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Abstract: Estimation of polarimetric parameters has been a fundamental issue to assess 
biological tissues that have form birefringence or polarization scrambling in polarization-
sensitive optical coherence tomography (PS-OCT). We present a mathematical framework to 
provide a maximum likelihood estimation of the target covariance matrix and its incoherent 
target decomposition to estimate a Jones matrix of a dominant scattering mechanism, called 
Cloude-Pottier decomposition, thereby deriving the phase retardation and the optic axis of the 
sample. In addition, we introduce entropy that shows the randomness of the polarization 
property. Underestimation of the entropy at a low sampling number is mitigated by 
asymptotic quasi maximum likelihood estimator. A bias of the entropy from random noises is 
corrected to show only the polarization property inherent in the sample. The theory is 
validated with experimental measurements of a glass plate and waveplates, and applied to the 
imaging of a healthy human eye anterior segment as an image filter. 
©2016 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (170.4500) Optical coherence tomography; (170.4470) 
Ophthalmology; (120.2130) Ellipsometry and polarimetry. 
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1. Introduction 

Polarization-sensitive optical coherence tomography (PS-OCT) has been developed as an 
extension to conventional OCT [1] to observe the depth-resolved polarization property of a 
sample by measuring the state of a polarized electromagnetic (EM) field [2–6] or the linear 
map of the polarized EM fields [7–9]. Since everything about PS-OCT is more complicated 
than conventional OCT, it still has plenty of room left for improvement of PS-OCT in aspects 
of both the hardware and the software. Among them, Makita et al. raised one of the 
fundamental issues in PS-OCT that the mean of the phase retardation is significantly biased 
from the true value because of asymmetric distribution [10]. Various methods have been 
developed to apply averaging to such polarimetric parameters [11–19]. In another approach, 
an estimator of the phase retardation based on the likelihood of the distribution was also 
developed [20]. However, these approaches are limited to estimating only a partial aspect of 
the polarization property, because they have focused on one or some of parameters, for 
example, the phase retardation, the optic axis, Stokes parameters, Jones matrix or degree of 
polarization uniformity [21]. Lack of a sophisticated and unified method of the estimation is 
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our motivation for this study to develop a new approach that resolves the estimation issue in 
PS-OCT. 

Although the Jones matrix is an operator to characterize the sample’s coherent property 
that changes the state of polarized light [22], it is also a subject of the measurement that 
inherently involves a stochastic process. In the measurement, the observed quantities need to 
be evaluated statistically. The most common approach to this may be Stokes-Mueller 
formalism [23]. Although Stokes-Mueller formalism has advantages consisting of only 
observable quantities and a capability of geometric treatment as an orthogonal group, it does 
not provide a clear perspective on statistical correlation between the field variables. 

It has been known that the Jones and Stokes-Mueller formalisms can be understood 
abstractly using group theory [24,25]. In 1986, Cloude extended the polarisation algebra to 
the special unitary group of degree 4, SU(4), and showed that the positive semidefinite 
Hermitian matrix in SU(4) was useful in estimating the Jones matrix in SU(2) [26]. This 
theory has been advanced in the field of polarimetric radar imaging to detect and classify 
natural and artificial terrain objects from airborne and satellite radar systems [27]. Although 
there are some variations in how to call this incoherent decomposition method, we call it 
Cloude-Pottier decomposition after the book in [28]. There are only a few reports that used it 
for biomedical applications [29–32], and no reports in OCT to the best of our knowledge. 

In this study, we develop a novel method to estimate a 4 × 4 covariance matrix that is 
converted from the measured Jones matrix. Applying Cloude-Pottier decomposition to the 4 × 
4 covariance matrix, we estimate the Jones matrix and entropy that shows a randomness of the 
Jones matrix, and obtain the phase retardation and the optic axis of the sample from the 
estimated Jones matrix. To the best of our knowledge, this is the first time to apply the 
entropy for PS-OCT to show the randomness of the polarization properties. In addition, an 
underestimation of the entropy at a low sampling number in the ensemble average is mitigated 
by an estimator for the eigenvalues of the 4 × 4 covariance matrix [33]. Moreover, a bias in 
the entropy by random noises is estimated and corrected. Specifically, we derive equations 
that show relationships between the bias and noises for both an accumulated Jones matrix 
along the depth and a local Jones matrix that cancels the axial accumulation. Section 2 
describes the details of the theory, and Section 3 shows experimental results to validate the 
theory and demonstrates image filtering by Cloude-Pottier decomposition for the anterior eye 
segment. Section 4 describes discussions about some topics that are relevant to our results, 
including other methods for parameterizing the depolarization. 

2. Theory 

2.1 Statistical description of the Jones matrix using the target covariance matrix 

We write measured Jones matrix of the sample as 

 1H 2H
1 2

1V 2V

,
J J

E E
J J

  = =     
J  (1) 

where the first and second columns are measured Jones vectors in response to orthogonally 
polarized incident electromagnetic fields with each other. As the first step for the statistical 
analysis of the Jones matrix, it is rearranged to 1 × 4 target vector that is defined as 

 ( )1
Tr ,

2
κ = JΨ  (2) 

where Tr(X) denotes a trace of the matrix X, and Ψ is an arbitrary complete basis set. All 
bases of the Ψ are used to create the target vector κ in Eq. (2). The symbol κ is used here 
instead of k that is commonly used in the literature of polarimetric radar imaging to avoid 
confusion with a wavenumber. A Pauli basis set and a lexicographic ordering basis set are 
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often used as the Ψ [27]. In this paper, we use the lexicographic ordering basis set to simplify 
the calculation and the representation. The lexicographic ordering basis set is defined as 

 { }L

1 0 0 1 0 0 0 0
2 2 2 2 .

0 0 0 0 1 0 0 1

         =         
         

Ψ  (3) 

Using Eqs. (1)-(3), the target vector is given as 

 [ ]T

L 1H 2H 1V 2V ,J J J Jκ =  (4) 

where the superscripted T denotes a transpose operation to the vector. 
Assuming that κ can be modeled as multivariate complex Gaussian distribution, the 

probability density function (pdf) of κ is described as [27,33–36] 

 ( )† 11
( ) exp ,

det( )m
p κ κ κ

π
−= − C

C
 (5) 

where det(X) denotes a determinant of X, m is the dimension of κ. In the case of Eq. (4), m = 
4. The superscripted dagger denotes complex transpose. C is a positive semidefinite 
covariance matrix that is defined as C = E{κκ†}, where E{X} denotes the expectation of X. C 
can be estimated by 

 †

1

1
,

n

i i
in

κ κ
=

= Z  (6) 

which is known as the maximum likelihood estimator of C [34], and where n is a sampled 
number, κi denotes the i-th target vector in the n averaged samples. It is also known that Z has 
a complex Wishart distribution as [27,33–36] 

 ( )1[det( )]
( ) exp Tr ,

[det( )] ( )

mn n m

n
m

n
p n

n

−
− = − Γ

Z
Z C Z

C 
 (7) 

 ( 1)/ 2

1

( ) ( 1),
m

m m
m

i

n n iπ −

=

Γ = Γ − +∏  (8) 

where Γ(X) is a gamma function. 
In the case of {ΨL}, we use a new symbol T instead of Z for clarity, and define T as [27] 

 

2 * * *
1H 1H 2H 1H 1V 1H 2V

2* * *
2H 1H 2H 2H 1V 2H 2V†

L L
2* * *

1V 1H 1V 2H 1V 1V 2V

2* * *
2V 1H 2V 2H 2V 1V 2V

,

J J J J J J J

J J J J J J J

J J J J J J J

J J J J J J J

κ κ

 
 
 
 ≡ =
 
 
 
  

T  (9) 

where the overline denotes ensemble average, assuming that the sample is wide-sense 
stationary and ergodic in the region of interest. By definition, T is a positive semidefinite 
Hermitian matrix as well as C and Z. 

2.2 Cloude-Pottier decomposition 

In Cloude-Pottier decomposition [26–28], T is rearranged by matrix diagonalization as 
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†

1 2 3 4 1 2 3 4

1 2 3 4

,

diag[ , , , ], 0,

[ ],e e e e

λ λ λ λ λ λ λ λ
=
= ≥ ≥ ≥ ≥
=

T UAU

A

U

 (10) 

where A is a diagonal matrix with elements of four eigenvalues, and U is a unitary matrix that 
consists of four 1 × 4 eigenvectors. The inequalities of the eigenvalues is given because T is a 
positive semidefinite Hermitian matrix. The eigenvalues in Eq. (10) are normalized as 

 
4

, 1,2,3,4,i
i

j
j

i
λλ

λ
′ = =


 (11) 

so that 0 ≤ λiʹ ≤ 1. The eigenvalue λiʹ can be regarded as a probability that the corresponding 
eigenvector ei occurs in a sense of multinomial process [37]. In the case of {ΨL}, the 
eigenvector ei is rearranged to a Jones matrix Li as 

 

[ ]T
: ,

.

i i i i i

i i
i

i i

e a b c d

a b

c d

=

 
=  
 

L
 (12) 

As described above, this incoherent approach to derive Li by Cloude-Pottier 
decomposition is applicable for the measured Jones matrix in Eq. (1). However, it does not 
show the local polarization property of the sample, because all influence before and after the 
backscattering at the sample is accumulated in Eq. (1) along the depth. The cumulative 
attribute can be eliminated by calculating a local Jones matrix [10,38,39]. Instead of the 
cumulative Jones matrix in Eq. (1), we use Eq. (19) in [40] as the local Jones matrix, where 
we also processed the data by k-dependence correction. Since a product of two multivariate 
Gaussian distributions is also a multivariate Gaussian distribution [41], the statistical 
description in the above also holds for the local Jones matrix. In the case of the local Jones 
matrix, it was weighed as 

 2 2 1

1

2

( ) ( )
2 2

( ) ( ),
2 2

( ) ( )
2 2

sample sample

sample sample

sample sample

z z
z z

z z
z z

z z
z z

δ δ
δ δ

δ δ
−

−

′ ′− +
′ ′− +

′ ′− +

E E

E E
E E

 

 

 
 (13) 

where the same notations in [40] are used in Eq. (13); sample′E


 is a measured Jones matrix of 

the sample with k-dependence correction, and two Jones matrices that are axially separated 

for δz centered at a depth z are used. 
2

X  denotes an operator norm. The Cloude-Pottier 

decomposition is then used to estimate the local Jones matrix. A local phase retardation Ri of 
Li is derived as 

 ( ) ( )*
1 2arg( ),i i

iR ξ ξ=  (14) 

where ( )
1

iξ  and ( )
2

iξ  are the eigenvalues of Li, and arg(x) denotes the argument of the complex 

value x. Assuming that the sample has a dominant scattering mechanism, L1 and R1 that are 
paired up with the largest eigenvalue λ1 can be regarded as the Jones matrix and the local 
phase retardation of the dominant scattering mechanism, respectively [26]. In addition, when 
the sample is modeled as multinomial process [37], an expected value of the phase retardation 
can be defined as 
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 E( ) .i i
i

R Rλ′=  (15) 

In addition, optic axis of Li is derived from an eigenvector that is paired to ( )
1

iξ . The 

eigenvector is converted to Stokes vector, and the angle relative to a reference can be 
calculated. 

To show a degree of randomness of the Jones matrix in a region of interest, an entropy, 
which was originally developed for quantum mechanics [42] and has been applied to 
statistical optics [23,43,44], is derived in the von Neumann sense as [26,37,45] 

 4log ,i i
i

H λ λ′ ′= −  (16) 

where the logarithmic base is set to be m = 4 so that 0 ≤ H ≤ 1. When H = 0, the sample has 
completely homogeneous Jones matrix. When H = 1, the sample has a completely random 
Jones matrix. In practice, the measured entropy is between them. 

2.3 Asymptotic quasi maximum likelihood estimator (AQ-MLE) of the eigenvalues 

It is known that the entropy is underestimated if the number of samples for ensemble average 
of the covariance matrix is low [33,46,47]. To mitigate the underestimation of the entropy, we 
use AQ-MLE of the eigenvalues [33]. Since the probability density function of the 
eigenvalues is too complicated and is not an analytical expression, López-Martínez et al. 
introduced some approximations to derive the estimator in [33]. 

The eigenvalues of the ensemble averaged covariance matrix are estimated by the AQ-
MLE as 

 1

1,

( ), 1,2, , ,
m

ji
i i

j j i i j

l O n i m
n

λλλ
λ λ

−

= ≠

= − − =
−


  (17) 

where il


 is is the estimated i-th eigenvalue, λi is the i-th eigenvalue calculated by a finite 

number of samples in the ensemble average, n is the number of samples, and m = 4 because of 
the dimension of our covariance matrix. The term O(n−1) indicates an approximation order, 
and is ignored in the practical calculation. The estimated eigenvalues are normalized and used 
to estimate the entropy as 

 
4

4 4
1

1

ˆ log , ,i
i i i

i
i

i

l
H l l l

l=

=

′ ′ ′= − =



  


 (18) 

where Ĥ is the estimated entropy. 

2.4 Correction of the bias in the entropy induced by noise for the non-localized 
cumulative Jones matrix 

Since the entropy shows randomness of the measured Jones matrix, it includes both 
polarization property of the subject and influence of the noise. When the signal-to-noise ratio 
(SNR) is low, the bias to the entropy would be high, resulting in unreliable quantitative 
evaluation of the polarization property of the subject. Compared to polarimetric radar 
imaging, this influence may be more prominent in PS-OCT, where we are often interested in 
an axially deep position whose signal fades exponentially. We therefore develop a correction 
method to remove the bias of the entropy induced by the noise. As the first step, we develop 
the bias correction for the non-localized cumulative Jones matrix shown in Eq. (1). 

Since the random noise and the polarization property of the subject are independent, the 
following additivity is satisfied; 
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 measured subject noise ,H H H= +  (19) 

where Hmeasured, Hsubject and Hnoise are the entropies of the measured data, the subject and the 
noise, respectively. In this section, we focus on the estimation of Hnoise to remove the bias in 
Hmeasured. 

The 4 × 4 covariance matrix can be divided to two subspaces that are related to E1 and E2. 
The entropy satisfies the following inequality called subadditivity [48]; 

 ( ) ( ) ( )1 2 1 2, ,noise noise noiseH E E H E H E≤ +  (20) 

where Hnoise(E1) and Hnoise (E2) are the subspace entropies, and Hnoise (E1,E2) is the explicit 
expression as a joint entropy of the noise in the covariance matrix. Assuming that the noises 
in the subspaces of E1 and E2 are independent, Eq. (20) holds equality as 

 ( ) ( ) ( )1 2 1 2, .noise noise noiseH E E H E H E= +  (21) 

Equation (21) shows that the entropy of the noise in 4 × 4 covariance matrix can be derived 
from the summation of the entropies of the noises in the subspaces, namely, 2 × 2 covariance 
matrices. Nevertheless, it may be still difficult to utilize the pdfs of the covariance matrix and 
the eigenvalue [27,33,46] to derive Hnoise. Hence, we suggest yet another approach in the 
following. 

Hnoise(E1) and Hnoise (E2) can be derived from the eigenvalues as 

 ( ) ( )
2

( ) ( )

1

log ,i i
noise i j j

j

H E ζ ζ
=

=  (22) 

where ( )i
jζ  is the j-th eigenvalue of the subspace composed of Ei. The eigenvalue has the 

following relationship [23] with a degree of polarization (DOP) or a degree of polarization 
uniformity (DOPU) in the case of OCT [21]; 

 
( )

( ) 1
,

2

i
i

j

Pζ ±=  (23) 

where P(i) is the DOPU of the subspace composed of Ei. Consequently, it turns out that 
Hnoise(E1,E2) can be derived if a relationship between the DOPU and the noise is derived. 

Assuming that the measured Jones matrix has an independent complex additive white 
Gaussian noise in each matrix element, the Jones matrix can be described as [49] 

 1H 1H 2H 2H 1H 2H
measured 1 1 2 2

1V 1V 2V 2V 1V 2V

.
E n E n g g

E n E n
E n E n g g

+ +    = + + = =     + +   
J  (24) 

Note that Eq. (24) is a cumulative Jones matrix along the depth that is characteristic to PS-
OCT as described above. Stokes parameters of [g1H g1V]T are defined as 

 

2 2
(1) 1H 1V
0

2 2
(1)

1H 1V1
*(1)

1H 1V2
(1)

*3
1H 1V

,
2Re

2Im

g gs
g gs

g gs

s g g

 +   
   −   =               

 (25) 

and Stokes parameters of [g2H g2V]T are also defined similarly. In [49], biases in s0
(1) and s1

(1) 
by the noise variance were canceled, and ensemble average of the Stokes parameters were 
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used to calculate the DOPU. In contrast, since we would like to derive only the bias 
component in DOPU, we take a different approach in the following. 

The Stokes parameters without the noise components are derived as 

 

2 2
2 2(1) 1H 1V

1H 1V0
2 2

(1) 2 2
1H 1V1 1H 1V

*(1)
1H 1V2 1H 1V

(1)
*3 1H 1V1H 1V

: ,
2Re 2 cos

2 sin2 Im

E E E Es
E Es E E

E Es E E
s E EE E

δ
δ

 +  +′        −′  −   = =   ′         ′           

 (26) 

where δ = arg[E1HE1V*]. δ is influenced by polarization property of the subject but not by the 
signal intensity. In addition, it is eventually cancelled in P(i) as seen later. We then define 
other Stokes parameters using ensemble averaged signal intensities as 

 

( )
( )

2 2 2 2

1H 1V 1H 1V2 2
(1)

1H 1V
0 2 2 2 2

2 2(1) 1H 1V 1H 1V
1 1H 1V

(1)
2 2 2 2 2

1H 1V
(1) 1H 1H 1V 1V

3
1H 1V 2 2 2 2

1H 1H 1V 1V

:
2 cos 2 cos
2 sin

2 sin

g g n n
E Es

g g n ns E E

s E E g n g n
s

E E
g n g n

δ δ
δ

δ

 + − +  +′′     
  − − − ′′ −    = =  ′′  
  − − ′′        − − 

,








 (27) 

where we implicitly assume that the signal amplitude is much higher than the noise amplitude 
for each element of the Jones matrix so that distributions of the measured amplitudes are 
Gaussian [50] and that the polarization property of the subject has a symmetric pdf of the 
signal intensity so that it does not bias the ensemble average in Eq. (27). DOPU that shows 
the bias by the relative relationship between the signal intensity and noise power is derived as 

 

{ } { } { }

( ) ( )( )
( )

2 2 2(1) (1) (1)
1 2 3(1)

(1)
0

2
2 2 2 2 2 2 2 2

1H 1V 1H 1V 1H 1H 1V 1V

2 2 2 2

1H 1V 1H 1V

4
.

s s s
P

s

g g n n g n g n

g g n n

′′ ′′ ′′+ +
=

′′

 − − − + − −  =
+ − +

(28) 

P(2) is also derived similarly. Using Eqs. (21)-(23), (27) and (28), Hnoise is calculated from the 
measured signal intensities and noise powers. Note that Eq. (28) used ensemble averaged 
signal intensities but not ensemble averaged Stokes parameters, which enabled us to derive 
the DOPU of the bias rather than a bias-corrected DOPU of the sample. The additivity of the 
entropy shown in Eqs. (19) and (21) ensures our approach to separate the individual 
contributions. 

2.5 Correction of the bias in the entropy induced by noise for local Jones matrix 

Although the equations in Section 2.4 are effective for a certain axial depth, we have not 
considered cumulative attributes of the Jones matrix along the axial depth in PS-OCT. If a 
region of interest is set spatially including the axial direction, the resultant DOPU and entropy 
may have an artifact by high birefringence that changes the Jones matrices rapidly in the axial 
direction. Hence, we derive Hnoise of the local Jones matrix in this section. 
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To calculate the local Jones matrix, two Jones matrices that are axially separated for δz 
centered at a depth z are used as described in [40] and Eq. (13). Using the same notations in 
[40] and Eq. (13), we write all matrix elements down as 

 ( ) , ( ) .
2 2sample sample

a b e fz z
z z

c d g h

δ δ   ′ ′+ = − =   
   

E E
 

 (29) 

The local Jones matrix is derived as 

 
1

1 ( ) ( ) det ( ) .
2 2 2sample sample sample

ha fc hb fdz z z
z z z

ga ec gb ed

δ δ δ −
− − −   ′ ′ ′− + = −     − + − +    

E E E
  

(30) 

Since the determinant in Eq. (30) has the effect of distorting the noise floor of the matrix, it 
complicates the estimation of the entropy. We therefore use the following equation instead; 

 

1 1

1H 2H
1 2

1V 2V

det ( ) ( ) ( )
2 2 2

.

sample sample sample

ha fc hb fdz z z
z z z

ga ec gb ed

δ δ δ

ε ε
ε ε

ε ε

− − − −  ′ ′ ′− − + =   − + − +   
  ≡ =     

E E E
  

 (31) 

To calculate Hnoise of the local Jones matrix, we use Eq. (31) instead of Eq. (24) and 
follow the same procedure to calculate P(1) and P(2). Unlike Eq. (24), however, Eq. (31) does 
not satisfy the additivity in Eq. (21), because the first and second column vectors in Eq. (31) 
are dependent. In this case, Eq. (21) can be modified as 

 ( ) ( ) ( ) ( )1 2 1 2 1 2, : ,noise noise noise noiseH H H Hε ε ε ε ε ε= + −  (32) 

where the third term in the right side is mutual information of ε1 and ε2 [48]. It can be 
rearranged using a conditional entropy as 

 
( ) ( ) ( )

( ) ( )
1 2 1 1 2

2 2 1

: |

| ,

noise noise noise

noise noise

H H H

H H

ε ε ε ε ε

ε ε ε

= −

= −
 (33) 

where H(Y|X) denotes the entropy of Y conditioned on X. Using Eq. (32) and Eq. (33), the 
joint entropy is rearranged as 

 
( ) ( ) ( )

( ) ( )
1 2 2 1 2

1 2 1

, |

| .

noise noise noise

noise noise

H H H

H H

ε ε ε ε ε

ε ε ε

= +

= +
 (34) 

To calculate Eq. (34), the variance of each element in Eq. (31) is required. Assuming strong 
constant phasor plus a weak random phasor sum [50] for each matrix element, the variances 
are derived as 

 
{ } { }

{ } { }

2 2

1H

2 2

Var( ) Var( ) Var( ) Var( ) Var( ) E( ) E( ) Var( )

Var( ) Var( ) Var( ) E( ) E( ) Var( ),

ha fc h a h a h a

f c f c f c

ε = − = + +

+ + +
 (35) 

 
{ } { }
{ } { }

2 2

1V

2 2

Var( ) Var( ) Var( ) Var( ) Var( ) E( ) E( ) Var( )

Var( ) Var( ) Var( ) E( ) E( ) Var( ),

ga ec g a g a g a

e c e c e c

ε = − + = + +

+ + +
(36) 
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Var( ) Var( ) Var( ) E( ) E( ) Var( ),
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e d e d e d

ε = − + = + +

+ + +
(38) 

where Var(X) and E(X) denote variance and an expected value of X, respectively. Conditional 
variances that are necessary to calculate Eq. (34) are derived as 

 { } { }2 2

1H 2Var( | ) E( ) Var( ) E( ) Var( ),h a f cε ε = +  (39) 

 { } { }2 2

1V 2Var( | ) E( ) Var( ) E( ) Var( ),g a e cε ε = +  (40) 

 { } { }2 2

2H 1Var( | ) E( ) Var( ) E( ) Var( ),h b f dε ε = +  (41) 

 { } { }2 2

2V 1Var( | ) E( ) Var( ) E( ) Var( ).g b e dε ε = +  (42) 

Using the ensemble average of the absolute square of individual elements in Eq. (31) and the 
variances in Eqs. (35)-(42), we derive 
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2
2 2 2 2

2H 2V 2H 1 2V 1 2H 2H 1 2V 2V 1
( | )
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2H 2V 2H 1 2V 1
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.

Var( | ) Var( | )

P
ε ε
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− − − + − −
=
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  (46) 

Equation (34) is calculated using Eq. (22), (23) and Eq. (43)-(46). 
In the experiments, depth-dependent noise variance of each matrix element is calculated 

applying third-order polynomial fit to the averaged noise power of A-scans without placing a 
scattering sample. The absolute-squared expected values of the matrix elements in Eq. (24) or 

(29) that are used in Eqs. (35)-(42) are calculated as 
2 2

1H 1Hg n−  and similarly for all other 

elements. 

3. Experimental results 

To validate the theory experimentally, we show measurement results of three static samples; a 
glass plate (WG11010, Thorlabs, Newton, New Jersey, USA), quarter waveplates (QWP) at 
633 nm (WPQ10ME-633, Thorlabs) and at 1310 nm (WPQ10ME-1310, Thorlabs). The QWP 
at 633 nm has a single-pass phase retardation of 141 nm at 1310 nm wavelength according to 
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the manufacturer, which is converted to a double-pass phase retardation of 1.35 rad. Although 
it is not exactly a double-pass phase retardation of one eighth waveplate (EWP), we call it 
EWP for expedience. 

The PS-OCT system used for the experiment, which had a center wavelength of 1297 nm, 
was described in [40]. In the case of the measurements of the static samples, the axial 
separation δz that corresponds to a thickness of the sample is too long to ignore nonlinear 
frequency response of the signals between the OCT channels (cf [51].). To create correction 
parameters, we measured 2% intralipid as an axially-distributed non-birefringent scattering 
sample. Equations (9) and (10) of [40] were calculated for the axial depth domain, namely, 
qHV(z) and q12(z), but not for k-dependence in this case. They were averaged for 800 × 128 A-
scans, and the depth-dependent signal amplitudes and phases were smoothed by 11th-order 
polynomial fit. Inverse matrices of the resultant QHV(z) and Q12(z) were multiplied to the 
Jones matrix as shown in Eq. (15) of [40] to the axial depth domain. 

For the analysis of the static samples, we extracted each single pixel of the front and back 
surfaces, respectively, to apply the ensemble averaging. We note that we did not use axially 
neighboring pixels around the front and back surfaces for the ensemble averaging in the case 
of the static samples. 

3.1 Estimation of the phase retardation 

To evaluate the estimation performance of Cloude-Pottier decomposition at high-entropy 
condition, the local Jones matrix between the front and back surfaces of the static samples 
were measured, and the phase retardation was estimated by mean, E(R) in Eq. (15) and R1 in 
Eq. (14). The results of the glass plate, the EWP and the QWP are plotted in Fig. 1(a), 1(b) 
and 1(c), respectively. In Fig. 1, the plot of each A-scan shows the phase retardation 
calculated by each single A-scan. The plots of mean, E(R) and R1 were calculated using all 0 
to n-th A-scans for the estimation. The entropies of (a), (b) and (c) were 0.74, 0.62 and 0.66, 
respectively. The effective SNRs (ESNRs) [10,52] of (a), (b) and (c) were 3.50, 5.27 and 4.88 
dB, respectively. 
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Fig. 1. Plots of phase retardations of the glass plate (a), the EWP (b) and the QWP (c). The 
horizontal axes show the index of A-scan. For the plots of mean, E(R) and R1, all A-scans from 
0 to n-th indices are used for the estimation. Since it is clear that the true values of (a) and (c) 
are on the sides of the measurable range, true values are not shown for them. 

The mean and E(R) were biased when the true value is close to the sides of the measurable 
range as shown in Fig. 1(a) and 1(c). The biases of the mean and E(R) were because of the 
asymmetric distribution and noise components in Ri (i ≥ 2), respectively. The biases of the 
mean and E(R) in Fig. 1(b) were smaller than (a) and (c), because the distribution was nearly 
symmetric. In contrast, R1 converged on the true value in all of Fig. 1(a), 1(b) and 1(c) with 
less than ~32 A-scans. Hence, R1 would be the most effective way of unbiased estimation 
even if the SNR is low. 

3.2 Estimation of the optic axis 

Since the optic axis is wrapped when the phase retardation is exactly π [38], the EWP was 
measured to evaluate the estimation of the optic axis. The orientation was set from 0 to 180 
degrees with a 10-degree step, and the orientation was estimated by the eigenvector of L1 in 
Cloude-Pottier decomposition. The eigenvector was converted to the Stokes parameters, and a 
relative orientation to 0 degree that used 800 A-scans for the ensemble average of T was 
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calculated. A wrapping over 90-degree orientation was unwrapped manually. The estimated 
optic axis orientation is shown in Fig. 2. To see the influence of the number of samples, the 
ensemble average of T was calculated using 8, 16, 32, 64 or 128 A-scans. This calculation 
was repeated in 800 A-scans to see the distributions of the estimation results. The entropy and 
the ESNR were 0.25 and 12.42 dB in average, respectively. 
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Fig. 2. Box plots of the optic axis estimated by Cloude-Pottier decomposition. The sample was 
the EWP. Different number of A-scans were used for the ensemble average of (T) as indicated 
by the figure legend, and the distributions of the estimated optic axes were shown. The plots of 
the different number of A-scans were displaced horizontally from the true set orientation only 
for the purpose of visualization. An interquartile range, a median and 100% fraction range of 
the distribution are indicated by the box, the bar in the box and the whiskers, respectively. 

Figure 2 clearly shows that by increasing the number of A-scans for the ensemble average 
of T in Cloude-Pottier decomposition, it gives a better estimation of the orientation with 
narrower distribution close to the set orientation. Consequently, Fig. 1 and Fig. 2 showed that 
the Jones matrix could be estimated by L1 in Cloude-Pottier decomposition without the bias. 

3.3 Estimation of the entropy by AQ-MLE 

To evaluate the AQ-MLE shown in Eqs. (17) and (18), we measured the glass plate, the EWP 
and the QWP with settings of balanced and unbalanced SNRs. The settings are summarized in 
Table 1, where signal intensities relative to the maximum Jones-matrix element are shown. 
Note that the terminologies of the balanced- and unbalanced-SNR settings indicate relative 
relationships of the signal intensities between the Jones-matrix elements, but these are not 
related to balanced photoreceivers of the photodetection system. Since it is impossible to 
evaluate whole of SU(2) space experimentally, we only use these settings in Table 1 to 
confirm that the entropies H, Ĥ, and Hnoise follow our theory experimentally in Sections 3.3, 
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3.4 and 3.5. In addition, the signals were attenuated arbitrarily to see the convergence of the 
entropy in various conditions. The results are shown in Fig. 3. In this evaluation of AQ-MLE, 
only the local Jones matrix were used to calculate the entropies. 

Table 1. Relative signal intensities between the Jones-matrix elements used for the test 
target analysis 

Sample 
Balanced-SNR setting  Unbalanced-SNR setting 
Front surface [dB] Back surface [dB]  Front surface [dB] Back surface [dB] 

Glass plate 

Setting (a)   Setting (b)  

0.8 0.5

1.2 0

− −

−
 
  

 
0.2 0.1

0.9 0

− −

−
 
  

 
 0.8 21.6

22.6 0

− −

−
 
  

 
0.3 20.9

21.7 0

− −

−
 
  

 

EWP 

Setting (c)   Setting (d)  

0 2.7

2.3 2.4

−

− −
 
  

 
1.7 0.3

0 2.7

− −

−
 
  

 
 0.8 3.9

4.7 0

− −

−
 
  

 
0 24.9

23.7 0.8

−

− −
 
  

 

QWP 

Setting (e)   Setting (f)  

1.3 0.3

0 1.7

− −

−
 
  

 
1.2 1.9

0 4.1

− −

−
 
  

 
 0 4.7

4.3 0.4

−

− −
 
  

 
22.2 0.4

0 21.7

− −

−
 
  

 

In Fig. 3, the entropy without AQ-MLE, H, was generally underestimated at small 
numbers of A-scans, n ≤ ~20. The signals with high H had high variance and required more n 
till they converged. The underestimation was mitigated in the entropy with AQ-MLE, Ĥ, at 
the small n, although the Ĥ still had remaining variance before the convergence. Both H and 
Ĥ converged to the same entropy at high n as expected in Eq. (17). As the signal attenuation 
was lower, H was lower and the difference between H and Ĥ was small even at small n. These 
observations were common in all of the samples and settings in Table 1, indicating that AQ-
MLE was a robust and effective method to mitigate the underestimation of the entropy. 
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Fig. 3. Measured entropy without (solid line) or with (dashed line) AQ-MLE. The horizontal 
axis indicates the number of A-scans n used for the ensemble average of (T). The raw OCT 
data were measured at different signal intensities, and the results were plotted with different 
colors. The samples and the measurement settings are shown in Table 1. 

3.4 Estimation of Hnoise at a single depth 

Since Hsubject of a static sample is 0 temporally, Hmeasured of the static sample should equal 
Hnoise in Eq. (19). To validate the theory in Section 2.4 under this simple condition, Hnoise of 
the measured cumulative Jones matrix at a certain depth is calculated from the measured data 
with the same settings shown in Table 1. Using the equations in Section 2.4, Hnoise is 
estimated and plotted with the entropy Ĥ in Fig. 4. 

In Fig. 4, Hnoise mostly corresponded to Ĥ with no dependence on the samples and the 
signal settings. Looking at the plots closely, however, Hnoise slightly overestimated Ĥ. 
Although the reason of the overestimation is unclear, we speculate that a portion of the noise 
in the OCT channels might be correlated because of the depth-encoded configuration. When 
the entropy Ĥ is higher than 0.4, some plots showed the underestimation of Ĥ by Hnoise. It 
would be because the assumption of strong constant phasor plus a weak random phasor sum 
[50] was not valid. 
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Fig. 4. Estimation results of Hnoise at a single depth. The settings (a)-(f) in the figure legend 
correspond to Table 1. The black solid line shows ideal estimation where the measured entropy 
equals Hnoise. 

3.5 Estimation of Hnoise for the local Jones matrix 

To validate the theory for the local Jones matrix in Section 2.5 under the simple condition of 
Hsubject = 0 as well as Section 3.4, Hnoise of the local Jones matrix is also calculated from the 
measured data with the same settings shown in Table 1. Using the equations in Section 2.5, 
Hnoise is estimated and plotted with the entropy Ĥ in Fig. 5. For comparison, 

noise 1 noise 2( ) ( )H Hε ε+ , two equivalent calculation methods of Hnoise shown in Eq. (33) and 

ENSR are plotted. 
In Fig. 5, noise 1 noise 2( ) ( )H Hε ε+  overestimated the entropy except high Ĥ in (b) and (c). 

The overestimation of Ĥ by noise 1 noise 2( ) ( )H Hε ε+  was because it did not exclude the mutual 

information as indicated in Eq. (32). In contrast, both two methods of Hnoise in Eq. (33) 
matched well with Ĥ. The exception was at high Ĥ over ~0.5, where Hnoise underestimated Ĥ. 
This would be also because the assumption of strong constant phasor plus a weak random 
phasor sum [50] was not valid. Again, the estimation in Fig. 5 was successful with no 
dependence on the samples and the signal settings as well as Fig. 4. 

In Fig. 5, the ESNR plots would be effective to understand the relation between the SNR 
and the entropy intuitively. However, although the ESNR and the entropy would have a 
restricted relation, it requires further studies to clarify how the ENSR is related to the entropy 
and other polarimetric parameters theoretically. 
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Fig. 5. Estimation results of Hnoise for the local Jones matrix. The samples and settings of (a)-(f) 
correspond to Table 1. The black solid line shows ideal estimation where the measured entropy 
equals Hnoise. 

3.6 Image filtering by Cloude-Pottier decomposition for the anterior eye segment 

The Cloude-Pottier decomposition is applied for image filtering. A single B-scan with a 
lateral scanning range of 12 mm consisting of 800 A-scans was used for the demonstration. A 
superior region of the anterior segment of a healthy right eye was scanned in a vertical 
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direction. The study protocol adhered to the tenets of the Declaration of Helsinki and was 
approved by the institutional review board of Tohoku University Graduate School of 
Medicine. First, a coherent Jones-matrix filter [40] was applied to the measured cumulative 
Jones matrix with a kernel size of 3 × 1 pixels (axial × lateral), which corresponds to 20.6 × 
15 µm2 in tissue. The local Jones matrix was then calculated with the axial separation of 2 
pixels (13.6 µm in tissue). The spatially moving filter of Cloude-Pottier decomposition was 
applied to the local Jones matrix with a kernel size of 7 × 11 pixels (axial × lateral), which 
corresponds to 48.1 × 165 µm2 in tissue. These spatial kernel sizes were determined by taking 
a trade-off between the sampling number and the loss of spatial resolution into consideration. 
A threshold was applied to the pixels by polarization-insensitive signal intensity [40] to 
exclude the noise area from the ensemble average of T. 

Figure 6 shows the images of the polarization-insensitive intensity (a), the local 
retardation R1 (c), the entropy H without any correction (e) and Ĥ with the AQ-MLE and the 
correction of the bias Hnoise (g), respectively. An intensity threshold was applied to Fig. 6(c), 
6(e) and 6(g) to color the noise area black. An attenuation coefficient image [53] that was 
created using the raw data of Fig. 6(a) is shown in Fig. 6(b). Composite images of Fig. 6(c), 
6(e) and 6(g) with 6(b) were created by multiplying normalized Fig. 6(b) to individual RGB 
values of Fig. 6(c), 6(e) and 6(g), respectively. 

In Fig. 6(c), trabecular meshwork and the peripheral sclera showed high local retardation 
as indicated by a white arrow. The contrast of the local retardation between conjunctiva and 
sclera was visible in Fig. 6(c) and 6(d). The sclera had more organized fibrous tissue at the 
anterior stroma around the equatorial region as indicated by a light-blue arrow in Fig. 6(c). 
Although pigmented tissues, such as the posterior region of the iris and ciliary body indicated 
by light-green arrows, showed high local retardation, these seems to be artificial as discussed 
in the results of the entropy. 

In Fig. 6(e)-6(h), the entropy bias by Hnoise can be identified at low signal intensity 
regions. Although the posterior region of the iris and the ciliary body showed high entropy 
close to 1 in Fig. 6(e), the entropy with the bias correction in Fig. 6(g) showed moderately 
high entropy as indicated by the light-green arrows. This result is because of melanin in the 
pigmented tissues, which is common in the retinal pigment epithelium (RPE) [21,54–59]. 
High entropy of the cornea indicated by red arrows in Fig. 6(e) was corrected in Fig. 6(g) 
except a part of the anterior corneal stroma, where polarization scrambling effect is seen if the 
probing beam illuminates the corneal lamellae in a nearly perpendicular direction [40]. The 
sclera showed inhomogeneous and moderately high entropy in all of the imaged area as 
shown in Fig. 6(g) and 6(h). 

Another interesting region was indicated by a blue arrow in Fig. 6(e) and 6(g), which 
showed high entropy but low local retardation. Since this region corresponds to the 
corneoscleral limbus, where the corneal and scleral laminar tissues change transitionally with 
fibrovascular ridges [60,61], the anisotropic fibrous structure might have anisotropic optic 
axes in the kernel window and have resulted in the high entropy. It is known that such 
anisotropic fibrous structure can be found at various biological tissues [62–64]. Since the 
entropy is sensitive to both the phase retardation and the optic axis, the entropy is effective to 
find any type of anisotropic birefringence except for a special case with a combination of 
diattenuation and depolarization [65]. As shown in the corneoscleral limbus, the visualization 
of both the local retardation and the entropy was important to characterize the tissue. In 
addition, the optic axis imaging will provide more comprehensive understanding of the tissue 
birefringence [62–64], and remains for future studies. 
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Fig. 6. Images of the anterior eye segment around the angle at the superior region. Polarization-
diverse signal intensity (a), the attenuation coefficient (b), the local retardation R1 (c), the 
entropy without the correction methods (e), the entropy with AQ-MLE and the bias correction 
of Hnoise (g). Figures (d), (f) and (h) are the composite images of (c), (e) and (g) with (b), 
respectively. The scale bars indicate 1 mm in air. Ametrine color map [66] was used for (c)-(h). 
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4. Discussion 

The experimental results in Section 3 validated the theory in Section 2. The phase retardation 
and the optic axis were estimated correctly without the bias. The underestimation of the 
entropy was mitigated by AQ-MLE. The influence of the noise to the entropy was estimated 
as Hnoise from the signal intensities and noise powers, and removed from the images in Fig. 
6(g) and 6(h) to show only Hsubject. 

Although we created the composite images in Fig. 6(d), 6(f) and 6(h) by linearly 
multiplying the logarithmic attenuation coefficient image to preserve the original contrast in 
Fig. 6(b), this operation resulted in decreased brightness in most regions of the images. When 
subjective viewability matters more than the linearity of the operation, it may be effective to 
apply nonlinear image processing for contrast enhancement such as adjustment of dynamic 
range, gamma correction and adaptive methods [67,68]. 

Since our previous method of Jones-matrix averaging, coherent Gaussian spatial filter 
[40], was a coherent averaging process, it could not show the statistical property of the 
signals. In contrast, Cloude-Pottier decomposition enabled to show the statistical property 
using the entropy. Although these methods have different attributes that make a comparison in 
such aspect unavailable, both can calculate the local retardation. Using the same raw data of 
Fig. 6, the local retardation images of the anterior eye segment were calculated and shown in 
Fig. 7 to compare these processing methods. The kernel sizes of these filtering methods in 
Fig. 7(a) and 7(b) followed Ref [40]. for the coherent Gaussian spatial filter and Section 3.6 
for Cloude-Pottier decomposition, respectively. Although both methods were effective to 
reduce the speckle noise, some differences were found qualitatively. First, the scleral local 
retardation in Fig. 7(a) was higher than Fig. 7(b). The coherent averaging in Fig. 7(a) might 
make the anisotropic birefringence look as high birefringence with speckle noise remained, 
while the incoherent averaging of Cloude-Pottier decomposition in Fig. 7(b) might make it 
depolarized and result in lower birefringence relatively. Second, the influence of the 
polarization scrambling at the ciliary body and the posterior region of the iris was high in Fig. 
7(a) but was low in Fig. 7(b). This result indicated that the statistical treatment of the data by 
Cloude-Pottier decomposition could reduce the artifact in the local retardation caused by the 
polarization scrambling. 

(a) (b)

0 4.36 [deg/μm]
 

Fig. 7. Local retardation images of the anterior eye segment processed by the coherent 
Gaussian spatial filter (a) and Cloude-Pottier decomposition (b). The image (b) is exactly same 
as Fig. 6(c). The scale bars indicate 1 mm in air. 

Cloude-Pottier decomposition relies on the mathematical theorems that the covariance 
matrix C follows the complex Wishart distribution and that Z and T are the MLE of C [34]. 
Together with various parameters calculated from Li and λi, this multivariate distribution has 
also been utilized for the segmentation and classification of geographic objects [27,37,69–74]. 

                                                                           Vol. 7, No. 9 | 1 Sep 2016 | BIOMEDICAL OPTICS EXPRESS 3572 



These successful applications in radar polarimetry encourage us to adapt their approaches for 
PS-OCT in future. 

To visualize the polarization scrambling, DOPU was developed and applied to the 
identification of the RPE [21,55–59,75,76]. In addition, the bias correction of DOPU was 
suggested [49]. DOPU and entropy are associated through Eq. (23) [23], which we used to 
derive Hnoise. Although DOPU is a parameter to characterize the uniformity of the state of EM 
fields, the entropy is a naturally scalable parameter to characterize the randomness not only of 
the state of EM field but also of the linear map of EM fields. Another parameter, 
depolarization index, was also suggested by Lippok et al. [77]. Since it is known that the 
depolarization index and the entropy have a restricted relationship [78], they would show 
similar properties. In addition, differential depolarization index was recently suggested by 
Ortega-Quijano et al., and was shown to be effective for enhancing the depolarization contrast 
[79] and insensitive to an artifact by the diattenuation [80] like Lorentz depolarization indices 
[65]. It would be interesting to compare these parameters, and remains for future studies. 

Uniqueness of the Cloude-Pottier decomposition has been discussed [81,82]. On the one 
hand, however, there could be arbitrary ways of the matrix decomposition, as various 
approaches of the decomposition have been suggested in Mueller formalism [83,84]. On the 
other hand, a controversial argument was raised about the physical meaning of the 
decomposed components in the Cloude-Pottier decomposition [85], partly because the 
relationship between the coherence and the polarization is not fully understood yet. In another 
perspective, it is known that the concept of the target covariance matrix is mathematically 
related to the density matrix developed in quantum mechanics [86]. As such, understanding of 
PS-OCT may progress along with the related research areas. 

5. Summary 

In summary, we developed the theory on the unbiased estimation of Jones matrix, 
birefringence and entropy using Cloude-Pottier decomposition for PS-OCT. The experimental 
results of the glass plate, the waveplates and the anterior segment of the healthy eye proved 
the effectiveness of the estimation. Despite the complexity of the theory at a glance, the basic 
procedure of the calculation is simple; ensemble average of the target covariance matrix, 
eigendecomposition and some rearrangement. Our approach would be useful in assessing the 
statistical properties of the Jones matrix measured from biological subjects by PS-OCT and to 
evaluate the polarization properties of the subjects quantitatively, and additionally could have 
potential to help clinical examinations with further development. 
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