genera are con-
sidered to be either protective against inflammation
(e.g., Faecalibacterium)18 or proinflammatory (e.g.,
Escherichia),19 the role of most genera present in the
gut in human health and well-being remains unclear.

Mammalian–Microbial Co-Metabolism
and Impact on Human Health
Recent research efforts have moved beyond studying
the composition (what is there) to investigating the
functionality (what are they doing) of the human gut
microbiota.20 While the same phyla are consistently
found in the gut microbiomes of humans, interper-
sonal variation in type and abundance at the genus and
species level is high.21 In fact, the gut microbiota varies
greatly even between closely related individuals.22 In
contrast, a human gut microbiome gene catalog
assembled from 124 Europeans revealed a core set
of approximately 300,000 redundant microbial genes
present in at least 50% of individuals, which included
genes involved in essential pathways, such as polysac-
charide degradation, short-chain fatty acid pro-
duction, and amino acid and vitamin biosynthesis.1

Consequently, it has been proposed that there is a ‘core
microbiome’ consisting of a set of universal metabolic
functions, rather than common genera or species.20,21

Metabolomic analysis has resulted in an
emerging picture of the mammalian–microbial
‘co-metabolome’.23 Gut microbes secrete a vari-
ety of health-relevant metabolites that play a role in
the etiology and prevention of complex diseases.24,25

For instance, gut microbial conversion of choline to
trimethylamine increases the risk of cardiovascular

disease26 and gut microbes also transform dietary
polyphenols into metabolically active antioxidative
compounds.27 The microbiota strongly influences host
metabolic phenotypes and treatment with antibiotics
significantly alters the urine and fecal metabolome.28

Metabolites synthesized by the microbiota include
compounds that can directly regulate and modulate
host metabolism, such as neurotransmitters and hor-
mones. In fact, the gut microbiota can be considered
as an additional endocrine organ.29 The gut micro-
biota also metabolizes and transforms xenobiotics,
including a variety of drugs, which must be taken into
consideration in future drug development.30 Hence,
the gut microbiota affects a variety of health-relevant
metabolic functions in human (Table 2).

Notably, despite the presence of a core set of
metabolic functions, there is some interpersonal vari-
ety in the metabolic activity of the microbiota. For
example, two distinct phenotypes in rats can be dis-
tinguished based on the gut microbial metabolism of
phenylalanine, with a possible connection to biomark-
ers associated with autism.31 Moreover, changes in
the gut microbial composition, e.g., through bariatric
surgery, can alter the metabolic phenotype of the
host.32,33 Such findings may lead to the develop-
ment of personalized medicine23 and personalized
nutrition34 tailored to patients’ individual genetic phe-
notypes, lifestyles, and microbiota compositions. The
numerous factors affecting human health (e.g., genetic
traits, environment, nutrition, and the microbiota
composition) require an integrated systems biology
approach.23 Such a systems biology framework could
reveal nonintuitive relationships between these fac-
tors, identifying novel biomarkers.23,35

SYSTEMS BIOLOGY APPROACHES
FOR STUDYING HOST–MICROBE
CO-METABOLISM

Top-Down and Bottom-Up Systems Biology
The gut microbial ecosystem that co-exists with the
human host can be described as a superorganism
whose metabolic potential far exceeds that of a
human alone.3 High-throughput methods, such as
metagenomic, metatranscriptomic, and metabolomic
analyses, have greatly increased our knowledge about
the diversity and functionality of the human gut
microbiota36 and the influence of the gut microbiota
on metabolic phenotypes.37 To achieve a comprehen-
sive understanding of host–microbe interactions, such
‘big data’ must be contextualized. One established
method for placing multi-omics data into context is
overlaying these data with network reconstructions.38
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TABLE 1 Summary of the Main Modeling Methods Discussed in This Review

Feature Top-Down Metabonomics Topological Network Modeling Constraint-Based Modeling

Model system Multivariate statistical model Supra-organism network Genome-scale reconstruction(s)

Scope Metabolite profiles of the gut
microbiota/host organs and
biofluids

Microbiome-wide One or more target organisms
(host or microbes) on the
genome scale

Main inputs Metabolomic measurements
from biofluids or tissue

Metagenomic data Target organism’s genome
sequence

Optional inputs:

• Target organism’s physiolog-
ical and biochemical traits

• High-throughput data

Types of predictions • Statistical correlations
between microbes and
metabolites

• Metabolite profiles dis-
criminating study from
control group

• Enriched pathways in
study versus control
group

• Topological structure of the
microbiome’s metabolic net-
work

• Microbiome-wide enzyme
abundances in host health or
disease states

• Reaction fluxes under
condition-specific con-
straints (high-throughput
data, nutrient environment)

• Multispecies interactions

• Gene knockout phenotypes

Advantages • Directly driven by pre-
cise quantitative metabo-
lite profiles

• Depicts host metabolism
on the pan-organismal
level

• No extensive manual
curation required

• Large scale

• Depicts global topological
features of the microbiome’s
metabolic network

• No extensive manual cura-
tion required

• Mechanistic, includes reac-
tion stoichiometry

• Organism-resolved

• Includes species origin of
genes

Disadvantages • Not accounting for
species’ abundance and
genomic information

• Not mechanistic

• Does not include species–
species boundaries and the
species origin of genes

• Not mechanistic

• Laborious reconstruction

• Computationally inten-
sive on a multispecies or
multiorgan scale

• Does not directly represent
metabolite concentrations

There are a variety of network modeling techniques
for high-throughput data with different strengths
and weaknesses, including constraint-based model-
ing, kinetic modeling, and Bayesian approaches.39

The main methods discussed in this review include
top-down systems biology, topological models, and
constraint-based models, which are compared in
Table 1.

A distinction can be made between top-down
approaches, in which network structures and con-
clusions are inferred through statistical analysis,
and bottom-up approaches that employ manually

constructed and validated networks.40 In the
top-down approach, genome-wide high-throughput
data are the starting point. Top-down analysis can
easily integrate metabolomic, transcriptomic, and
proteomic data.41 From this view of the system as a
whole, mechanisms closer to the bottom are inferred
with the aim of biological discovery. Networks are
inferred from experimental data. Rather than being
knowledge-based, top-down systems biology aims to
glean new knowledge from the correlations between
data points.41 The strengths of top-down approaches
are that they are broad in scope, provide complete,
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genome-wide views of the modeled organism(s), and
do not require extensive manual curation efforts.
A disadvantage of these methods is that they lack
accuracy and mechanistic insight because network
structures are merely inferred and not based on
structural and biochemical knowledge.40 In contrast,
the bottom-up systems biology approach aims to be
well structured and accurate. Pathways are assem-
bled based on detailed information obtained from
experimental studies and integrated into a large-scale
reconstruction.42 Bottom-up reconstructions are
mechanism based41 and predictive. A main weak-
ness of the bottom-up systems biology approach
is the laborious network reconstruction involved.
The genome-scale reconstruction of a well-studied
microorganism can take up to 6 months.43 Moreover,
owing to the need for manual curation and compu-
tational power, bottom-up networks are limited in
scope, which is especially true for network models of
large microbial communities. However, automated
reconstruction tools44–49 and efficient algorithms50,51

designed to partly overcome these weaknesses are
available. The methods for bottom-up network recon-
struction of genome-scale metabolic networks are
well established,43 but this methodology has also
been applied to nonmetabolic cellular processes,
such as macromolecular synthesis52,53 and signaling
pathways.54–56

Top-Down Host–Microbe Metabolomics
Top-down systems biology combined with
high-throughput metabolomic data has provided valu-
able insight into the co-metabolism of mammals and
their microbiota. The metabotype, or the metabolic
phenotype of a target organism as measured from
its biofluids (e.g., blood, plasma, and urine), is com-
monly measured using nuclear magnetic resonance
(NMR) spectroscopy or mass spectrometry (MS).23,57

Metabolomic analyses are untargeted, resulting in
the broad quantification of biofluid metabolites,
or targeted, thus accurately quantifying selected
metabolites of interest.57 Untargeted metabolomics
may result in the discovery of novel biomarkers.57

The interpretation of NMR spectroscopy measure-
ments via multivariate statistical analysis is deemed
‘metabonomics’.58,59 Common multivariate statistical
methods are principal component analysis (PCA) and
partial least squares-discriminant analysis (PLS-DA),
which result in a separation of data points into clus-
ters according to different metabotypes.57 Statistical
analyses may result in the discovery of biomarkers
that explain the differences between control groups
and clinical states.57 Metabolomic measurements can

also be mapped onto pathways, for example, through
metabolite set enrichment analysis (MSEA).57 MSEA
compares metabolomic measurements with metabolic
pathway maps or databases, which can identify
upregulated pathways compared with the control
condition.57

Top-down systems biology approaches have
been applied to a variety of human and animal stud-
ies. For example, the metabolic profiles of germfree
mice colonized with human baby flora and conven-
tional mice were compared.60 This analysis revealed
significant differences in bile acid and lipid metabolism
in the host.60 Another study investigated the effects of
probiotic lactobacilli on germfree mice colonized with
human by flora.61 Probiotic supplement modulated
bile acid and energy metabolism and increased the
levels of the microbial co-metabolites indoleacetyl-
glycine, phenylacetylglycine, and tryptamine.61

Probiotics, prebiotics, and synbiotics (the combined
application of both) also modulated multiple host
organs in another human baby flora mouse model.62

Zucker rats are established model organisms of obe-
sity and type 2 diabetes. Different microbiome com-
positions and metabolic phenotypes have been found
in lean and obese Zucker rats.63 Several studies have
compared the metabolomes of germfree and conven-
tional mice, revealing that the microbiota has systemic
effects on whole-body metabolism and on biofluid and
tissue metabolite profiles.64–68 Similarly, antibiotic
treatment of rats altered a wide range of urinary and
fecal mammalian–microbial co-metabolites demon-
strating that the gut microbiota strongly impacts
a variety of metabolic subsystems.28 Correlations
between mammalian–microbial co-metabolites and
certain microbial species have been inferred through
multivariate statistical analysis of metabolomic
data. For instance, 10 bacteria were shown to be
correlated with urinary metabolites (e.g., lactate,
citrate, phenylacetylglutamine, and 4-cresol sulfate)
in humans.69 However, the mechanisms underlying
such links between microbes and host metabolism
remain poorly understood.

Topological Network Models
Topological network models of the human gut micro-
biome are constructed based on the microbiome-wide
metabolic gene content, typically with nodes repre-
senting metabolites and links representing reactions
(Figure 1(a)). Metagenomic data serve as input for
these models, which consider the gut microbiota as a
single supra-organism, where species boundaries and
the species origin of genes are ignored. The resulting
network reflects the metabolic potential of the entire
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FIGURE 1 | Legend on the same page.

gut microbiome and thus represents the gut ecosystem
on a systems level.

Greenblum et al. constructed one of the first
topological network models by integrating shot-
gun metagenomic data from a human microbiome
gene catalog assembled from 124 European subjects

by Qin et al.1 into a metabolic network.70 This
‘metagenomic systems biology’ approach revealed
topological network differences associated with obe-
sity and inflammatory bowel disease. For instance,
the betweenness centrality, which was defined as
the proportion of shortest paths passing through a
given node, was determined for each enzyme. Based
on this feature, each enzyme in the network was
classified as peripheral, intermediate, or central.
Enzymes associated with obesity and inflammatory
bowel disease tended to have low centrality and to be
peripheral rather than central.70 Another approach
based on metagenomic data (the HUMAnN method)
was used to reconstruct microbial networks for seven
body sites.75 The HUMAnN pipeline is based on
short DNA sequence reads, from which the presence,
absence, and abundance of microbial gene families
and pathways are computed. From the resulting path-
way coverage and pathway abundance data for the
seven body sites, metabolic pathways that are enriched
in certain habitats could be identified. For example,
glycosaminoglycan degradation was unique to the
gut microbiota.75 Yet another modeling framework
used 5026 sequenced samples from 18 body sites and
239 individuals.76 The resulting network of 3005
co-occurrence and co-exclusion relationships between
197 microbial clades has been constructed using
generalized boosted linear models and correlation
and similarity measures (e.g., Pearson correlation).
The interactions participated in were clade-specific.

FIGURE 1 | Schematic representation of the major network
modeling approaches utilized in systems biology analyses of
host–microbe interactions. (a) Topological microbiome model. In this
approach (e.g., Ref 70), the gut microbiota is treated as a single
supra-organism without species–species boundaries, with nodes
representing metabolites and links representing reactions. Topological
features of the gut microbial metabolic network, e.g., betweenness
centrality (defined as the proportion of shortest paths passing through a
node) or neighborhood connectivity (average number of neighbors of a
node’s neighbors)70 can be elucidated. (b) Constraint-based
microbe–microbe model. In a constraint-based multispecies model (e.g.,
Refs 71 and 72), metabolic reconstructions targeting two or more
individual species are joined in an organism-resolved manner.
Multispecies models allow the prediction of cross-feeding and
mutualistic, commensal, or competitive interactions between microbial
species. The tradeoff between two simultaneously growing microbes
can be computed (e.g., see Ref 72). (c) Constraint-based host–microbe
community interaction model. In a constraint-based host–microbe
model, a reconstruction of host metabolism is joined with one73 or
more74 metabolic networks of representative gut microbes. The setup
enables a tractable exchange of host and microbial metabolites and
provides outlets for luminal secretion and host secretion into body fluids
(e.g., blood and urine). Hence, the host biofluid metabolome can be
predicted (see also Figure 2).
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For example, the known co-exclusion of Streptococci
and Porphyromonaceae in the subgingival plaque was
captured. The Actinobacteria and Bacilli only formed
co-exclusion relationships with other clades, while
pathogenic Treponema and Prevotella co-occurred in
the oral microbiome.76

To investigate the variable metabolic potential
in human gut microbiomes, as well as links between
gut microbes and human drug targets, another study
mapped the gene catalog published by Qin et al.1

to the MetaCyc77 and the KEGG78 databases.79

The resulting metabolic network summarized the
metabolic potential of the gut microbiota. Three dis-
tinct clusters of individuals with high, medium, or low
metabolic potential were identified.79 Moreover, the
microbial network was overlaid with Recon1, a man-
ually curated reconstruction of human metabolism
that covers the reactions occurring in any human
cell.80 This strategy resulted in an interactome map
of ‘non-human’ microbial metabolites and the human
proteome. The chemical similarities between drug
molecules in DrugBank81 and metabolites in the
interactome map were compared, predicting that 603
existing drugs could perturb 515 metabolic microbial
reactions. Moreover, 18 microbial metabolites over-
lapped with known experimental drugs indicating
that the gut microbiota acts as a natural pharmacy.79

Another supra-organismal network82 was recently
constructed from the KEGG database78 based on
the genome annotations for selected bacterial strains
reported to be present in the human gut.1 The result-
ing network, accounting for 3449 reactions, has been
used to predict 49 amino acid biotransformation
products, of which 26 were confirmed to be present
in the cecal contents of mice. The majority of the
detected metabolites were microbe-derived and/or
significantly reduced or absent in germfree mice,82

demonstrating the influence of the microbiota on
shaping the luminal metabolome.

The seed set framework relies on genome-scale
reconstructions of individual microbes83 and a graph
theory-based algorithm to compute an organism’s
metabolic potential to extract metabolites from
the environment. This ‘reverse ecology’ approach
assumes that selection pressure from the environment
and the presence of other species is reflected in the
metabolic network of an organism.83 The seed set
method was applied to 154 species from the human
gut microbiota84 and the metabolic profiles, competi-
tion, and complementarity indices for each pair have
been computed. The predicted interactions have been
compared with co-occurrence patterns for the 154
species based on their abundances from metagenomic
data.1 Metabolic competition correlated positively

with co-occurrence suggesting that habitat filtering
drives microbiome assembly.84

Taken together, these studies demonstrate the
advantages of microbiome-wide topological net-
works. Because species boundaries are not accounted
for in most of these studies, topological networks
are extensive in scope and present a global view
of the gut microbial ecosystem and its metabolic
capabilities. Moreover, they can be easily linked to
high-throughput data, such as those obtained through
metagenomic or metabolomic analysis.85 One short-
coming of not accounting for species boundaries
is that diffusion (or facilitated transport) of almost
any compound in the supra-organismal metabolic
network is assumed, whereas, in reality, only a subset
of metabolites can be exchanged between species,
and their transport often requires energy, e.g., via
ATP-binding cassette transporters.86

Constraint-Based Modeling
At the heart of the constraint-based modeling and
analysis (COBRA) approach lies well-structured
mathematical models that were constructed in a
bottom-up manner. Briefly, metabolic networks that
describe the target organism on the genome scale
are manually reconstructed based on the organism’s
genome sequence, biochemistry, and physiology.
These genome-scale reconstructions (GENREs) can
be converted into predictive mathematical models.87

The process of generating GENREs has been divided
into 96 steps.43 To speed up parts of this recon-
struction process, tools, such as Model SEED,44 have
been developed to generate automated draft recon-
structions. Such draft reconstructions still require
intensive manual curation and validation against
the available literature to yield a high-quality recon-
struction that captures the metabolic traits of the
target organism.43,73,88 This bottom-up reconstruc-
tion process results in a biochemically, genetically,
and genomically structured knowledge base for the
target organism.43 More than 140 manually curated
GENREs are now available,89 including many for
microbes colonizing the human body.90

Flux balance analysis is one of the most broadly
used methods for the interrogation of constraint-based
models.91 This method requires an objective function,
such as the biomass objective function representing
all molecular biomass precursors required to produce
a new cell.92 The second key feature of flux balance
analysis is the addition of constraints representing
mass conservation, enzyme capacities, and environ-
mental conditions (e.g., nutrient availability).92 It
is assumed that the simulated biological system is
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in a steady state. Solving the set of linear equations
representing the biochemical network and imposed
linear inequality constraints results in the prediction of
a phenotype.92 A variety of constraint-based methods
are available to contextualize high-throughput data,
such as metabolomic measurements.91,93 For example,
metabolomic measurements from physiologically nor-
mal and Leigh’s syndrome fibroblasts were overlaid
with a fibroblast reconstruction to study the metabolic
differences between healthy and disease states.94 Addi-
tionally, metabolomic and transcriptional data were
integrated with Recon1 to construct condition-specific
models for two cancer cell lines, which elucidated the
distinct metabolism of the two cell types.95 The
integration of metabolomic data into the metabolic
network of Escherichia coli resulted in accurate pre-
diction of aerobic and anaerobic growth.96 Moreover,
tools have been developed to allow the simultaneous
contextualization of quantitative metabolomic and
proteomic measurements97 or of transcriptomic and
metabolomic datasets,95,98 yielding condition-specific
models. Another established method for the contex-
tualization of metabolomic data is 13C flux analysis,
in which labeled carbon substrates are measured.99

Because constraint-based modeling does not directly
capture metabolite concentrations, fluxes are math-
ematically inferred from time-dependent changes in
concentrations.99 The integration of metabolomic
data requires adequate information for the metabo-
lites, e.g., InChI strings.100,101

Constraint-Based Multispecies
Interaction Models
A growing number of constraint-based mod-
eling efforts have been devoted to developing
multispecies models. Unlike the supra-organism
approach employed in topological network models,
constraint-based models combine multiple species by
setting well-defined species boundaries.90,102 Another
advantage is that they account for the genomic
and biochemical traits of each included species.
Typically, the species are reconstructed separately
and then joined through an appropriate in silico
scheme90 (Figure 1(b) and (c)). Moreover, a commu-
nity objective function must be defined to allow the
optimization of multispecies growth. In a first effort
to model microbe–microbe interactions, the inter-
action between a sulfate reducer and a methanogen
was simulated using a small-scale model that allowed
nutrient exchange through an additional shared
compartment.103 Simultaneous growth was simulated
by fixing the ratios between the two microbes.103

In a more complex modeling scheme, Klitgord and

Segre joined seven microbe reconstructions pairwise
in a shared in silico environment, where each species
retained its separate extracellular space.104 To opti-
mize simultaneous growth, minimal growth of each
species was assumed. The interactions between the
pairs were then systematically investigated by sim-
ulating different compositions of minimal media as
well as genetic perturbations. Three types of synthetic
interactions (mutualism, neutralism, and commen-
salism) were distinguished.104 Taffs et al. developed
three modeling approaches integrating microbial
groups as guilds into a consortium.105 This approach
was applied for modeling thermophilic, phototrophic
natural communities.105 Using an approach com-
bining metabolic modeling and in vitro culture,
Wintermute and Silver showed that E. coli mutants
that are auxotrophic for amino acids can complement
each other’s growth.106 In yet another study, Freilich
et al. predicted the metabolic interactions between
6903 bacterial pairs derived from 118 automated
metabolic models.107 Each pair was grown on an in
silico competition-inducing medium. Based on the
predicted growth rates, ‘winners’ that grew faster in
co-culture and ‘losers’ that grew slower were identi-
fied. Furthermore, give–take interactions in samples
from 59 ecological niches were predicted.107 In a first
effort to link high-throughput data with metabolic
modeling of the gut microbiota, Shoaie et al. recon-
structed three gut microbe species: Eubacterium
rectale (Firmicutes), Bacteroides thetaiotaomicron
(Bacteroidetes), and Methanobrevibacter smithii
(Archaea).71 A co-growth model of the three species
was then constructed and tailored to be condition spe-
cific based on transcriptomic data from E. rectale and
B. thetaiotaomicron grown in ex-germfree mice.108

Another study investigated the metabolic interactions
between 11 gut microbes spanning three phyla.72 The
pairwise tradeoffs between microbes (Figure 1(b))
were investigated on 12 varying nutrient environ-
ments. Anoxic conditions were predicted to induce
mutualistic interactions between certain microbes,
which were abolished in the presence of oxygen.72

Various strategies have been applied to over-
come the challenge of predicting realistic simultaneous
growth in a microbial consortium. For instance, the
dynamic multispecies metabolic modeling (DMMM)
framework integrates existing metabolic reconstruc-
tions and uses dynamic flux balance analysis to
predict time-dependent growth.109 Multiple microbes
can interact through transfer of metabolic prod-
ucts from one species through the other. However,
DMMM cannot directly predict simultaneous com-
munity growth as the biomass objective functions
of the included species are independent from each
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other. Using this method, Zhuang et al. modeled the
competition between two Fe(III)-reducing bacteria in
a soil community.109 Recently, dynamic flux balance
analysis was also implemented into a lattice where
a separate optimization problem is solved in each
box.110 This approach, deemed COMETS (Compu-
tation of Microbial Ecosystems in Time and Space),
enables the simulation of spatiotemporal dynamics of
a multispecies microbial community.110 A community
flux balance analysis approach solves a nonlinear opti-
mization problem to simulate steady-state balanced
growth of a microbial community, resulting in the
prediction of the individual species abundances at
optimal total community growth.111 Yet another
modeling framework (OptCom) optimizes mul-
tiple objective functions on the community and
single species level,112 thereby predicting commu-
nity growth. Different types of interactions, such as
commensalism, competition, parasitism, and mutual-
ism, can be modeled with OptCom. As a downside,
OptCom is computationally intensive compared
with other frameworks, such as DMMM. OptCom
was applied to predicting the interactions within a
phototrophic microbial community.112 An exten-
sion of this framework (dynamic OptCom) allows
for dynamic modeling and the inclusion of sub-
strate uptake kinetics.113 Recently, OptCom was also
applied to modeling the interaction between two gut
microbes, the Firmicutes representative Faecalibac-
terium prausnitzii and the Actinobacterium represen-
tative Bifidobacterium adolescentis.114 The existing
studies demonstrate that constraint-based modeling
accurately captures the behavior of individual species
and natural interaction patterns of commensalism,
mutualism, and competition. Moreover, unexpected,
nonintuitive species–species interactions can be pre-
dicted. A disadvantage of constraint-based modeling
is the intensive manual curation effort required to
construct such models, which has caused most studies
performed to date to be small in scope and to include
only a limited number of species.

Constraint-Based Modeling
of Host–Microbe Interactions
While microbe–microbe interaction models are well
established, few constraint-based studies have been
conducted to model host–microbe interactions. In a
first effort, Bordbar et al. constructed a host–pathogen
model simulating the infection of the human alve-
olar macrophage with Mycobacterium tuberculosis.
The model was constructed by placing a reconstruc-
tion of M. tuberculosis into an in silico compart-
ment simulating the intracellular phagosome.115 A

constraint-based model of a host and a commensal
microbe73 linked a published mouse reconstruction116

with a reconstruction of the prominent human gut
symbiont B. thetaiotaomicron. The two species could
consume simulated dietary inputs and exchange nutri-
ents with each other through an in silico compart-
ment simulating the intestinal lumen. The mouse
could secrete into a separate outlet representing mouse
biofluids, e.g., blood or urine. This setup was modeled
after a gnotobiotic mouse mono-associated with B.
thetaiotaomicron, which is a well-established animal
model used in gut microbiome research.117 To enable
simultaneous growth, the tradeoff between host and
microbe biomass production was computed. The in
silico model captured known traits of the in vivo
model, including B. thetaiotaomicron’s foraging on
dietary and host glycans as well as the production
of short-chain fatty acids,117 which were then con-
sumed by the host. Moreover, the model predicted that
lethal mouse gene deletion phenotypes would be res-
cued by the presence of B. thetaiotaomicron and vice
versa. Finally, the implementation of the separate host
outlet enabled the prediction of the mouse biofluid
metabolome, which was validated against experimen-
tal metabolomic data.73

Moving from these initial efforts to a com-
prehensive, predictive model of human–microbe
co-metabolism requires a well-curated, extensive
network of human metabolism. The global human
reconstruction Recon2 was curated through a com-
munity effort118 and is far more comprehensive than
its predecessor, Recon1.80 Importantly, it captures
the majority of known exometabolites, which are
extracellular metabolites found in biofluids, such as
blood and plasma,118 making it an excellent tool for
prediction of the human metabolome and the contex-
tualization of metabolomic data. Most health-relevant
metabolites and pathways known to be influenced by
the gut microbiota are present in Recon2 (Table 2).
Taking advantage of these characteristics, Recon2 was
used to predict the global effects of a representative
gut microbe community on the host’s metabolome.74

The community accounted for 11 published, man-
ually curated gut microbe reconstructions spanning
three phyla (Bacteroidetes, Firmicutes, and Pro-
teobacteria), including commensal, probiotic, and
pathogenic bacteria.90 The microbial reconstructions
were linked to Recon2 using a previously estab-
lished framework,73 which enables dietary input
and metabolic exchange between host and microbes
(Figure 1(c)). The human global metabolome was
systematically predicted in the presence of the 11
microbes and in their absence (‘germfree’ human).
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Predicted host body fluid metabolites plotted by fold change and subsystem
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FIGURE 2 | Prediction of health-relevant host body fluid secretion using a constraint-based modeling framework. Using a constraint-based
modeling framework (Figure 1(c)), the maximal quantitative metabolite secretion was predicted in the presence and in the absence of a model
community of 11 microbes. A dietary regime approximating the amounts of protein, carbohydrate, and fat consumed by a typical Western citizen
(http://www.ars.usda.gov/) was simulated. Shown are examples for metabolites for which the secretion flux was at least fivefold increased in the
presence of the microbe community compared with the ‘germfree’ condition. The complete data analysis is available in Ref 74.

Recon2 secreted a total of 342 metabolites. Sur-
prisingly, only 11 of these metabolites could not be
secreted by the ‘germfree’ human, but the quanti-
tative secretion flux of 52 metabolites was at least
fivefold higher in the presence of the microbe com-
munity (Figure 2). Notably, the secretion of known
mammalian–microbial co-metabolites, such as pheny-
lacetylglutamine and 4-hydroxyphenylacetate,69 as
well as several hormones and neurotransmitters,
was up to 160-fold higher in the presence of the 11
microbes (Figure 2). Moreover, the microbes’ poten-
tial to secrete luminal metabolites was systematically
predicted, including a variety of phenolic compounds
as well as short-chain fatty acids, lactate, formate, and
ethanol.74 These metabolites are known to have bene-
ficial or detrimental effects on host health.120 Thanks
to the bottom-up systems biology approach, under-
lying mechanisms for the observed microbial effects
on host metabolite secretion could be proposed. For
instance, the microbes increased glutathione and
leukotriene production by the host through secret-
ing the synthesis-limiting precursor l-cysteine.74 In
summary, this systems-level framework predicted that
the microbes profoundly affected host metabolism, in
agreement with the emerging view of the microbiota
as an additional organ.29 In future efforts, more
comprehensive gut microbial communities could be

considered, which would be a prerequisite for the
integrative analysis of metagenomic and metatran-
scriptomic data. Such applications will be valuable
for gaining mechanistic insight into human–microbe
co-metabolism.

FUTURE PERSPECTIVES

Elucidating the Unknown Metabolic
Potential of the Microbiota
Despite the recent advances in the field of human
gut microbiome research, our understanding of
the mechanisms through which the microbiota
affects host health is still incomplete. Two world-
wide research initiatives, the Human Microbiome
Project and MetaHIT, have resulted in enormous
amounts of data, including more than 2800 reference
sequences for microbes from various sites in the
body (http://www.hmpdacc.org/). However, many of
these strains are uncultured and uncharacterized, and
the genome sequence alone does not offer complete
insight into the metabolic capabilities of specific
bacteria.151 As a result, it is difficult to identify
keystone species through metagenomic approaches
alone.151 Ultimately, only cultivation can fully elu-
cidate the biochemical and physiological traits of
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a strain151; yet cultivating the mostly anaerobic
gut microbiota is difficult, time-consuming, and
impossible to be performed for thousands of species.
Constraint-based modeling could bridge the gap
between genome sequences and in vitro culture by
predicting a species’ metabolic potential based on
its genome sequence.88,152,153 Such predictions could
identify potential keystone species, whose metabolic
properties (e.g., nutrient requirements) could be pre-
dicted and subsequently experimentally validated. For
instance, a combined in silico/in vitro approach has
yielded a chemically defined growth medium for the
oxygen-sensitive gut symbiont F. prausnitzii.88 Such
an iterative approach could be readily applied to the
other poorly characterized or uncharacterized species
in the gut.

Predicting Mechanisms by Combining
Top-Down and Bottom-Up Approaches
In addition to the characterization of individual
species in the gut, it is of utmost importance to
identify links between gut microbial metabolism
and human phenotypes. Metagenomic datasets have
provided valuable insights, for example, giving rise
to the enterotype concept.9 However, many of these
studies used top-down approaches, which identified
patterns rather than mechanisms.154 Moreover, the
causality between phenotypes and the microbiome
composition (i.e., whether the host’s phenotype
drives changes in the gut microbiome composition
or vice versa) remains unclear.154 The combina-
tion of top-down approaches revealing patterns
and bottom-up methods elucidating the mecha-
nisms underlying these patterns is a key future
challenge.154 Supporting experimental bottom-up
approaches with computational methods will require
well-structured, accurate networks. Constraint-based
reconstructions are ideal tools to provide insight into
phenotype-gut microbiome causality because they
can predict mechanisms at the biochemical level.39

Initial efforts could demonstrate that constraint-based
modeling can provide mechanistic hypotheses on
how microbes affect the host’s potential to synthe-
size health-relevant metabolites.73,74 A host–microbe
community model could also be combined with
top-down methods to contextualize high-throughput
data (Figure 3). For instance, in a second phase of the
Human Microbiome Project, a multi-omic analysis
of the microbiotas of mothers and neonates will be
performed, including metagenomic, metatranscrip-
tomic, metabolomic, and metaproteomic analyses.155

In addition, host lipidomes and cytokines will be
analyzed.155 These datasets will be accessible through

public databases155 and could be readily mapped
onto the human metabolic reconstruction Recon2,118

which accounts for many lipid derivates, or be used
in a gut microbiota community model. Moreover,
top-down statistical approaches have previously
inferred associations between metabolites and specific
microbes from metabolomic data. For instance, F.
prausnitzii has been shown to correlate with the
presence of eight human urinary metabolites.69 Inte-
grating top-down inference models with bottom-up
reconstructions could elucidate the mechanisms
underlying such patterns. A proposed pipeline for
using constraint-based modeling to contextualize
high-throughput data is shown in Figure 3.

Toward a Predictive Bottom-Up
Host–Microbe Community Model:
Challenges
Currently, the application of constraint-based mod-
eling to gut microbiome research is limited by the
availability of high-quality reconstructions. While the
number of high-quality, manually curated metabolic
reconstructions is steadily growing, the thousands of
species inhabiting the human gut are still poorly repre-
sented. A number of bacteria colonizing the human gut
have been reconstructed88,90,71,114; however, they do
not represent the gut microbiome composition well.
While Proteobacteria are overrepresented, the impor-
tant Bacteroides and Clostridium groups are only
represented by one reconstructed species, and recon-
structions for minor phyla, such as Verrucomicrobia,
are lacking. Moreover, the currently available recon-
structions lack standardization in terms of nomencla-
ture and the reconstruction structure, which hampers
their integration onto a community model.101,74,156

To overcome this challenge, MetaNetX, a tool that
allows the mapping of metabolic reconstructions from
different sources into a common namespace, has been
developed.157 Using automated reconstruction tools,
such as Model SEED44 or Pathway Tools,47 one could
easily construct a community model of hundreds
of species from the genome sequences archived by
the Human Microbiome Project.6 The resultant loss
of accuracy would be compensated by a dramatic
increase in scope. Considering that most gut microbes
are both uncultivated and uncharacterized, automated
draft reconstructions are a reasonable first approxima-
tion of their metabolism. A challenge in this context
is that the quality of a draft reconstruction depends
mostly on the genome sequence. Many published
sequences are incomplete. Additionally, gene annota-
tions are lacking or unspecific and/or the associated
pathways are not accounted for by the automated
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FIGURE 3 | Schematic overview of a pipeline for using constraint-based models to contextualize high-throughput metagenomic,
metatranscriptomic, metaproteomic, and metabolomic data from human and animal studies.

reconstruction pipelines, resulting in a less predictive
draft reconstruction. Moreover, even universal path-
ways vary in the enzymes carrying out individual
steps.158 As a result, annotation platforms often fail
to correctly reconstruct these variant pathways.158

Several recent comparative genomics studies have
resulted in the improvement of genome annotations
in gut microbial genomes.159–161 Such efforts will ulti-
mately result in an improved predictive potential of
automated reconstructions derived from the genome
sequence.

Peripheral and species-specific pathways are
generally lacking in automated reconstructions.44

For instance, the dietary glycan degradation by gut
microbes is highly specialized and species-specific162

and the inclusion of the associated pathways into
metabolic reconstructions currently requires intensive
manual curation.73 Recently, a computational pipeline
has been developed to predict the glycan degradation
potential of gut bacterial species163 and will facilitate
the incorporation of species-specific carbohydrate
degradation pathways into metabolic reconstructions.
Xenobiotic transformations by gut microbes are
currently not well captured in draft metabolic recon-
structions. The ongoing advances in metagenomic
analyses will further elucidate drug transformations
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performed by gut bacteria,145 which could then be
included into reconstruction pipelines.

Constraint-Based Modeling of
Host–Microbe Co-Metabolism:
Future Applications
The field of human gut microbiome research has
exploded during the last decade and will undoubt-
edly grow even more in the upcoming years. The
prevalence of lifestyle diseases directly linked to the
gut microbiota is estimated to increase exponentially
in the next decades. For instance, worldwide obesity
has nearly doubled since 1980; there are currently
1.4 billion overweight people, including 500 million
obese individuals.164 The prevalence of type 2 diabetes
in developed and developing countries is predicted to
double between 2000 and 2030.165 Thus, the interest
in the relationship between the human microbiota and
host health is ever growing. In this section, we propose
key contributions that constraint-based host–microbe
modeling could make.

A key application area of systems biology
research on host–microbe interactions is drug devel-
opment. It is well established that the gut microbiota
affects drug metabolism.30 In fact, at least 30 drugs
have been shown to be co-metabolized by the
microbiota.30 For instance, the well-studied drug
acetaminophen (paracetamol) is differentially metab-
olized in individuals due to gut microbial activity.140

Microbiota-derived p-cresol competes over human
sulfo-transferase 1 with acetaminophen, resulting in
lower acetaminophen sulfonation capacity in individ-
uals with high bacterial p-cresol production. As, many
xenobiotics are substrates for sulfo-transferase 1 and
sulfonation alters the physical properties of molecules,
this finding has implications for the metabolism and
toxicity of various drugs.140 The cardiac drug digoxin
has been shown to be inactivated by the gut bac-
terium Eggerthella lenta.166 Using a computational
framework, the transformation of drugs and xeno-
biotics (e.g., antibiotics) can be predicted and linked
to specific species. Recon2 accounts for 1290 drugs
included in DrugBank,81 mapped to 308 enzymes and
enzymatic complexes,118 making it an excellent tool
for modeling drug metabolism. As constraint-based
modeling can predict drug effects at a mechanistic
level,35 and its applications for drug discovery are
promising (reviewed in more detail in Refs 35, 167,
and 168). For instance, metabolic modeling has led to
the prediction and subsequent validation of a novel
cancer drug.169,170 Recently, Sahoo et al. expanded
Recon2 with a manually curated drug metabolism
module for the five most highly prescribed drug

groups, including acetaminophen.171 This expanded
human network was then used to predict the effects
of dietary intake and inherited metabolic disorders on
drug metabolism. The flux through sulfo-transferase
1, which carries out the sulfonation of acetaminophen,
has been predicted to be lower under a vegetarian diet
compared with a Western or balanced diet.171 Inter-
estingly, the same reaction was found to be affected by
high gut microbial production of p-cresol, which com-
petes with acetaminophen for sulfo-transferase 1.140

Currently, such studies are using the human metabolic
network as the sole modeling environment and are
therefore not accounting for the well-known drug
transformations performed by the microbiota. By
using a host–microbe community framework,74 drug
co-metabolism by humans and microbiota depending
on the diet could be investigated.

A logical next step after modeling the
co-metabolism of drugs and xenobiotics is the pre-
diction of individual-specific drug metabolism. The
global human reconstruction can be tailored to be
both cell-type and individual specific, e.g., by overlay-
ing it with transcriptomic or metabolomic data,172 and
it has been applied successfully to the contextualiza-
tion of high-throughput data from pathological states,
such as type 2 diabetes173 and cancer.95,174 Recently,
Agren et al. constructed personalized genome-scale
models for carcinoma patients and used these models
to predict cancer drug targets.175 Moreover, Yizhak
et al. built personalized cancer cell models for more
than 700 breast and lung cancer patients.176 Low
growth rates in silico were found to be correlated with
longer patient survival.176 Personalized human cell
models could also be constructed based on intestinal
metabolomic measurements (e.g., condition-specific
models based on measured drug degradation prod-
ucts). One could even envision a personalized gut
microbiota model based on an individual’s gut
microbiome composition. Such knowledge-based,
bottom-up network models would valuably com-
plement or be combined with the existing top-down
inference models, such as the pharmacometabonomics
approach developed by Nicholson et al.177

Biomarker discovery is another important
application of systems biology. For instance,
constraint-based modeling-based analyses have
predicted biomarkers of inborn errors in human
metabolism,118,178 with 77% accuracy in the case
of Recon2.118 The human reconstruction was also
applied to predicting novel biomarkers of type 2
diabetes173,179 and Alzheimer’s disease.180 Linking
Recon2 with a microbial community74 could be
applied to predicting the effects of the microbes on
disease-associated biomarkers in humans.
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Yet another useful application is modeling
the interplay between the diet, microbiota, and
host energy metabolism. Several constraint-based
approaches have been employed to model energy
metabolism (reviewed in Ref 181). Obesity can gen-
erally be considered to be the result of an imbalance
between energy uptake and consumed energy. The
gut microbiota has long been known to contribute
approximately 10% of the host energy intake182

and to directly modulate host energy metabolism.3

Systems biology models have been proposed as a tool
for modeling the thermodynamic properties of the
gut microbiota and its costs from the perspective of
the host.183 There are established methods for inte-
grating thermodynamic constraints into genome-scale
models,184–189 which could be used for this type
of application. Multiple studies have investigated
adipocyte metabolism using cell-type-specific
models.190–192 Such genome-scale adipocyte mod-
els would be combined with a microbe community
model to elucidate the effect of the presence of
microbes on host fat storage and energy metabolism.

Finally, while this review focuses on human–gut
microbiota interactions, the described systems biology
approach is not limited to human hosts. For instance,

we73 and others82 have shown that mouse–gut
microbiota interactions can also be computationally
modeled. Ex-germfree mice colonized with a defined
or conventional microbiota are important animal
models employed in gut microbiome research,193

especially in metabolomics analyses.65,67 Compu-
tational models can be useful in complementing
or possibly partially replacing such animal stud-
ies. Other mammals could be reconstructed using
the human reconstruction as a template,172 and
these reconstructions could subsequently be com-
bined with a microbe community model. Moreover,
host–microbe modeling can be carried out for organ-
isms other than mammals. For example, the survival
of the endangered honeybee may be improved by
manipulating its gut microbiota,194 which could be
predicted in silico. Another potential application of
constraint-based multispecies modeling is the inves-
tigation of plant–microbe interactions. There are
several plant genome-scale reconstructions195,196 as
well as tissue-specific reconstructions of Arabidop-
sis thaliana,197 and multiorgan models of maize198

and barley,199 which could be applied to modeling
the interactions between plants and their associated
symbiotic or pathogenic microbes.
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