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Abstract
Transposable elements (TEs) are DNA sequences that are able to replicate and move

within and between host genomes. Their mechanism of replication is also shared with

endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient ret-

roviral infection within animal genomes. Two models have been proposed to explain TE pro-

liferation in host genomes: the strict master model (SMM), and the random template (or

transposon)model (TM). In SMM only a single copy of a given TE lineage is able to repli-

cate, and all other genomic copies of TEs are derived from that master copy. In TM, any ele-

ment of a given family is able to replicate in the host genome. In this paper, we simulated

ERV phylogenetic trees under variations of SMM and TM. To test whether current phyloge-

netic programs can recover the simulated ERV phylogenies, DNA sequence alignments

were simulated andmaximum likelihood trees were reconstructed and compared to the sim-

ulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can

be misleading. However, if a set of statistical summaries is calculated, we are able to distin-

guish betweenmodels with high accuracy by using a data mining algorithm that we intro-

duce here. We also demonstrate the use of our data mining algorithmwith empirical data for

the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and

pig cells in vitro.

Introduction
Transposable elements (TEs) are DNA sequences able to move and replicate within, and occa-
sionally between, host genomes [1]. These elements are present in almost all species including
prokaryotes, and they are believed to constitute more than half of the human genome [1–5].
TEs are classified in two main groups. Class I elements, or retrotransposons, replicate through
an RNA intermediate and insert a DNA copy into a new locus in the host genome, moving by a
“copy and paste” mechanism [6]. In contrast, class II elements or DNA transposons replicate
mainly by a “cut and paste” mechanism, excising themselves from one locus and reinserting in
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a different location in the host genome [6]. Given the very different mechanism of replication
between the two TE classes, this study focuses only on the class I elements or retrotransposons.

The retrotransposonmechanism of replication is also shared with retroviruses [6]. Retrovi-
ruses have a dimer positive sense and single stranded RNA genome [7, 8], which is organized
in four main coding domains: gag (encoding capsid, matrix and nucleocapsid proteins), pro
(protease), pol (reverse transcriptase and integrase enzymes), and env (surface and transmem-
brane glycoproteins of the virus envelope) genes [8, 9] (Fig 1). While simple retroviruses are
composed of these main genes, complex retroviruses have additional accessory genes [9]. Once
a retrovirus integrates in the host genome it is referred to as a provirus. Proviruses have two
long terminal repeat (LTR) sequences flanking their genome and containing regulatory ele-
ments [9, 10] (Fig 1). These LTR sequences are identical at the moment of integration, and
often these two sequences recombine forming a solo LTR [7, 11].

Although retroviruses usually infect somatic cells, they can also infect and colonize germ
cells [9]. Proviruses in germ cells are known as endogenous retroviruses (ERVs) [12–14]. ERVs
are viewed as an ancient retroviral infection in animal genomes and are commonly referred to
as viral “fossils” [8, 15, 16]. They are present in multiple copies; are passed to the offspring; and
account for approximately 8% of the human genome [9, 17, 18]. Although the majority of
ERVs observed in host genomes are classified as simple retroviruses, there are reports showing
the integration of complex retroviruses in germ line cells [19, 20]. Because proviruses have the
potential to disrupt host gene expression, they are negatively selected and typically lose their
viral function and ability to reinfect [9]. However, some ERVs are still able to reinfect because
they have intact viral genes; examples of ERVs that can reinfect are the koala retrovirus
(KoRV) [21], the porcine endogenous retrovirus (PERV) [22], and the cervid endogenous ret-
rovirus (CrERV) [23]. Even though ERVs are usually negatively selected, it is clear that ERV
and other TEs play a role in shaping host genomes [14, 24, 25]. The most striking example is
the role of an ERV gene in the formation of the placenta in mammals [26, 27]. Recently,
Chuong et al. [28] have also shown the importance of human ERV (HERV) sequences for the
innate immune response.

LTR sequences contain binding sites for cellular transcription factors that aim to promote
the transcription of the provirus [7, 29]. An ERV is initially transcribed by the host polymerase,
but it will increase in copy number following either reinfection or retrotransposition [29–31].
Reinfection involves the release of a virus that will reinfect another cell, a process that requires
intact copies of all viral genes [30, 32]. Retrotransposition is the proliferation of a virus without
the requirement of reinfecting another cell, and can occur either in cis or as complementation
in trans [30]. Retrotransposition in cis requires functional gag and pol genes, while for comple-
mentation in trans no functional genes are required [31, 32]. In the latter case, the ERV needs
to have an intact LTR for initial viral transcription to occur, with the other proteins necessary
for viral replication provided by other viruses or TEs [30, 31]. In this case, a genome of a defec-
tive ERV will be integrated to the host genome if it successfully packages a reverse transcriptase
and integrase enzymes [30]. An example of such process is the HERV-W that has used proteins
from long interspaced elements (LINEs) to retrotranspose [33].

Two models of class I retrotransposition have been described: the strict master model
(SMM) and the random template (or transposon)model (TM). In SMM, it is assumed that
only one element of a given lineage in the genome–the “master”–is capable of producing a new
copy, while in TM, it is assumed that all elements of a given lineage in the genome are equally
able to produce new copies [34, 35]. Clough et al. [35] described the expected phylogenetic tree
topology of retrotransposons under these two models, but did not investigate whether current
phylogenetic methods would recover the expected tree topologies.
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Because of differences in genetic diversity, size, internal structure, and impact in host dis-
ease, it is important to understand the evolutionary dynamics of retrotransposons. Finding in
silico models and evolutionary analyses that best explain their dynamics will advance our
understanding of retrotransposons and their ability to retrotranspose in host genomes. In this
paper, we focused on exploring these aspects by simulating SMMs and TMs on a type of class I
elements or retrotransposons, the ERV. Our work is an extension of the work proposed by
Clough at al. [35], but we include in our models ERV inactivation and ongoing activity related
to their ability to retrotranspose or reinfect host cell genomes. Based on this information of
ERV inactivation and ongoing activity, variations of SMM and TM were accessed in this study
and named “SMM Mortal (SMM-m)”, “TMMortal (TM-m)”, “SMM Immortal (SMM-i)” and
“TM Immortal (TM-i)”. These four extrememodels were chosen to investigate whether a max-
imum likelihood approach would recover the expected tree topologies under the SMM and TM
as described by Clough et al. [35].

Our results show that one is more likely to recover trees similar to the expected phylogenetic
trees when phylogenies were reconstructed using alignments of 10,000 base pairs (bp) rather
than 1,000 bp. In general, it was also more likely to recover the expected topologies when the
rate of ERV replication per host generation was low. By increasing the rate of ERV replication
per host generation, it also becamemore difficult to distinguish tree topologies under SMM
and TM. Nonetheless, when appropriate statistics were calculated for phylogenetic trees, we
were able to correctly identify 84% and 93% of the different models when trees were recon-
structedwith alignments of 1,000 bp and 10,000 bp, respectively. Our statistical approach was
also able to recover the expected replication patterns for porcine endogenous retroviruses
(PERVs).

Our study showed the importance of thoroughly analyzing extrememodels of ERV dynam-
ics and evolution before more complex models could be proposed. For example, a more com-
plex model could involve only a proportion of elements able to replicate in a host genome. If
we were unable to correctly identify the models herein proposed, it would be unlikely to do so
by using more complex models of ERV dynamics.

Materials andMethods

Themodels
We assume that a single exogenous retrovirus colonizes a host germ cell genome and simula-
tions start from this single copy. This was considered the initial time in all simulations, and it
was also the time this retrovirus is endogenized.One simulation run represented the evolution
of a single ERV lineage.

We have applied to ERVs both SMMs and TMs [34, 35] generally described for TE replica-
tion in host genomes. SMMs assumes that only one element of a given lineage–the “master”–is
able of producing a new copy, while TMs assumes that all elements of a given lineage are
equally able to produce new copies in the host genome. Based on SMMs and TMs four models
were assessed in this study and named “SMM Mortal (SMM-m)”, “TMMortal (TM-m)”,
“SMM Immortal (SMM-i)” and “TM Immortal (TM-i)”.

Fig 1. A schematic illustrationof a provirus genome.The four main genes are depicted: gag, pro, pol and env
genes. Proviruses are flaked by long terminal repeats (LTRs).

doi:10.1371/journal.pone.0162454.g001
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For theMortal models, it was assumed that replication of an ERV lineage stopped after a fixed
number of copies in the genome were attained. This follows the biological assumption that full-
length ERVs are unable to reinfect when, for example, mutations cause gene inactivation of all
ERV genes in all copies [9, 11]. A fixed number of elements was used based on information of
copy number of ERV lineages in different host genomes [36]. In contrast, for the Immortal mod-
els, it was assumed that (i) an ERV lineage was able to replicate indefinitely and, (ii) the newly
generated copy could occupy the locus of a previous copy by replacement. This follows the bio-
logical observationof full-lengthERVs, such as the porcine endogenous retrovirus (PERV) [22]
and the koala retrovirus (KoRV) [21], which still have the ability to reinfect or retrotranspose.

In our models, we do not distinguish between retrotransposition and reinfection.We
assume that a newly generated ERV will be successfully reinserted in the host genome and
become fixed, unless it is replaced as for the Immortal models.

Computer Simulations
1. Simulation of true phylogenetic trees. Computer simulations were carried out using

two variables. The first variable was the ERV mutation rate (μerv) set to 1.0×10−4, 1.0×10−5,
3.0×10−5, 1.0×10−6, 1.0×10−7, and 1.2×10−8 substitutions per nucleotide per infection (s/n/i). A
mutation rate of 3.0×10−5 s/n/i has been estimated for Murine LeukemiaVirus (MLV) [37], a
virus that can be found in both exogenous and endogenous form [38]. We used other four ERV
mutation rates to test the influence of this parameter on phylogenetic tree branch lengths. The
second variable was the rate of ERV retrotransposition or reinfection per host generation that
in this paper will be solely referred to as ERV replication (λ). No accurate information is avail-
able for ERV replication in host genomes. For this reason, arbitrary values of ERV replication
were used in our simulations and were set to 1.0×10−4, 2.0×10−4, 3.0×10−4, 4.0×10−4, 5.0×10−4,
6.0×10−4, 7.0×10−4, 8.0×10−4, and 9.0×10−4 retrotranspositions or reinfections per host genera-
tion (r/g). Host substitution rate (μh) was fixed at 1.2×10−8 substitutions per nucleotide per
host generation (s/n/g), which is the described substitution rate for humans [39].

Because two mutation rates were used to simulate phylogenetic trees, branch lengths in sub-
stitutions per site represented a composite rate between host and ERV mutation rates. At least
two different mutation rates are associated with the evolution of an ERV lineage [15, 40]. First,
a new ERV copy will be the consequence of retrotransposition or reinfection because both
mechanisms involve the reverse transcription of a viral RNA intermediate by the ERV encoded
reverse transcriptase enzyme. Second, an ERV lineage can replicate because of host DNA repli-
cations by its DNA polymerase. Retroviral reverse transcriptase has a higher substitution rate
than the host DNA polymerase [37, 40, 41].

The waiting time for an ERV to release a new copy in the host genome was simulated as an
exponential random variable, with rate λ for SMMs and Nλ for TMs, where λ is the rate of
ERV replication per host generation; and N is the number of ERV copies already generated.
The ERV chosen to release a new copy in the host genome will release this new copy under the
viral mutation rate (μerv), while all other copies that remained in the genome will accumulate
mutations according to the host substitution rate (μh).

Different ERV lineages show different copy number, e.g. [36]. Because we are simulating
simpler models to understand the dynamics of ERVs, the maximum number of ERV copies in
the phylogenetic tree (nmax) was set to 50. This number was chosen based on the copy number
described for porcine endogenous retroviruses (PERVs) [42] and some human endogenous ret-
roviruses (HERVs) [36]. Finally, 100 simulations were carried out for each combination of
ERV mutation rate and ERV replication for a total of 1,000,000 host generations.We refer to
simulated phylogenetic trees as true trees.

Evaluating Models of Endogenous RetrovirusEvolution
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2. Algorithm to simulate true phylogenetic trees for Mortal models. (1) A waiting time
(t) is generated, which represents the time in host generations before an ERV releases a new
copy in the host genome.

t ¼
� lnðUÞ

Nl

Where U is uniform random number, N is the number of elements that is able to generate a
new copy in the host genome (for SMM, N is always 1), and λ is the ERV replication rate per
host generation.

(2) If the sum of waiting times is less than the maximum number of host generations
(1,000,000), a new element will be added to the phylogenetic tree.

(3) If the total number of elements is less than the maximum number of elements (nmax),
branch lengths (l) will be calculated as follows:

l ¼ mh � t

lnc ¼ ðmh � tÞ þ merv

where l and lnc are the branch lengths of genomic ERVs and the new ERV, respectively.
(4) If the total number of elements is equal to the maximum number of elements, all copies

will accumulate mutations according to the host mutation rate, and the final branch length (lf)
will be calculated as follow:

Tf ¼ T �
X

t

lf ¼ mh � Tf

where T is the maximum number of host generations, and Tf is the time at which the phyloge-
netic tree was composed by 50 elements (the maximum number of elements).

(5) If number of elements in the tree is less than the maximum number of elements, and the
sum of t is less than the maximum number of host generations, then return to Step 1, otherwise
STOP.
3. Algorithm to simulate true phylogenetic trees for Immortalmodels. Steps (1), (2),

and (3) are the same as described for the Mortal models.
(4) For Immortal models, replacement of elements is allowed. Replacement represents a

homologous recombination between two proviruses [11]. The probability a replacement (R)
will occur was calculated as:

P Rð Þ ¼
n � 1

nmax � 1

Where n represents the current number of elements (or number of tips) in the phylogenetic
tree. The randomly chosen ERV that will give birth to a new element was not allowed to be
replaced. For this reason, we subtract 1 element from the equation above. This probability was
chosen following the biological assumption that as the number of elements in the tree
increases, the probability of replacement also increases.

(5) Repeat Steps 3 and 4 until the sum of t reaches the maximum number of host
generations.
4. Simulation of DNA sequence alignments and phylogenetic reconstructions. Seq-Gen

1.3.3 [43] was used to simulate DNA sequence alignments of 1,000, 10,000, and 100,000 bp
under the Jukes and Cantor (JC) substitution model [44] for each true tree generated under the
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four ERV models. The approximate size of an ERV genome is 10,000 bp [9]. However, it is
common to reconstruct ERV phylogenies using partial genes of approximately 1,000 bp [45–
48]. Simulations using 100,000 bp alignments were carried out to understand the effect of sam-
pling errors in reconstructingERV phylogenies.

Finally, using the simulated DNA sequence alignments, phylogenetic trees were recon-
structed by maximum-likelihood (ML) with RAxML 8.0.19 [49] and setting the nucleotide sub-
stitution model to general time reversible (GTR) [50–52] (estimated values). Trees were rooted
with a midpoint root using a script in R 3.0.3 [53] and the package phangorn [54]. Recon-
structed phylogenetic trees will be referred to as ML trees.

Statistical analysis
To compare true with ML trees reconstructedwith alignments of 1,000, 10,000 and 100,000 bp,
we used the Robinson-Foulds (RF) metric [55, 56] in the R package phangorn. Because RF met-
ric is a partitionmetric, its range is 0 for identical trees with a maximum value of 2n – 6, where
n is the total number of tips (or number of elements) in the tree [55]. The RF metric was calcu-
lated for rooted and unrooted trees to study the effect of midpoint rooting in ML trees. Com-
parison using ML trees reconstructedwith alignments of 100,000 bp were carried out to
understand the effects of sampling error in reconstructing the evolution of ERVs following the
four proposedmodels.

Because the ERV genome size is approximately 10,000 bp, and because we would like to
understand whether it is possible to distinguish phylogenies under different ERV models, tree
statistics were calculated only for ML trees reconstructed using alignments of 1,000 and 10,000
bp. ML trees reconstructed using alignments of 100,000 bp were used solely to understand the
effect of sampling error in reconstructingERV phylogenetic trees.

The following 10 statistics were calculated as candidate variables for model classification,
allowing us to test the best combination of statistics that is able to predict the correct ERV
model proposed in this study:

(i) The tree shape statistic beta-splittingmodel (Beta) [57] was calculated using the R pack-
age apTreeshape [58]. Beta values equal to −2 represent completely unbalanced trees, which is
expected for phylogenetic trees simulated under SMMs [35]. Increasing values of Beta corre-
spond to greater tree balance [57], which is expected for phylogenetic trees simulated under
TMs [35].

The other following seven tree shape statistics (ii to viii) were calculated using the R package
phyloTop [59] following Colijn and Gardy [60], in which definitions are summarized below.
For further information on statistics ii to vii, please see Colijn and Gardy [60].

(ii) Ladder length is defined by the maximum number of connected internal branches with
a single terminal descendant branch (Max. ladder);

(iii) “IL” branches are defined as the portion of internal branches with a single terminal
branch as descendant (“IL” portion);

(iv) Maximum depth and (v) maximumwidth: The depth of a branch is defined as the num-
ber of branches between that branch and the tree’s root, while the tree width at depth d is
defined as the number of branches with depth d;

(vi) Maximum width over maximum depth: The ratio betweenmaximumwidth and maxi-
mum depth;

(vii) Maximum difference in widths is defined as the maximum absolute difference in
widths from one depth to the next, over all depths in the tree;

(viii) Number of cherries was also calculated; a cherry is defined as a pair of terminal
branches that are adjacent to a common ancestor node [61].

Evaluating Models of Endogenous RetrovirusEvolution
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To account for tree size, values obtained for summaries ii, iii, iv, v, vii and viii were divided
by the number of terminal branches (or number of elements) in the tree.

In addition to tree shape statistics, (ix) the proportion of terminal branch lengths that con-
tributed to the total tree branch length (“prop”) was calculated using an R script and the ape
package [62]. A higher proportion is expected for the Mortal models. Finally, (x) nucleotide
diversity for simulated DNA sequences was calculated for alignments of 1,000 bp and 10,000
bp also using an R script and the pegas package [63].

Comparisonof true and ML trees and classification of ERV models
To compare the distribution of each of the 10 statistics calculated in the previous section for
SMM and TM, we used the Jensen-Shannon divergence (JSD). The JSD is a symmetric diver-
gence statistic that can be used to measure similarities between two distributions [64]. Compar-
isons were performed in pairs for SMM-m and TM-m as well as SMM-i and TM-i: JSD was
calculated for true trees as well as for ML trees for each statistics described in the previous sec-
tion. If two distributions are identical JSD = 0, and larger values of JSD represents dissimilar
distributions. In the context of this study, if JSD = 0 there is no difference between trees under
SMM and TM.

Because of the different tree topologies expected for trees generated under the SMM and
TM [35], we would expect larger values for JSD calculated for the true trees under SMM and
TMs for each of the tree shape statistics.With finite sequence data, we expect that errors in
phylogenetic reconstructionwill introduce variation in the differences of JSD statistics.

Because we would like to distinguish between trees reconstructed under the SMM and TM,
we calculated JSD for each statistics for all combination of models in pairs (for example, TM-m
vs TM-i, SMM-m vs TM-i, etc) using ML trees.We chose the statistics in which the JSD was
larger and different from zero. This was used as a pre-screening of which variables should be
included in a k-nearest neighbor (kNN) classifier. We also trained a kNN classifier using only
the Beta statistics, which is a metric to detect phylogenetic tree imbalance.

A kNNwas trained using R and the function IBk of package RWeka [65]. We let the func-
tion automatically find the best number of nearest neighbor value k between 1 and 30. We also
tested k varying between 1 and 100. This training was performed on values of tree statistics and
nucleotide diversity calculated for 21,600 ML trees / DNA sequence alignments of 1,000 and
21,600 ML trees / DNA sequence alignments of 10,000 bp. Results are reported using a 10-fold
cross-validation and the kNN classifier trained with alignments of 1,000 bp were cross-vali-
dated using only 1,000 bp alignments. Similarly, a kNN classifier trained with alignments of
10,000 bp was cross-validated using only 10,000 bp alignments.

There is a lack of information regarding ERV model of replication (SMM or TM), ERV rep-
lication rate per host generation and ERV mutation rate. For this reason, and because few
ERVs are know to be able to replicate in host genomes, we decided to train the kNN to classify
between the four proposedmodels rather than trying to improve performance by classifying
between SMM-m/TM-m and between SMM-i/TM-i, for example.

Empirical data
We used datasets of PERV DNA sequences from two different lineages of PERVs, the gamma1
and gamma2 PERVs. Because of polymorphism in their env gene, gamma 1 PERVs is further
divided into A, B and C classes [22, 66, 67], while gamma2 PERVs comprises only PERV class
E [68, 69]. While gamma1 has the ability to replicate [22, 70], this does not seem to be the case
for gamma2 PERVs [47, 68, 69]. To demonstrate how the framework developed in this paper
could be used for empirical data, we analyzed 46 sequences comprising genomic data for Sus
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scrofa gamma1 PERVs (classes A, B and C), with an alignment of 9,017 bp (including gaps).
Because some alignment differences were observedbetween PERV-A, -B and -C, we also ana-
lyzed a subset of 24 sequences comprising only PERV class B. PERV-B alignment comprised
8,762 bp (including gaps). From those 46 genomic data, we also analyzed 1,000 bp of the pol
gene. Finally, we analyzed 999 bp of 50 sequences of env type E for gamma 2 PERVs in Sus
species.

Sequences were obtained from GenBank (for accession numbers see alignments at GitHub.
Information is available in Code and Data availability section), and to increase sample size,
PERV genomic sequences were also mined from the Sus scrofa genome (version Sscrofa 10.2)
using blastn. All sequences were aligned using Muscle [71] with default options implemented
in the program seaview [72]. Alignments were manually curated according to Yang [73].

Phylogenetic trees were reconstructed using the same methodology as described for simu-
lated DNA sequences and using the GTR + Γ [50–52] as the DNA substitution model. The
same statistics for tree shape, nucleotide diversity and proportion of terminal branch lengths
that contributed to the total tree branch length were calculated using the same approach
described for simulated data. We used the kNN algorithm trained with ML trees reconstructed
with 1,000 bp and 10,000 bp to make predictions using partial gene and genomic sequence
data, respectively.

Code and Data availability
Algorithms to simulate the four ERV models described in this paper were written in Python
and used the Python package ETE2 [74] to simulate rooted phylogenetic trees with branch
lengths. This Python code is available at https://github.com/thednainus/ERV_Simulations

A pipeline in R to calculate the same statistics for empirical phylogenetic trees is available at
https://github.com/thednainus/R_Pipeline. The kNN classifiers trained with reconstructed
phylogenetic trees and DNA sequences alignments of 1,000 bp and 10,000 bp can also be
downloaded for future predictions of the proposedmodels described in this paper.

Sequence alignments for porcine endogenous retrovirus used in this study can be down-
loaded at https://github.com/thednainus/R_Pipeline/tree/master/alignments. Information on
GenBank accession numbers can also be found in these alignments.

Results
A total of 21,600 trees were simulated following the different ERV models proposed in this
study (seeMaterials and Methods). The maximum number of elements or tips (nmax = 50) per
phylogenetic tree was achieved in all simulations with the exception of simulations following
the SMM-i. In this case, nmax = 50 was achieved when ERV replication was set to 6.0×10−4,
7.0×10−4, 8.0×10−4, and 9.0×10−4 retrotranspositions or reinfections per host generation (r/g).
For other ERV replication variables, the total number of elements or tips (n) in the phyloge-
netic tree ranged from 36 to 50 elements, with the majority of observations between 48 to 50
elements (Table 1).

Unsurprisingly, the agreement between true and estimated phylogenies improved as
sequence length increased:Maximum likelihood (ML) trees reconstructed using longer align-
ments of 100,000 bp had the lowest Robinson-Foulds (RF) distance [55, 56] to the true trees,
followed by ML trees reconstructed using alignments of 10,000 bp and lastly, by ML trees from
1,000 bp alignments (S1–S3 Figs). In general, using the midpoint root on reconstructed trees
was sufficiently robust; no strong difference was observedbetween true and ML trees when dif-
ferent ERV mutation rates were considered (S1–S3 Figs). However, as the rate of ERV
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replication increased, it becamemore difficult to reconstruct trees similar to the true trees (S1–
S3 Figs).

The Jensen-Shannon divergence (JSD) was calculated for the distribution of each statistics
(seeMaterial andMethods) between SMM-m and TM-m as well as SMM-i and TM-i (Figs 2–5).

For almost all true trees, the values of JSD were higher than zero (Figs 2 and 3) suggesting
very different distributions for SMM-m and TM-m as well as SMM-i and TM-i. Visual inspec-
tion of boxplots (data not shown) for the distribution of each statistics confirmed that it is pos-
sible to distinguish between SMM-m and TM-m and between SMM-i and TM-i.

An exception was JSD calculated between SMM-m and TM-m for the proportion of termi-
nal branch lengths that contributed to the total tree branch length (“prop”) (Fig 2). In that

Table 1. Frequency table showing the number of elementsor tips (n) observed for each phylogenetic tree following the SMM-iwhenERV replica-
tionwas set to 1.0×10−4 to 5.0×10−4.

n

ERV replication 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1.0×10−4 1 3 10 13 39 53 78 89 100 95 58 40 16 5 0

2.0×10−4 0 0 0 0 0 0 0 0 0 2 3 23 97 214 261

3.0×10−4 0 0 0 0 0 0 0 0 0 0 0 0 5 60 535

4.0×10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 5 595

5.0×10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 3 597

doi:10.1371/journal.pone.0162454.t001

Fig 2. Jensen-Shannondivergences (JSDs) between SMM-mand TM-m for true trees.Each plot and its y-axis represent a statistic summary. ERV
replication rate per host generation is depicted in the x-axis.

doi:10.1371/journal.pone.0162454.g002
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case, when ERV mutation rate (μerv) was 1.0×10−5 s/n/i, JSD tended to zero as the rate of ERV
replication per host generation (λ) increased.When μerv = 3.0×10−5 s/n/i, JSD tended to zero
until λ = 4.0×10−4 r/g. After this point JSD increased (Fig 2). Visual inspection of boxplots
(data not shown) showed that for λ< 4.0×10−4 r/g the distribution of “prop” values obtained
for TM-m are higher than those obtained for SMM-m. For λ> 4.0×10−4 r/g, the opposite was
observed: the distribution of “prop” values obtained for SMM-m are higher than those
obtained for TM-m.When λ = 4.0×10−4 r/g, the distribution of “prop” values obtained for TM-
m and SMM-m were very similar. Finally, when μerv = 1.0×10−4 s/n/i, and λ� 2.0×10−4 r/g,
JSD was approximately 0.2. Visual inspection of boxplots (data not shown) showed some over-
lap of “prop” values. As ERV replication increased (λ> 2.0×10−4 r/g), JSD was higher than 0.6
showing that is possible to distinguish between SMM-m and TM-m (also confirmed by visual
inspection of boxplots).

For ML trees, JSD calculated for the distribution of the 10 statistics (Figs 4 and 5) indicated
that with long enough sequences it is possible to use shape statistics, “prop” and nucleotide
diversity fromML trees to identify the underlyingmodel of ERV evolution.

However, JSD values for tree shape statistics for ML trees reconstructedwith alignments of
1,000 bp showed that in most cases it was difficult to distinguish between SMM-m and TM-m
models (Fig 4) and between SMM-i and TM-i models (Fig 5). JSD for the distribution of tree
shape statistics using alignments of 1,000 bp showed, in general, similar distributions for
SMM-m and TM-m, suggested by values of JSD closer to zero. Similar pattern was observed
for JSD calculated for SMM-i and TM-i and alignment of 1,000 bp. However, JSD for “IL”

Fig 3. Jensen-Shannondivergences (JSDs) between SMM-i and TM-i for true trees.Each plot and its y-axis represent a statistic summary. ERV
replication rate per host generation is depicted in the x-axis.

doi:10.1371/journal.pone.0162454.g003
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Fig 4. Jensen-Shannondivergences (JSDs) betweenSMM-mand TM-m for ML trees using alignments
of 1,000 bp and 10,000 bp.Each plot and its y-axis represent a statistic summary. For all 10 plots, ERV
replication rate per host generation is depicted in the x-axis.

doi:10.1371/journal.pone.0162454.g004
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Fig 5. Jensen-Shannondivergences (JSDs) betweenSMM-i and TM-i for ML trees using alignments of
1,000 bp and 10,000 bp.Each plot and its y-axis represent a statistic summary. For all 10 plots, ERV
replication rate per host generation is depicted in the x-axis.

doi:10.1371/journal.pone.0162454.g005
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portion and number of cherries for immortal models and alignments of 1,000 bp suggested
that it is possible to distinguish between SMM-i and TM-i (Fig 5).

In contrast, JSD values calculated for the distribution of tree shape statistics for ML trees recon-
structedwith alignments of 10,000 bp showed that it was possible to distinguish between SMM-m
and TM-mmodels and between SMM-i and TM-i models when the rate of ERV replication was
low (Figs 4 and 5). However, as this rate increased, it became, in general, more difficult to distin-
guish between SMM-m and TM-mmodels (Fig 4), and between SMM-i and TM-i models (Fig 5)
as suggested by values of JSD approaching zero. However, JSD for max. depth, max. width, and
max. width / max. depth for immortalmodels and alignments of 10,000 bp suggested that it was
possible to distinguish between SMM-i and TM-i even when the rate of ERV replication was high.

JSD calculated for SMM-m and TM-m for ML trees reconstructedwith alignments of 1,000
bp for “prop” (Fig 4) was close to zero for all ERV mutation and ERV replication rates ana-
lyzed, suggesting that it was not possible to distinguish between SMM-m and TM-m when
using only “prop”. In contrast, JSD calculated for SMM-m and TM-m for ML trees recon-
structedwith alignments of 10,000 bp (Fig 4) suggests that it was possible to distinguish
between the two mortal models when ERV replication rate was the lowest.

JSD calculated for SMM-i and TM-i for ML trees reconstructedwith alignments of 1,000 bp
(Fig 5) for “prop” showed higher values than those obtained for the mortal models (Fig 4), sug-
gesting that it was possible to distinguish between SMM-i and TM-i (Fig 5).

Our simulations show that it is also possible to distinguish betweenMortal and Immortal
models by calculating the proportion of terminal branch lengths to total tree branch length:
True trees for Mortal models had longer terminal branches than true trees for Immortal mod-
els. This was true even whenML trees were reconstructedwith alignments of 1,000 bp. In this
case, only a small overlap of values calculated for SMM-m and SMM-i models were observed
(data not shown). Nucleotide diversity was also a goodmeasure to distinguish betweenMortal
and Immortal models as a higher diversity was always observed for Mortal models.

Classification of ERV models
Although the four ERV models used for simulations are very different and indeed statistical
analysis of true trees showed distinct values, it was still possible to distinguish between phyloge-
netic trees simulated under a Master or a Transposon model. The same was not observedwhen
analyzing ML trees. For ML trees, JSD was closer to zero (indicating similar distributions) for
several combinations of ERV mutation rate and replication, and the use of a classification
method to distinguish between the different models, in this case, is very useful. In this context,
we developed a k-nearest neighbor (kNN) classifier using ML trees reconstructedwith align-
ments of 1,000 bp and 10,000 bp to identify models of ERV evolution. The kNN classifier was
trained with ML trees and not true trees, because our results show that was not possible to fully
recover true trees using alignments of 1,000 bp or 10,000 bp.

Pre-screening of JSD of the 10 statistics (data not shown) between all possible combinations
of models (for example, TM-m vs TM-i, SMM-m vs TM-i, etc.) was used to detect the best
combination of variables to be used in a kNN classifier. We chose the statistics with JSD values
higher than 0.6 for the majority of observations. This suggested that statistics Beta, “IL” por-
tion, number of cherries, “prop” and nucleotide diversity should be used to construct a classi-
fier using ML trees reconstructedwith alignments of 1,000 bp. Similarly, statistics Beta, max.
depth, “prop” and nucleotide diversity should be used to construct a classifier usingML trees
reconstructedwith alignments of 10,000 bp.

To let the function automatically find the best number of nearest neighbor (seeMaterials
and Methods), two sets of values of k were tested: k ranging from 1 to 30, and k ranging from
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1 to 100. Very similar results were obtained. Below we report results obtained when k varied
from 1 to 30.

With 1,000 bp alignments, 28 nearest neighbors were used in the kNN classifier. Using this
classifier to predict the model underlining our ownML trees reconstructedwith 1,000 bp align-
ments, we were able to correctly classify 84.37% of the four ERV models assessed in this study
(Table 2). No misclassificationwas observedbetweenMortal and Immortal models, and all
SMM-m was correctly classified. A higher misclassification rate was observedbetween SMM-
m and TM-mmodels than between SMM-i and TM-i models.

With 10,000 bp alignments, 12 nearest neighbors were used in the kNN classifier. Using this
classifier to predict the model underlining our ownML trees reconstructedwith 10,000 bp
alignments, we were able to correctly classify 93.13% of all models (Table 2). No misclassifica-
tion was observedbetweenMortal and Immortal models, and all SMM-i and all TM-i were cor-
rectly classified.

Using both classifiers mentioned above, it was difficult to classify SMM-m and TM-mmod-
els, but a better classification was achieved when training a kNN using data calculated for ML
trees reconstructedwith alignments of 10,000 bp (Table 2).

Empirical data
All data analyzed for PERV gamma1 was classified as TM-i with a very high probability
(99.9%). The env E gene of the gamma2 PERV was classified as TM-m also with a very high
probability (92.8%).

Discussion
Transposable elements make up a part of the large fraction of what is considered non-coding
DNA in eukaryotic genomes [76, 77], and recent studies are showing the significant role of TEs
in shaping host genomes by restructuring genes and providing new regulatory sequences [2,
78, 79]. Although TEs are considered as non-codingDNA in their host genomes, TEs can
encode their own proteins responsible for their replication. TE-encoded proteins can be co-
opted into functional proteins within the host in an evolutionary process referred to as “molec-
ular domestication” [79]. The most interesting example of co-option between ERV and hosts is
the use of the env ERV gene in the formation of the placenta in mammals, including primates,
rodents, lagomorphs and marsupials [26, 27, 80]. TE mobility can also negatively affect the
host, as they are associated with disease by insertionalmutagenesis and homologous recombi-
nation [81, 82].

Table 2. Table showing the results of a k-nearestneighbor (kNN) classifier usingmaximum likelihood (ML) trees reconstructed with alignments of
1,000 bp and 10,000 bp. Precision is the proportionof the examples which truly have class x among all those which were classified as class x [75].

ML 1,000 bp ML 10,000 bp

Correctly Classified Instances 18,226 (84.37%) 20,117 (93.13%)

Incorrectly Classified Instances 3,374 (15.63%) 1,483 (6.87%)

ERV Model TP Rate1 FP Rate2 Precision TP Rate1 FP Rate2 Precision

Master Immortal (SMM-i) 0.999 0.001 0.996 1.000 0.000 1.000

MasterMortal (SMM-m) 0.623 0.081 0.719 0.839 0.038 0.881

Transposon Immortal (TM-i) 0.996 0.000 1.000 1.000 0.000 1.000

Transposon Mortal (TM-m) 0.756 0.126 0.667 0.887 0.054 0.846

1 True Positive Rate
2 False Positive Rate

doi:10.1371/journal.pone.0162454.t002
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Several studies suggest that retrotransposons, including ERVs, replicate following a SMM or
TM [35, 83, 84]. In these cases, phylogenetic tree topologies were used as a reliable indication
to determine whether an ERV lineage replicates following one of these models. ERV lineages
following a SMM always generate completely unbalanced phylogenetic trees, while those fol-
lowing a TM tend to generate more balanced trees [35]. Our results from analyzing true trees
also confirm this previous study [35]. Even though our study confirms the phylogenetic trees
expected for SMM and TM as described in Clough et al. [35], we demonstrated that to accu-
rately reconstruct these trees is not possible either using alignments of 1,000 bp or 10,000 bp.
Unsurprisingly, it was more difficult to reconstructML trees that were similar to the true trees
with shorter sequences. Our analyses, using alignments of 1,000, 10,000 and 100,000 bp, show
that a likely reason for not recovering the true tree whenML trees are reconstructed using
alignments of 1,000 and 10,000 bp is sampling error induced by limited numbers of sites.

Because an ERV genome size is approximately 10,000 bp and because ERV genomes can be
mined from publicly available host genomes, we focused on understanding whetherML trees
reconstructedwith alignments of 1,000 or 10,000 bp would be consistent with a SMM or TM.
Even though it is difficult to distinguish between different models by visual inspection of ML
trees, we were still able to classify with high accuracy the four ERV models proposed in this
study using the kNN classifier and the summary statistics for ML trees reconstructedwith
alignments of 10,000 bp. Interestingly, we were also able to correctly classifyML trees recon-
structedwith alignments of 1,000 bp, although the false positive rate for the Mortal models was
higher than that obtained using 10,000 bp alignments.

There is a great interest in knowing whether an ERV lineage is still able to proliferate in a
host genome or whether this ability has been lost. The ability to proliferate involves several
mechanisms from reinfection to retrotransposition in cis and complementation in trans. Rein-
fection can lead to cross-species transmission of ERVs, which have been documented and
occursmore than previously thought [85]. Even though our models do not distinguish between
these mechanisms or whether horizontal transmissions have occurred, our models can detect
whether a retrotransposon is still able to retrotranspose to different loci in a group of closely
related ERVs. New ERV integrations may have several consequences for the host, from benefi-
cial to detrimental and these new integrations may disrupt a host gene or cause diseases [7, 13,
86]. Our results indicated that although it was difficult to distinguish between SMM-m and
TM-mmodels, a total separation was achieved betweenMortal and Immortal models when
usingML trees reconstructedwith alignments of either 1,000 bp or 10,000 bp. These results
suggest that it is possible to understand whether an ERV lineage is still able to show ongoing
activity by retrotransposing or reinfecting host cells, or whether it lost this ability a very long
time ago. This would be a cheaper alternative to pre-screening for ERVs that can or not retro-
transpose or reinfect.

Other explanations have also been proposed to describe how retrotransposons replicate in
host genomes [34]. For example, there are suggestions that more than one master template
exists for an ERV lineage; or during the course of an ERV lineage evolution, a master template
may become inactive with another ERV copy occupying its position [45, 87]. In this paper, we
focused on understanding whether it was possible to distinguish evolutionary patterns with
simpler models before simulating more complex models. According to our results, we would
expect that in cases where more than one master templates are present in an ERV lineage, ML
trees would resemble those simulated under the simpler SMMmodels proposed in this study.

Our results were consistent in showing that visual inspection of phylogenetic trees, e.g. [45,
83], is not the appropriate method to decide whether an ERV lineage is replicating following a
SMM or TMmodel, and it is likely that this result can be extended to any TE lineage with lim-
ited genome size. In addition, using only one metric to check tree imbalance–in this paper, the
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Beta statistic–is also not sufficient in distinguishing between the models proposed here. This
was evaluated by training a classifier using only the Beta statistics. In this case, only 63.24% and
58.98% of the models were correctly classified when a kNN was trained with ML trees recon-
structedwith alignments of 1,000 bp and 10,000 bp, respectively. We suggest that for a better
classification of models, the Beta, “IL” portion, number of cherries, “prop” and nucleotide
diversity should be used in a classifier when using alignments of approximately 1,000 bp. Simi-
larly, the Beta,max. depth, “prop” and nucleotide diversity should be used in a classifier when
using alignments of approximately 10,000 bp. When a classifier trained using these statistics
was used, we were able to correctly classify�84% and�93% of all models when using sum-
mary statistics calculated for ML trees reconstructedwith alignments of 1,000 bp and 10,000
bp, respectively.

Analysis of empirical data using our approach suggested that gamma1 PERVs are still able to
replicate. In fact, the ability of gamma1 PERVs to replicate in host genomes is supported by in
vitro studies [22, 70]. On the other hand, analysis of gamma2 PERVs using our approach sug-
gested that these ERVs may have lost this ability; again, genetic studies showing that these ERVs
have several stop codons and frame-shiftmutations in all their genes [68] are consistent with this
conclusion. Expression analysis of gamma2 PERVs also showed an inconsistent pattern when dif-
ferent samples were analyzed corroborating to the hypothesis that gamma2may not be replicating
[47, 69]. Our analysis also indicated that gamma1 PERVs in Sus scrofa is possibly replicating in
accordance with a TM-i, while gamma2 PERVs in Sus species are replicating following a TM-m.

Conclusion
We confirmed a previous study [35] that SMM and TM show very distinct phylogenetic tree
shape. However, we demonstrated for the first time that it is not possible to accurately recon-
struct these true trees using either alignments of 1,000 bp or 10,000 bp. A likely reason for this
was sampling errors induced by limited number of sites, as reconstruction of true trees using
alignments of 100,000 bp showed the lowest Robinson-Foulds distance (S1–S3 Figs). Given
that the size of an ERV genome is limited and approximately 10,000 bp, and based on informa-
tion obtained in this study we developed a kNN classifier to predict the likely model of TE rep-
lication and evolution in host genomes.

We suggest that instead of visual inspection of phylogenetic tree as used in some studies, e.g.
[45, 83], one should calculate the statistics proposed in this study and use the respective classi-
fier to gain a better understanding of the underlyingmodel of TE replication and evolution.
This developed classifier could also be used to predict whether a retrotransposon lineage is still
able to proliferate or lost this ability a long time ago.

Although the proposedmodels described in this study represent simplistic models of ERV
replication and evolution. This study represents an important step to understand whether it is
possible to reconstruct trees similar to the expected trees under the SMM and TM.With the
development of a kNN classifier we were able to distinguish betweenmodels with high accu-
racy. If we were unable to predict whether phylogenetic trees were from a SMM or TM, it
would be unlikely to do so using more complex models. This is becausemore complex models
of ERV evolution would involve variations of the simplistic models we are analyzing in this
study. Our results are promising for the future development of more complex models of ERV
replication and evolution in host genomes.

Supporting Information
S1 Fig. Robinson-Foulds (RF) metric for true andML trees reconstructedwith alignments
of 1,000 bp. Plots for each ERV mutation rate showing RF metric (y-axis) for the Strict Master
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(SMM) and Transposon (TM) mortal and immortal models for ERV replication per host gen-
eration (x-axis). RF metrics were calculated for rooted and unrooted trees comparing true phy-
logenetic trees with ML trees reconstructed using alignments of 1,000 bp.
(PDF)

S2 Fig. Robinson-Foulds (RF) metric for true andML trees reconstructedwith alignments
of 10,000 bp. Plots for each ERV mutation rate showing RF metric (y-axis) for the Strict Mas-
ter (SMM) and Transposon (TM) mortal and immortal models for ERV replication per host
generation (x-axis). RF metrics were calculated for rooted and unrooted trees comparing true
phylogenetic trees with ML trees reconstructed using alignments of 10,000 bp.
(PDF)

S3 Fig. Robinson-Foulds (RF) metric for true andML trees reconstructedwith alignments
of 100,000 bp. Plots for each ERV mutation rate showing RF metric (y-axis) for the Strict Mas-
ter (SMM) and Transposon (TM) mortal and immortal models for ERV replication per host
generation (x-axis). RF metrics were calculated for rooted and unrooted trees comparing true
phylogenetic trees with ML trees reconstructed using alignments of 100,000 bp.
(PDF)
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