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Abstract: Longitudinal blood flow during murine bone graft healing was monitored non-
invasively using diffuse correlation tomography. The system utilized spatially dense data 
from a scanning set-up, non-linear reconstruction, and micro-CT anatomical information. 
Weekly in vivo measurements were performed. Blood flow changes in autografts, which heal 
successfully, were localized to graft regions and consistent across mice. Poor healing 
allografts showed heterogeneous blood flow elevation and high inter-subject variabilities. 
Allografts with tissue-engineered periosteum showed responses intermediate to both 
autografts and allografts, consistent with healing observed. These findings suggest that 
spatiotemporal blood flow changes can be utilized to differentiate the degree of bone graft 
healing. 
©2016 Optical Society of America 

OCIS codes: (170.0110) Imaging systems; (170.6960) Tomography; (170.3660) Light propagation in tissues. 
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1. Introduction 

Critical-sized bone defects cannot heal without intervention [1]. Annually, more than 500,000 
U.S. and 2.2 million global orthopedic procedures are carried out to treat critical-sized bone 
defects [2, 3]. Among those procedures, autograft transplantation utilizes healthy endogenous 
bone and soft tissue from a non-load bearing region of the skeleton. Autografts often achieve 
complete healing; however, the procedure is limited by tissue availability and associated 
donor site morbidity [2, 3]. Alternatively, allograft transplantation, the “gold-standard” 
treatment for critical-sized bone defects [2, 4, 5], utilizes processed cadaveric bone to repair 
bone defects. To reduce immunogenicity, allografts are completely devitalized, during which 
the periosteum, a thin tissue layer covering the outer bone surface, which is important for 
complete bone healing [6], is lost. As a result, allografts exhibit poor host osteointegration 
with a 60%, 10-year post-implantation failure rate [7–9]. To improve allograft integration and 
healing, tissue engineered (T.E.) allografts have been developed and studied. The T.E. 
approaches deliver periosteum mimicking cells and/or growth factors to the graft site, which 
include the use of bone morphogenetic proteins, mesenchymal stem cells (MSCs), and/or 
osteoprogenitor cells [10–13]. To assess the effectiveness of allografts augmented with tissue 
engineered periostea, a murine segmental femoral defect model (graft model) is often used in 
pre-clinical studies. In the graft model, the healing outcome and the physiological changes 
during healing are assessed, such as graft vascularization, bone callus formation and bone 
strength [5]. 

Vascularization is recognized as an especially critical process in bone healing, as blood 
supplies the necessary nutrients, circulating cells, growth factors, and oxygen to the graft site 
[14]. Overall blood supply to grafts depends both on intravascular volume and blood flow. 
Blood flow can change rapidly in existing vasculature of native bones and tissues surrounding 
grafts due to inflammation and metabolic demands in the early phase of healing [14]. 
Characterization of longitudinal blood flow changes, as an important step to study graft 
vascularization, has the potential not only to advance our understanding of graft healing, but 
to establish a standard to compare the healing process in different graft types. However, the 
measurement of blood flow in bone is often confounded by high bone density as well as the 
heterogeneity of the intraosseous blood supply [15]. A few methods to measure bone blood 
flow are available, such as radioactive or fluorescent microsphere techniques [16, 17], 
magnetic resonance imaging (MRI), positron emission tomography (PET) [15], and laser 
Doppler flowmetry [18, 19]. Nevertheless, the application of these techniques for longitudinal 
studies of blood flow in bone has proven difficult due to invasiveness (microspheres), limited 
penetration depth (laser Doppler) or cost (MRI and PET) [15, 19, 20]. As a result, systematic 
comparison of spatial and temporal blood flow changes in different graft types has not yet 
been performed. 
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Diffuse correlation spectroscopy (DCS) and tomography (DCT) are deep-tissue, non-
invasive techniques that can quantify blood flow index, which is sensitive to microvasculature 
[21]. DCS and DCT are developed by expanding the theory of dynamic light scattering, 
which mainly accounts for a single scattering event, to the domain where multiple scattering 
dominates, which is the case after near-infrared light (650 nm – 950 nm) propagates more 
than a few millimeters within highly scattering tissue [22, 23]. With DCS/DCT, the 
fluctuation of collected light signal, quantified by the intensity auto-correlation function, is 
linked to the motion of scatterers (i.e., red blood cells) [21].The measurements are non-
invasive, inexpensive and easy to perform. The measurement method to infer average flow 
index from the diffuse light intensity auto-correlation function is referred to as DCS and the 
3-dimensional (3D) imaging method is called DCT. 

DCS has been widely applied to monitor the blood flow in tumors, brain and skeletal 
muscle in animals and humans in vivo [24–30]. Moreover, it has been validated by 
comparison with laser Doppler flowmetry [31, 32], Doppler ultrasound [25, 33–36], arterial-
spin labeled MRI [37–40], xenon computed tomography (CT) [41], and fluorescent 
microsphere measurements [29, 42]. In most cases, the relative change of blood flow with 
respect to the baseline has been validated. However, careful calibration studies can be 
performed to convert the blood flow index to a quantitative measure of perfusion [43]. DCT, 
which provides 3D relative blood flow images, has been applied to monitor 3D blood flow in 
rat brain [44, 45] and human breasts [46]. Previously, we reported a non-contact scanning 
DCT system designed for murine graft study and showed its capability to capture localized 
flow changes between before and 1 week after graft transplantation in mice with allografts 
[47]. 

In this study, we report improvement on the DCT system as well as the results of 
longitudinal blood flow changes in mice with three different graft types; i.e., autograft, 
allograft and T.E. allograft with MSCs. The paper is structured as follows: In Section 2, 
methods regarding the instrumentation, a nonlinear DCT reconstruction, simulation set-up to 
compare a linear and a non-linear DCT reconstruction method, in vivo mouse measurement 
protocol and generation of mesh from micro-CT images are presented. In Section 3, we show 
the performance comparison between linear and non-linear DCT reconstruction methods, a 
representative example of the longitudinal 3D blood flow changes in a mouse with an 
autograft, comparison of blood flow changes in three representative mice from different 
groups and the averaged blood flow changes in the graft region. Finally, a discussion of the 
results is presented in Section 4. 

2. Methods 

2.1 Instrumentation 

A typical diffuse correlation instrument consists of a light source, photon-counting avalanche 
photodiodes (APDs) and a correlator, as shown on the left side of Fig. 1. The long-coherence-
length laser source at 785 nm is delivered to the tissue using a multi-mode fiber. Multiple-
scattered light signals are collected using single-mode fibers at several millimeters away from 
the source. Photon-counting avalanche photodiodes (SPCM-AQ4C, Excelitas Technologies, 
Waltham, MA) are utilized to detect the light intensity and relay the data to a correlator 
(Flex030EM, Correlator.com, Bridgewater, NJ), which outputs the intensity temporal auto-
correlation function g2. 

To collect spatially dense data for DCT, a non-contact scanning module was added to the 
typical DCS instrument as shown on the right of Fig. 1. A fiber collimator is employed to 
collimate the beam coming out of the source fiber. Then, the collimated beam goes through 
one arm of a polarizing beamsplitter (CM1-PBS252, Thorlabs, Newton, NJ), is redirected by 
two galvanometer mirrors and projected on the tissue surface using a 50 mm doublet lens 
(AC254-050-B, Thorlabs, Newton, NJ). The typical beam spot size and the light power on the 
tissue is 0.3 mm and less than 1 mW, respectively. For the data collection, the detection fibers 
are imaged onto the tissue surface at known separations from the source through the other 
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arm of the polarizing beamsplitter using two identical lenses. With this design, the source-
detector separations are maintained while the galvanometer mirrors scan the source-detector 
pattern in two dimensions. The current design is improved upon our previous system [47], 
and it has better light throughput. The scanning module is similar to the scanning module 
design of the laminar optical tomography (LOT) system [48]; however, this particular non-
contact scanning module enables measurements at much larger source-detector separations 
and has a bigger field of view than the LOT system. 

 

Fig. 1. Non-contact scanning system set-up. The system consists of a 785 nm laser source, 4 
avalanche photodiodes (APDs), a correlator and a scanning module to image the source and 
detectors on the tissue surface. The source-detector separations were kept constant while galvo 
mirrors scan the source-detector pattern in 2 dimensions. 

2.2 Non-linear image reconstruction 

Using the diffuse correlation instrument, the normalized intensity auto-correlation function 
g2(r,τ) ≡ ˂I(r,t)·I(r,t + τ)˃/˂I(r,t)˃2 is measured, where τ is the delay time, I(r,t) in the 
measured intensity over time t at position r, and I(r,t) = |E(r,t)|2 with E(r,t) representing the 
electric field vector. The fundamental quantity under investigation in optical coherence theory 
is the electric field temporal auto-correlation function, G1(r,τ) ≡ ˂E*(r,t)·E(r,t + τ)˃, where * 
denotes complex conjugate and < > denotes integration over time. The Siegert relation 
provides the connection between the normalized intensity auto-correlation and the normalized 
electric field auto-correlation functions [49], 

 ( ) ( ) 2

2 11 ,g gτ β τ= +  (1) 

where the normalized electric field temporal auto-correlation is g1(τ) ≡ G1(r,τ)/ G1(r,0). In Eq. 
(1), β is a parameter primarily determined by the optical set-up of the system, and is inversely 
proportional to the number of speckles in the detection area [49]. 

In highly scattering media (e.g., tissue), the correlation diffusion equation provides the 
theoretical model to describe the propagation of electric field temporal auto-correlation, 
G1(r,τ), as follows: 
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where μa and μś are the absorption and reduced scattering coefficient respectively, ν is the 
speed of light in the medium, D ≡ ν/(3(μa + μś)) is the photon diffusion coefficient, κ0 = 2π/λ 
is the wave vector of the photon where λ is the wavelength in the tissue, α is the fraction of 
moving scatterers and ˂Δr2(r,τ)˃ is the mean–squared displacement of scatterers, Sδ3(r-rs) is 
a point source located at rs with the source strength S. In Eq. (2), flow is characterized using ˂Δr2(r,τ)˃. To simplify this expression, a Brownian motion model is usually utilized [21], 
which gives ˂Δr2˃ = 6Dbτ and Db is the Brownian diffusion coefficient. As a result, the 
parameter, αDb, is referred to as the blood flow index. 
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To solve for G1(r,τ) in Eq. (2), the following partial-flux boundary condition is used [21, 
50]: 

 ( ) ( )1 1, , ,ˆ
bG z Gτ τ= ⋅∇nr r  (3) 

where n̂  is the unit vector pointing away from the scattering media boundary and zb = 2(1 + 
Reff) / [3μś (1-Reff)], where Reff ≈ -1.440n−2 + 0.710n−1 + 0.668 + 0.0636n is the effective 
reflection coefficient to account for the index mismatch between the tissue and air boundary, 
and n is the refraction index ratio of tissue and air. 

Analytical solutions to the correlation diffusion equation in a simple geometry, for 
example infinite, semi-infinite, or layered geometry, have been derived and widely used in 
various studies [21]. In more general cases, the correlation diffusion equation needs to be 
solved numerically using finite difference method (FDM) or finite element method (FEM). 

With the experimental measurements, g2 is obtained for multiple source-detector pairs and 
the corresponding g1,m can be calculated using Eq. (1). DCT utilizes the experimentally 
obtained g1,m to reconstruct the flow distribution, αDb(r): this process is called solving the 
inverse problem. The inverse problem is constructed to minimize a cost function of the Rytov 
fashion [51], as follows: 
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In Eq. (4), Nsd is the total number of source-detector pairs utilized in the measurements, i 
represents one of the source-detector pairs, rsi is the corresponding source position, rdi is the 
detector position, g1,m (rsi,rdi,τ) is the measured auto-correlation function with source located 
at rsi and detector at rdi, and g1,c(rsi,rdi,τ) is the calculated auto-correlation function based on 
an estimate of flow distribution using Eq. (2). As the auto-correlation function spans over a 
wide range of τ values, for computational simplicity, one representative τ0 is chosen. A simple 
method is to choose the same τ for all source-detector pairs [52]. We use a τ0 value in which 
g1,c(rs,rd,τ) decays to e−1 for each source-detector pair, since it yields the optimal data sets 
[45]. 

The steps to solve the inverse problem with a non-linear solver are illustrated in Fig. 2. 
First, a finite element mesh is utilized to define the geometry. Then, an initial guess of the 
flow distribution is made and the optimal data set is selected. The iteration to update flow 
estimate starts with the calculation of g1,c(rs,rd,τ) based on the flow estimate and is followed 
by obtaining the difference between g1,c and g1,m, φi = ln(g1,m (rsi,rdi,τ) / g1,c(rs,rd,τ)). After 
that, the stopping criteria are evaluated. The stopping criteria are set such that when the 
decrease in χ2 is less than 2% for two successive reconstructions, the iteration stops. 
However, the final result is not selected as the result from the last iteration. More detailed 
discussions on selection of optimal results using L-curve analysis are presented at the end of 
this section. If the stopping criteria are not met, a Jacobian matrix, W, is built, which satisfies 
the equation φi = W • Δ(αDb(r)), where Δ(αDb(r)) is the difference between flow estimate and 
true flow distribution. Note that W is built in the same way as been described in our previous 
publication [47]. After W is constructed, Δ(αDb(r)) is obtained by 

 ( )( ) ( ) 1
,T T

bD W W W Iα η φ
−

Δ = ⋅ + ⋅ ⋅r  (5) 

where T indicates a matrix transpose and η is a regularization parameter which is decreased 
with each iteration. The formulation includes Tikhonov regularization to stabilize matrix 
inversion [53], which is especially effective for solving the ill-posed equations (i.e., the 
number of unknowns is much larger than that of linear independent equations). As the final 
step in each iteration, Δ(αDb(r))(n) is added to the flow estimate, yielding αDb(r)(n). The 
iterative update of the flow is carried out until the stopping criteria are met. 
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Fig. 2. Flow chart of a non-linear DCT reconstruction method. The initialization steps are 
shown in the upper box (in blue) and the iterative steps are shown in the lower box (in green). 

An inverse problem solver generally needs to minimize χ2. However, with the existence of 
noise in the measured data and the ill-posedness of the inverse problem, iterative 
minimization of χ2 may amplify noise into image artifacts such as a flow estimate with 
unreasonably high values (e.g., more than 50 times the background flow) at some positions. 
Thus, the final iteration of the iterative reconstructions may not necessarily provide 
physiologically reasonable flow images although it gives the smallest χ2. To identify the 
occurrence of this problem and to choose the optimal reconstruction results, an L-curve 
analysis is performed and served as the final criteria to select the optimal reconstruction result 
[54]. 

With each iteration in the reconstruction, a total flow perturbation from the initial guess 
can be calculated as δ(αDb)

(n) = αDb(r)(n)- αDb(r)(0). The norm ||δ(αDb)
(n)|| provides a measure 

of the fluctuation in the reconstructed flow estimate. On the other hand, the χ2(n) calculated at 
each iteration, as defined in Eq. (4), measures the difference between g1,c and g1,m and 
quantifies the quality of the flow estimate αDb(r)(n). For the L-curve analysis, the cost 
function χ2(n) at each iteration is plotted against the norm of the total flow perturbation 
||δ(αDb)

(n)||, which gives an “L” shape curve. To account for the different orders of magnitude 
between the two axes, both parameters are normalized to their respective maximum values. 
Then, the curvature of the L-curve at each data point is calculated. Finally, the iteration which 
generates the data point with the maximum curvature in the “L” curve is selected as the 
optimal iteration and the corresponding αDb(r) is taken as the final reconstructed flow 
distribution. An example of the typical L-curve from reconstruction on mouse data is shown 
in Fig. 3. 

 

Fig. 3. A L-curve obtained from the iterative image reconstructions of mouse data. L-curve 
analysis is employed to choose the optimal results from image reconstructions, which is the 
iteration with the maximum curvature on the L-curve as shown in red dot. 
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2.3 Numerical simulation to compare a linear and a non-linear reconstruction method 

To compare the non-linear inverse problem solver with a linear solver that we reported 
previously [47], reconstructions based on simulated data were carried out. g1 of multiple 
source-detector pairs over a region of heterogeneous flow distribution was calculated using a 
FEM based solver of Eq. (2) modified from Near Infrared Fluorescence and Spectral 
Tomography (NIRFAST), a software package for diffuse optical tomography [55]. The 
simulation geometry consists of a cylindrical region with higher flow and a surrounding 
homogeneous background, as shown in Fig. 4(a). It is discretized using a finite element mesh 
(x: −8.0 mm to 8.0 mm, y: −13.5 mm to 13.5 mm, z: 0 mm to 8.0 mm, total number of nodes: 
201791, total number of elements: 1031591). The higher flow region has a diameter of 1.5 
mm and a length of 15 mm, and it is submerged 2 mm deep into the background. The 
cylindrical region has αDb = 2.0x10−6 mm2/s, and the background region has αDb = 1.0x10−6 
mm2/s. Figure 4(b) shows the pattern of the source and detectors utilized to scan over the 
region for data collection, which has source-detector separations of 3.0, 4.5, 6.0 and 7.5 mm. 
The pattern was scanned in both x and y directions, with step sizes Δx = 0.35 mm and Δy = 
0.70 mm. The scan coverage is shown in Fig. 4(c), which only includes source and detector 
positions inside the rectangular region of −3.5 mm < x < 3.5 mm and −10 mm < y < 10 mm in 
order to speed up the calculation. The original pattern consists of 1764 source-detector pairs 
and the final pattern includes 1272 pairs. 

To compare the reconstruction results, a coarse mesh (x: −8.0 mm to 8.0 mm, y: −13.5 
mm to 13.5 mm, z: 0 mm to 8.0 mm, total number of nodes: 94826, total number of elements: 
462047) was used for both the linear reconstruction method and the non-linear reconstruction 
method. No noise was added to the simulated data. 

 

Fig. 4. Set-up of the simulation to compare a linear and a non-linear reconstruction method. (a) 
A cylinder of 1.5 mm diameter and 15 mm length was embedded in a homogeneous 
background. (b) The source-detector pattern consists of 1 source and 4 detectors with 
separation of 3.0, 4.5, 6.0 and 7.5 mm, respectively. (c) Two dimensional scan of the pattern 
cover a rectangular area over the cylindrical anomaly region on the surface of the simulation 
geometry. This is similar to the typical coverage of an in vivo measurement on a mouse. 

2.4 In vivo mouse measurement protocol 

For the in vivo bone graft measurements, three groups of mice were used for DCT imaging: 
the autograft group, the allograft group and the T.E. allograft group. The animal study was 
conducted according to a protocol approved by the University Committee on Animal 
Resources (UCAR) at the University of Rochester. The details of the graft surgical procedures 
can be found in the literature [56, 57]. Briefly, a 4 mm segment of the left femur of a BABL/c 
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mouse is removed and replaced with a graft. For the autograft, the removed segment was 
transplanted back. For the allograft group, decellularized bone segments from C57BL/6 mice 
(different strain than BALB/c) were utilized for the grafts. For the T.E. allograft group, 
decellularized bone segments from C57BL/6 mice were seeded with MSCs using hydrogel 
[57], and then transplanted into the femoral defect. For each group, 5 mice were initially 
planned for the study, since the purpose of the study was to identify the spatiotemporal 
characteristics of the blood flow index of different groups and provide information needed to 
calculate sample size for future studies. However, one mouse in the allograft group and one 
mouse in the autograft group died due to the adverse effects associated with ketamine, 
anesthetic for the surgery, before the start of any post-surgery DCT measurements, and thus 
were excluded from the study. 

As illustrated in Fig. 5(a), DCT scans were performed before the graft surgery (denoted as 
week 0), and then every week after surgery for 9 weeks. For each scan, the mouse was placed 
on a warming pad and anesthetized with continuous isoflurane administration (1 - 2.5%). 
Isoflurane was chosen for minimal interference with microcirculation, fast anesthetic effect 
and reliability [58–60]. Fur was removed from the scanning site using electric clippers. Then, 
the source-detector pattern shown in Fig. 4(b) was scanned over the tissue surface with a step 
size of 0.35 mm in the direction perpendicular to the length of the femur and 0.70 mm in the 
direction parallel to the length of the femur. The scan region covered the entire femur with the 
graft, with the femur located at the center, similar to the simulation geometry shown in Fig. 
4(c). The four corner positions of the rectangular scan area covered by the source were 
marked using a skin-compatible surgical marker during the first measurements (i.e., pre-
surgical measurements) and maintained throughout the longitudinal measurements. 
Alignment of the scanning pattern with the co-registration markers was performed before 
each DCT scan thereafter. At week 11 after surgery, an additional DCT scan was performed 
and then followed by micro-CT imaging of the mouse leg at the Center for Musculoskeletal 
Research at the University of Rochester. To co-register DCT scans with micro-CT, barium 
sulfate markers were applied on the mouse skin on top of the DCT scan markers and served 
as reference points in the micro-CT images. After the micro-CT scan, standard Digital 
Imaging and Communications in Medicine (DICOM) format medical images of left 
hindlimbs were obtained. 

 

Fig. 5. Experimental measurements and mesh generation. (a) Timeline showing weekly DCT 
measurements and final micro-CT imaging; (b) 3D FEM mesh generated from micro-CT 
images. (red X: co-registration markers) 

2.5 Generation of FEM mesh based on anatomical information from micro-CT 

The micro-CT images were processed with NIRFAST Slicer [61], a free software package 
which can view medical images, perform de-noising and image-segmentation, and export 
segmented medical images into Matlab (Mathworks, Natick, MA) for 3D finite element mesh 
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generation. After the images were imported into NIRFAST Slicer, de-noise algorithm with 
median filter was performed and then the images were segmented using a built-in K-means 
and Markov random field algorithm [61], and divided into the region of bone, soft tissue and 
air. The segmentation was fine-tuned manually using the paintbrush tool. The reference points 
for the DCT scan region were marked on the segmented images. Finally, segmentation results 
were sent to Matlab, by which 3D finite meshes of the legs were generated. The generated 
mesh had the region of the transplanted graft, the remaining host femur and the surrounding 
soft tissue labeled as different regions and typically consisted of more than 100,000 nodes in 
total, as is shown in Fig. 5(b). 

After the 3D mesh was generated in Matlab, the source-detector pattern from DCT scan 
was registered on the mesh by overlaying the co-registration markers with the corresponding 
source positions and linearly interpolating the other sources and detectors on the tissue 
surface. The tissue surface curvature was not accounted for in current study as it was usually 
small. In addition, the sources and detectors within 1 mm of the mesh boundaries, where the 
tissue curvature was big, were excluded. The same absorption coefficient μa = 0.01 mm−1 was 
assumed for both soft tissues and bone throughout the measurements. Previous results have 
shown that ignoring the difference in the reduced scattering coefficients between the soft 
tissues and the bone results in significant errors in the reconstructed absolute blood flow 
values [47]. To account for this effect, reduced scattering coefficient from literature was used, 
with sμ′  = 0.8 mm−1 for soft tissues and sμ′  = 2.0 mm−1 for bone [62]. In addition, the relative 
blood flow change (rBF), which was αDb(r,t) normalized with the pre-surgical measurement 
at week 0, was reported in the results section as it can mitigate the possible error in αDb 
introduced by inaccurate sμ′  [47]. 

2.6 Statistical analysis 

To determine the existence of statistical significance, Shapiro-Wilk test was utilized to test 
the normality of the data distribution for each group. One-way ANOVA or non-parametric 
Kruskal-Wallis test was utilized based on the result of the normality test. When the null 
hypothesis (i.e., three groups have the same mean) was rejected (p < 0.05), Tukey’s honestly 
significant difference procedure was used for multiple comparisons to identify the pair of 
groups which demonstrated statistical significance. 

3. Results 

3.1 Comparison of a linear and a non-linear reconstruction method 

Reconstruction results from a linear DCT reconstruction method and a non-linear 
reconstruction method are shown in Fig. 6. To compare the results, we define the region that 
has the final flow change larger than 1/e of the maximum change as the recovered anomaly 
region. The expected center of the anomaly region is (0.0, 0.0, 2.0) mm. For the linear solver, 
the reconstructed anomaly region centers at (−0.2, −0.5, 1.4) mm; for the non-linear solver, 
the recovered anomaly region centers at (0.2, −0.9, 1.8) mm. Compared with the linear solver, 
the non-linear solver gives a much better depth localization of the reconstructed anomaly. 
However, results from the non-linear reconstruction still need improvement. For example, the 
average αDb value within the anomaly from the non-linear reconstruction is lower than the 
expected value and the high αDb region disperses beyond the expected z range (1.25 – 2.75 
mm). 
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Fig. 6. DCT reconstruction results obtained with a linear reconstruction method and a non-
linear reconstruction method. z slices at different depths of expected results, results from a 
linear reconstruction method and results from a non-linear reconstruction method are shown in 
the three rows. The expected background αDb is 1.0x10−6 mm2/s and the anomaly region αDb is 
2.0x10−6 mm2/s. Same colorbar is used for all plots. 

3.2 Relative blood flow changes in a mouse with an autograft 

The longitudinal changes in 3D rBF of a mouse with an autograft were shown in Fig. 7 as an 
example of DCT reconstructed flow changes. In Fig. 7, the rows show the rBF distribution in 
weeks 0, 1, 3, 5 and 7. The columns show the rBF at the tissue depths equal to 0.5, 1.5, 2.5, 
3.5, 4.5 and 5.5 mm. The profile of the bones, including the femur, the tibia and the coxal 
bone are outlined using black lines and the graft region is shown with red lines. The same 
colorbar was used for all plots. 

From the results, it can be seen that the blood flow in an autograft mouse peaked at week 
1 and gradually decreased as healing progressed. At the final stage of healing, blood flow 
returned to the pre-transplantation baseline level. Moreover, blood flow increase was mainly 
localized in the graft region for the autograft mouse, as shown in the tissue depth of 3.5 mm. 
At shallow depths (as shown in slices for z ≤ 1.5 mm), a few regions of high blood flow were 
observed in the soft tissue region. On the contrary, at deeper region with the graft, the 
changes in soft tissue blood flow were much smaller compared to those in the graft region (as 
shown in slices for z ≥ 3.5 mm). 

3.3 Comparison of blood flow changes between different groups 

To compare the difference in blood flow changes among the three different groups, images 
from one representative mouse in each group at the tissue depth passing through the center of 
the femur were shown in Fig. 8. The three rows show the results from the autograft group, the 
allograft group and the T.E. allograft group, respectively, and the columns show different 
time points at weeks 0, 1, 3, 5 and 7, respectively. The outlines of the bones and the grafts are 
shown in black and red lines, respectively.  The same colorbar was used for all plots. 

Compared to the blood flow distribution in the autograft mouse (Fig. 8 top) that showed a 
well-localized blood flow elevation within the bone primarily in the graft region at week 1 
and 3, blood flow in the allograft mouse (Fig. 8 middle) exhibited multiple regions in soft 
tissues with higher blood flow than that in the graft. At week 5 and 7, blood flow in these 
multiple regions decreased and more localized blood flow elevation was found within the 
allograft. 
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The blood flow in the T.E. allograft mouse (Fig. 8 bottom) exhibited spatial and temporal 
features similar to both autografts and allografts. At week 1, blood flow elevations were 
found within the graft as well as in multiple regions in soft tissue. The level of blood flow 
elevations was similar between the graft and the soft tissue at week 1, but the elevation within 
the graft became more prominent compared to soft tissues as healing progressed. 

 

Fig. 7. Longitudinal rBF changes in an autograft mouse at selected weeks and tissue depths. 
rBF is obtained by normalizing the reconstruction results from each week to the results of 
week 0. The rows show the results at weeks 0, 1, 3, 5 and 7, respectively and the columns 
show the results at tissue depths z = 0.5 mm, 1.5 mm, 2.5 mm, 3.5 mm 4.5 mm and 5.5 mm, 
respectively. (Black lines: outline of the bones; red lines: outline of the graft) 

3.4 Average rBF changes in graft region for different groups 

The longitudinal changes of the average blood flow in the graft region for an individual 
mouse were shown in top row of Fig. 9. As mentioned previously in Section 2.4, there were 4 
mice in the autograft group, 4 in the allograft group and 5 in the T.E. allograft group. 

In the autograft group, graft blood flow increased significantly from the baseline level 1 
week after the graft transplantation and decreased more than half of the initial elevation at the 
2-week time point. After that, blood flow decreased gradually towards the baseline level. This 
pattern was consistent in every autograft mouse. For the allograft group, more variations 
between the mice within the group were observed. The time to peak ranged from week 1 to 
week 5. The average graft rBF returned to the baseline at a slower pace than that of the 
autograft group. For the T.E allograft group, the blood flow peaked at week 1, similar to that 
of the autograft. However, the trend in blood flow decrease was not as consistent as that of 
the autograft group. Overall, the changes in the T.E. allograft group were more similar to the 
autograft group compared to the allograft group in that 4 out of 5 mice demonstrated a similar 
temporal pattern to the autograft. 

The bottom row of Fig. 9 shows the group averaged rBF within the graft. Even though 
different groups showed varying degrees of averaged rBF at week 1, it was not statistically 
significant partly due to the limited sample size. On the other hand, observations made for 
individual mouse strongly suggest that whether the rBF peaks at week 1 can be a potential 
criterion to distinguish the degree of healing. To quantify this, we defined Percentage of Peak 
(POP) at week 1 for each mouse, as the following: 

 
( 1)

,
max( ( ))

rBF Week
POP

rBF t
=  (6) 
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where max(rBF(t)) is the maximum rBF from the longitudinal curve spanning the monitoring 
period as shown in the top row of Fig. 9. The group averaged POP at week 1 are shown in 
Fig. 10, along with the standard error of the mean as error bars. The statistical test on POP 
revealed that the autograft group is significantly different from the allograft group, but not 
from the T.E. allograft group. 

 

Fig. 8. Comparison of blood flow changes in different graft types with varying degree of 
healing potential. One representative mouse from each group is selected and only the z slice 
which includes the center of the femur is shown: autograft (z = 3.5 mm), allograft (3.2 mm) 
and T. E. allograft (3.2 mm). The columns show the results at weeks 0, 1, 3, 5 and 7, 
respectively. (Black lines: outline of the bones; red lines: outline of the grafts) 

 

Fig. 9. Average relative blood flow changes in the graft region for mice in the three different 
groups. Each curve shows the longitudinal changes of one mouse and each plot includes the 
mice from the same group. Top row shows longitudinal changes of individual mice and bottom 
row shows group averaged longitudinal changes of each group. The error bar is the standard 
error of the mean for the group averaged rBF. 
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Fig. 10. Group-averaged Percentage of Peak (POP) at week 1 for the three graft groups. The 
error bar is the standard error of the mean. The asterisk (*) indicates that the allograft group is 
significantly different from the autograft group. 

4. Discussion 

In this study, we used an improved version of the DCT system from our previous publication 
[47], to monitor the longitudinal blood flow changes in mice with femoral grafts. Using the 
non-contact scanning system and a non-linear reconstruction method, we showed spatial and 
temporal differences in blood flow among three groups of mice with different graft types over 
11 weeks of healing. The study is unique in that: (1) the non-invasive nature of the DCT 
instrument enabled frequent longitudinal blood flow monitoring of the same mouse 
throughout the experiment; (2) DCT based on spatially dense data and non-linear 
reconstruction algorithm provides comprehensive spatial and temporal blood flow changes 
throughout the healing process, which was not available in previous studies due to limitations 
of other imaging modalities; (3) the study revealed different spatial and temporal blood flow 
changes in autografts, allografts and T.E. allografts with MSCs, strongly suggesting blood 
flow changes in early stages of healing (< 5 weeks) may be utilized to predict bone healing 
outcome of different graft types. 

4.1 Longitudinal blood flow changes in grafts 

The longitudinal rBF changes show a general trend of blood flow elevation after the graft 
transplantation and subsequent return to the pre-surgery baseline level. However, the 
autografts, the allografts and the T.E. allografts show different temporal patterns. The 
autograft group consistently displayed a peak in graft blood flow at 1 week after the 
transplantation. From the tomographical results, the flow changes in autografts were also well 
localized in the graft region. The allograft group, on the other hand, exhibited more variations 
in the change of blood flow within the group, with blood flow peaking from 1 week to 5 
weeks after the transplantation and the elevation returned to the baseline at a much slower 
rate. In the 3D results, more elevations in the tissue surrounding the graft were observed 
compared to the autograft group. The T.E. allograft group showed intermediate changes 
between the autograft group and the allograft group, with blood flow peaking at week 1, 
similar to the autograft group: however, the rate of blood flow decrease was slower. The 
blood flow changes were better localized at the graft region compared to the allograft group. 

The trend in blood flow changes in autografts, which showed a sharp blood flow increase 
followed by a return to the baseline level, agrees with previous studies in bone graft/fracture 
blood flow monitoring, including studies using radio-active microsphere [63], laser Doppler 
flowmetry [18], and DCS [56]. The increase in blood flow at week 1 is likely due to several 
factors including inflammatory response to surgical insult, hyperemia, and angiogenesis 
associated with tissue regeneration [64]. It is worthwhile to note that, since our measurements 
were conducted on a weekly basis, the immediate drop of blood flow (within 3 days after the 
surgery) in the graft following the surgery reported by other techniques was not captured in 
the current study. In addition, the observation that the allograft group exhibited a longer 
period of blood flow elevation is consistent with previous results observed by DCS [56]. The 
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elongated blood flow elevation may be an indicator for delayed healing in allografts, which 
has been observed in other studies evaluating the bone callus formation and vasculature 
formation [13, 57]. 

With the rich spatial and temporal information provided by the non-invasive DCT, 
differences in blood flow changes in autografts, allografts, and T.E. allografts with MSCs 
were clearly captured, as shown in Fig. 9. Autografts exhibited consistent blood flow 
elevation at week 1 which subsequently decreases, consistent with good healing. Although 
not identical to autografts, the T.E. allograft group showed a similar blood flow pattern to 
autografts compared to the untreated allograft group, demonstrating improvements in bone 
graft healing using this tissue engineering approach. Hoffman et al. demonstrated that a 
mixture of unaltered MSCs and osteoprogenitor cells can further improve the bone callus 
formation, bridging endochondral bone formation and bone bio-mechanical stability [13]. In 
the future, DCT may play a valuable role in assessing the healing potential of T.E. allografts 
with different compositions of cell populations, soluble cues, and/or matrices to guide the 
optimization of tissue engineering approaches. 

4.2 Development of methods 

In the methods and the results sections, the improvement on instrumentation and image 
reconstruction method are presented, which includes: (1) increased light throughput in the 
non-contact scanning system, enabling the collection of spatially dense data at multiple 
source-detector separations (up to 7.5 mm); (2) a non-linear reconstruction method that gives 
better depth localization, as opposed to the previous linear reconstruction program; (3) use of 
micro-CT derived 3D mesh and assignment of optical properties based on anatomical 
information, compared to semi-infinite mesh assumption used previously [47]. With the 
current methods, longitudinal blood flow changes during graft healing were successfully 
monitored non-invasively and the spatial and temporal differences among three graft types 
were revealed. The versatility of the current system also enables direct application in other 
studies, such as monitoring tumor blood flow change after chemotherapy in rats [65]. Despite 
the improvements, several limitations remain to be addressed in future studies. 

First, the non-linear reconstruction method has limitations. The simulation results show 
image artifacts in the shallow depth (<1.5 mm) and error in the reconstruction position and 
contrast. To suppress the image artifacts, spatially variant regularization to account for the 
sensitivity difference at different tissue depths might be used [45]. The reconstruction may be 
further improved by better utilization of the anatomical information. To this end, 
reconstruction with soft-priors will be implemented in the future as it has been shown to be 
more robust to noise and give better reconstruction results [66]. In addition, in the average 
rBF results (Fig. 9), mouse 7 exhibited much smaller changes compared to other mice. 
Inspection of the anatomical structure revealed that the femur of mouse 7 (centered at z = 5.5 
mm) was much deeper than the others (typically centered at z = 3.5 mm). Considering the 
maximum source-detector separation used is 7.5 mm, the changes in the graft may not be 
detected as well as other mice with shallower bones. This may imply the need for a more 
rigorous study on the depth sensitivity of the current system and the necessity of criteria for 
correction or exclusion based on the bone depth. 

Second, the influence of the tissue surface curvature on the non-contact data collection 
was not accounted for. The non-contact scanning system projects a planar pattern for data 
collection. However, in the image co-registration, the source and detectors are interpolated to 
the tissue surface and their heights followed the profile of the tissue, which is not planar. To 
partially account for this inconsistency, the sources and detectors within 1 mm of the mesh 
boundaries, where the height changes are big, were excluded from the reconstruction. Despite 
the exclusion of those data, the influences of tissue curvature on image reconstruction were 
not systematically investigated in the current study. A potential solution is to account for the 
propagation of the auto-correlation function in free space, similar to a method proposed for 
diffuse optical tomography [67]. 
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Third, the image co-registration scheme is not ideal. To record the DCT scan region and 
co-register it with the micro-CT images, DCT scan markers and barium sulfate markers were 
used. The size of the markers, especially the Barium Sulfate markers, which are typically 1 
mm in diameter, is comparable to the scanning step size. Although only the center of each 
marker was used, possible mismatch is expected. To study the effect of the mismatch in 
image co-registration, a reconstruction on the autograft mouse data as shown in Fig. 7 with a 
0.5 mm displacement of the source-detector pattern was carried out. The results showed the 
displacement in source-detector pattern mainly introduced a spatial shift of the high blood 
flow region for about 0.5 mm in the reconstructed results. The general distribution and the 
temporal trends did not change. In the future, a more accurate image co-registration scheme 
may be needed and a more rigorous study needs to be designed to study the stability of the 
reconstruction with image co-registration mismatch. 

Finally, the assignment of optical properties from literature is not ideal. Optical properties, 
especially reduced scattering coefficients μś can greatly influence the accuracy of 
reconstructed αDb values [47]. To account for the difference in scattering in soft tissue and 
bone, μś from literature was assigned in the current study. In the future, better optical property 
assignment may be achieved by combining the current DCT system with a diffuse optical 
tomography system that can provide 3D absorption coefficients and reduced scattering 
coefficients of each mouse. 

Additionally, there is a potential concern related to the use of the Siegert relation in our 
analysis. It has been reported in the literature that the signals from adult human bone may not 
satisfy all the assumptions of the Siegert relation under certain conditions [68]. In our case, 
the necessary conditions to satisfy the assumptions are provided by the presence of a thick 
muscle layer over the bone and natural ensemble averaging through breathing-induced motion 
[22, 56]. In the future, the limits of the approximations in small animal models could be 
explicitly checked. 

In spite of the limitations, the current DCT study provided previously unavailable 
information on the 3D longitudinal blood flow changes in three different graft types. 
Recently, there has been an increased research interest in the development of DCT scanning 
system and application of DCT in different studies. He et al. used a motorized stage to move 
the source and detectors over the scan region and used this system to capture the blood flow 
contrast in patients with breast tumors [46]. Johansson et al. constructed a scanning system 
that used a motorized stage to move the subject rather than the source-detector pattern and 
combined diffuse correlation measurements with broadband diffuse optical measurements to 
study the hemodynamics of mouse tumor [69]. However, in general, DCT is still a technology 
that has not been widely applied. To this end, we plan to compare our DCT measurements 
with more established methods, such as fluorescent microspheres or dynamic contrast 
enhanced MRI in the future. 

5. Summary 

In summary, we have utilized a DCT system to study the longitudinal blood flow changes in 
three groups of mice with different graft types; i.e., autografts, allografts and T.E. allografts. 
Our system enabled the collection of spatially dense data with multiple source-detector 
separations for 3D imaging reconstruction, utilized a non-linear reconstruction approach to 
improve the accuracy in the reconstruction and leveraged the anatomical structure of each 
mouse obtained with micro-CT to define the geometry and optical properties. The DCT 
results show that after the graft surgery, blood flow increased in grafts for all groups and then 
returned to the pre-transplantation baseline level. The autograft group exhibited consistent 
trends in blood flow changes in the graft region, with the blood flow peaking 1 week after 
surgery. The allografts showed more temporal variations in blood flow within the group. The 
T.E. allografts exhibited blood flow changes that were more similar to the autografts. The 
results monitored by our DCT system strongly suggest that 3D longitudinal blood flow 
changes may serve as surrogate markers for assessing the success of bone healing at relatively 
early time points. 
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