Table 4.
Scenario | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | avg RSMSE | avg RSMSE |
---|---|---|---|---|---|---|---|---|---|---|
Ignorable | Non-ignorable | Ignorable | Non-ignorable | |||||||
OLS (T) | 0.11 | 0.15 | 0.13 | 0.14 | 0.17 | 0.22 | 0.22 | 0.60 | 0.13 | 0.30 |
BART (T) | 0.06 | 0.08 | 0.07 | 0.06 | 0.11 | 0.48 | 0.19 | 0.85 | 0.07 | 0.41 |
OLS | 0.20 | 0.24 | 0.22 | 0.21 | 0.31 | 0.28 | 0.30 | 0.57 | 0.22 | 0.37 |
BART | 0.08 | 0.10 | 0.08 | 0.08 | 0.14 | 0.33 | 0.11 | 0.66 | 0.09 | 0.31 |
IPSW-LR | 0.21 | 0.22 | 0.20 | 0.19 | 0.28 | 0.54 | 0.24 | 0.80 | 0.20 | 0.47 |
IPSW-RF | 0.13 | 0.10 | 0.11 | 0.10 | 0.16 | 0.45 | 0.14 | 0.70 | 0.11 | 0.36 |
IPSW-GBM | 0.17 | 0.18 | 0.16 | 0.16 | 0.23 | 0.64 | 0.20 | 0.81 | 0.17 | 0.47 |
DR-LR | 0.33 | 0.35 | 0.36 | 0.34 | 0.44 | 0.41 | 0.42 | 0.68 | 0.34 | 0.48 |
DR-RF | 0.24 | 0.29 | 0.26 | 0.24 | 0.36 | 0.32 | 0.34 | 0.60 | 0.26 | 0.40 |
DR-GBM | 0.34 | 0.37 | 0.37 | 0.35 | 0.42 | 0.44 | 0.43 | 0.69 | 0.36 | 0.50 |
Note: All results reported here average over 10,000 simulated datasets. See Figures 1 and 2 for a description of the scenarios. RSMSE refers to Root Standardized Mean Square Error. (T) refers to simulations in which control outcomes are available in the target dataset. OLS denotes linear regression; BART denotes Bayesian Additive Regression Trees; IPSW-LR (IPSW-RF/IPSW-GBM) denotes inverse propensity score weighting with propensity scores estimated using logistic regression (random forests/boosting); DR-LR (DR-RF/DR-GBM) refers to double robust weighted linear regression models with propensity scores estimated using logistic regression (random forests/boosting). The last two columns show the average RSMSE for the ignorable (1–4) and non-ignorable (5–8) scenarios.