
Goldindec: A Novel Algorithm for Raman Spectrum Baseline 
Correction

Juntao Liua, Jianyang Sunb, Xiuzhen Huangc, Guojun Lia, and Binqiang Liua,*

a Shandong University, School of Mathematics, Jinan 250100, China

b University of California, Riverside, Department of Computer Science, Riverside, CA 92521 USA

c Arkansas State University Department of Computer Science, Jonesboro, AR 72467 USA

Abstract

Raman spectra have been widely used in biology, physics, and chemistry and have become an 

essential tool for the studies of macromolecules. Nevertheless, the raw Raman signal is often 

obscured by a broad background curve (or baseline) due to the intrinsic fluorescence of the organic 

molecules, which leads to unpredictable negative effects in quantitative analysis of Raman spectra. 

Therefore, it is essential to correct this baseline before analyzing raw Raman spectra. Polynomial 

fitting has proven to be the most convenient and simplest method and has high accuracy. In 

polynomial fitting, the cost function used and its parameters are crucial. This article proposes a 

novel iterative algorithm named Goldindec, freely available for noncommercial use as noted in 

text, with a new cost function that not only conquers the influence of great peaks but also solves 

the problem of low correction accuracy when there is a high peak number. Goldindec 

automatically generates parameters from the raw data rather than by empirical choice, as in 

previous methods. Comparisons with other algorithms on the benchmark data show that Goldindec 

has a higher accuracy and computational efficiency, and is hardly affected by great peaks, peak 

number, and wavenumber.
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INTRODUCTION

Raman spectroscopy is a well-established technique that allows both chemical and physical 

structural analysis of materials, especially for biological macromolecules in recent years.1 

When applied on the measurement of biological macromolecules, Raman spectroscopy can 

provide a large amount of structural information using a small sample. In addition, the 

application of Raman spectroscopy is convenient and does not damage the experimental 

samples.2 In the last decade, Raman spectroscopy has been widely used in biological 

studies, and many important research results have been obtained.3,4 Nevertheless, spectral 

interference, including various backgrounds and noises, has lead to problems in instrument 
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calibration and the quantization of the spectral information. According to previous studies, 

one of the most significant sources of spectral variation is the variable background, also 

called the baseline.5 This baseline is usually caused by residual Rayleigh scattering at low 

Raman wavenumbers or by the fluorescence of organic molecules intrinsic to the analyzed 

sample or from contamination. The existence of the baseline can negatively affect the 

qualitative or quantitative analysis of Raman spectra because it always appears as a sample-

independent smooth curve. Therefore, the baseline should be routinely fitted and corrected 

to mitigate this negative influence.6 In the last decade, much attention has been paid to 

eliminating the Raman spectral background, and several methods have been 

implemented.7–10

Three main types of methods have been used to estimate the baseline in Raman spectra: 

smoothing spline fitting, wavelet decomposition and integration, and least squares error 

modeling. The spline-fitting method uses predesigned smooth curves to fit a noisy dataset. 

Although this method has long been used for baseline correction,11–13 its performance is 

heavily dependent on prior settings. The wavelet decomposition and integration method has 

also been widely used for peak extraction from spectra.12,14–23 The application of wavelet 

decomposition and integration to baseline correction assumes that peaks have high 

wavenumbers and the baseline has a low wavenumber. Using this method, it is difficult to 

select a proper threshold by which the high frequencies and low frequencies are accurately 

separated. Least squares error modeling is one of the most frequently used methods in 

baseline correction because of its simplicity. Nevertheless, the accurate selection of the least 

squares error model is not trivial in applications. Some researchers use Fourier transform 

filtering for fluorescence rejection, but this requires the researcher to manually choose the 

upper and lower limits in the frequency domain. This human intervention is time consuming, 

and the limits also vary from case to case.24,25

In applications, polynomial fitting is the most popular baseline-removal technique. This 

strategy is simple and convenient.26 Recently, Lieber and Mahadevan-Jansen proposed a 

modified multi-polynomial fitting method that substantially improved the fluorescence-

background removal from Raman spectra.27 However, this method still has some limitations, 

especially in real-time Raman processing systems and when there is high noise. The core 

process of polynomial fitting is minimizing a cost function. Therefore, the choice of the cost 

function is essential for curve fitting. Two piecewise functions—the asymmetric Huber 

function and the asymmetric truncated quadratic function—are commonly used in 

polynomial fitting. The asymmetric truncated quadratic function has been shown to be better 

than the asymmetric Huber function in Raman spectra baseline correction.28 Nevertheless, 

the asymmetric truncated quadratic function still has shortcomings in application. For 

example, when the Raman spectra have high peak numbers, the flat part of the asymmetric 

truncated quadratic function will lead to the polynomial curve moving upward and away 

from the real baseline. Another problem is the choice of piecewise point s of the cost 

function. Previous methods empirically chose s, which not only increased the difficulty of 

fitting, but also potentially caused unpredictable bias.

In this article, we propose a new cost function, called the asymmetric Indec function. This 

new function has the property that the cost increases when the fitting curve moves upward 
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and away from the real baseline, thus improving the accuracy of baseline fitting. In 

analyzing Raman spectra, we found that the threshold s (which is usually empirically 

chosen) can be mined from the raw Raman data. Based on our observation, we designed an 

iterative algorithm, called Goldindec, which automatically selects a reasonable threshold s 
and finally fits the baseline with high accuracy.†

We used both simulated data and real data to evaluate Goldindec in comparison to other 

algorithms. First, we performed an experiment on simulated data to compare the methods 

using the asymmetric truncated quadratic function and the asymmetric Indec function as the 

cost functions. The results showed that the asymmetric Indec function performs better than 

the asymmetric truncated quadratic function as the cost function, especially when the peak 

number is higher. To fully evaluate Goldindec, we also compared our method to two other, 

non-polynomial-fitting algorithms. The results on simulated data showed that Goldindec has 

the highest average accuracy and stability and also that it is hardly influenced by the peak 

number and wavenumber. In addition, our tests using the real Raman spectra of five minerals

—abelsonite, adamite, fluorliddicoatite, marialite, and andersonite—indicated that the 

baselines fitted using Goldindec almost coincide with the real baselines in the database, 

outperforming the other two algorithms.

METHODS

The measured data of Raman spectra obtained on N detector channels can be represented as 

two vectors x and y. The vector x, with its elements in increasing order, represents the 

Raman wavenumbers, and y represents the Raman intensities corresponding to x. In this 

study, we fit the baseline of Raman spectra based on vectors x and y.

Problem Modeling

We denote the Raman intensities of an N-point Raman spectrum as y = (y1, …, yN) and y = 

b + p + n, in which b is the baseline of the Raman spectrum, which needs to be corrected and 

is usually modeled as a p-order polynomial because polynomial fitting for the baseline 

satisfies most spectra;27–30 p is the positive gathering peaks in the Raman spectrum, which 

have different shapes, amplitudes, positions, and widths; and n is the physical noise and 

model uncertainties, which are modeled here as a white Gaussian and additive noise with 

variance σ2.

The baseline, modeled as a polynomial fitting, can be expressed as z = Ta, where T and a are 

defined as:

(1)

†Goldindec is freely available for noncommercial use at http://sourceforge.net/projects/transcriptomeassembly/files/
Baseline_Correction/Goldindec.rar/download.
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and where T is the Vandermonde matrix of wavenumber x, a are the polynomial coefficients, 

and p is the order of the polynomial.

Construction of the Cost Function

In this article, our aim is to find the polynomial coefficients a that minimize the cost function 

and, hence, the polynomial that best fits the real baseline of the Raman spectrum. Given the 

cost function f = φ(x), we need to find the polynomial coefficients a to minimize:

(2)

where (Ta)i represents the ith element of z = Ta.

Currently, the two commonly used cost functions are the asymmetric Huber function (Eq. 3) 

and the asymmetric truncated quadratic function (Eq. 4):

(3)

(4)

Although acceptable in application, these two cost functions still have several shortcomings 

that hinder their application. For example, when the Raman spectra have high peak numbers, 

the flat part of the asymmetric truncated quadratic function will lead to the polynomial curve 

that moves upward and away from the real baseline.

To deal with these limitations, we propose a new cost function, the asymmetric Indec 

function (see Fig. 1a):

(5)

We can see from the derivative of the asymmetric Indec function, φ′(x) = −s3/2x2, that when 

the value of yi − (Ta)i > s, the change in cost increases faster as it moves upward, which 

effectively avoids the problem of the fitting curve moving away from the real baseline.

Minimization of the Cost Function

To minimize the criterion and obtain the polynomial coefficients, we can obtain the formula 

directly using the classical least squares approach:
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(6)

However, the minimization is not straightforward for all three functions.

In this paper, we use half-quadratic (HQ) minimization, which is an iterative technique 

simplifying the optimization of a non-quadratic criterion.31,32 If f = φ(x) satisfies ∃αmax, ∀α 
[0, αmax], and gα(x) = 0.5x2 − αφ(x) is strictly convex, then we can use HQ minimization. 

To do this, we introduce an auxiliary vector d = [d1, …, dN] to solve for the polynomial 

coefficients a. For the asymmetric Indec function, we set αmax = 0.5 under the condition that 

s ≤ 2 (in polynomial fitting, we first standardize the data; then s will be less than 1). Then, 

we use the algorithm LEGEND to calculate a.31 To guarantee that gα(x) is strictly convex 

and speed up the convergence, we set α = 0.99αmax, and initialize a as a = (TTT)−1TTy. 

Then, the two steps of iterations are as follows:

(1) When a is fixed, d is updated as: 

,

(7)

and the new d is represented as d = [d1, …, dN].

(2) Update a using the formula:

(8)

The iteration stops when the change of a is smaller than a given threshold ε.

The Properties Between Threshold s and Other Parameters

When analyzing Raman data, we obtained three properties of threshold s and other 

parameters, which composed the theoretical foundation of our method.

Property 1: Threshold s Is Positively Correlated with the Noise Standard 
Deviation σ—In theory, the noise standard deviation σ determines the amplitude of the 

noise fluctuations, and the larger the amplitude, the larger the threshold s. This is also 

verified by the following experiment. We simulated 100 kinds of Raman spectra, each type 

with 10 different random baselines and the same noise standard deviation σ (1000 spectra in 

all). Then we obtained the optimal threshold s for each Raman spectrum. For each 10 Raman 

spectra with the same noise standard deviation σ, we calculated their average threshold s 
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(ave-s) as Mazet et al.28 did. The result (Fig. 1b) indicates that threshold s is positively 

correlated with the noise standard deviation σ.

Property 2: Threshold s Is Negatively Correlated with the Up_Down_Ratio—We 

define the up_down_ratio as the quotient of the number of points upward and downward 

from the baseline. We found that the larger the threshold s, the smaller the up_down_ratio. 

To verify this, we simulated three Raman spectra randomly and calculated their 

corresponding up_down_ratios. The threshold s values and their corresponding up_down_-

ratios are graphed in Fig. 1c; this clearly indicates that the threshold s is negatively 

correlated with the up_down_ratio.

Property 3: A Cubic Polynomial Correlates the Up_Down_Ratio Shows with 
the Peak Ratio, and This Correlation is Hardly Influenced by the Noise 
Standard Deviation σ—The larger the peak ratio, the more points belong to the peaks of 

the Raman spectrum and the larger the up_down_ratio. In addition, for a given Raman 

spectrum with an explicit baseline and peaks, noise fluctuations with small σ hardly 

influence the up_down_ratio. We designed five experiments, each using a different noise 

standard deviations—0.02, 0.03, 0.04, 0.05, and 0.06—and each with 1000 simulated Raman 

spectra. We graphed the points of the peak ratio and up_down_ratio for all the Raman 

spectra and fitted the 1000 points in each experiment using a third-order polynomial. The 

points and curves are shown in Fig. 1d; we can see that these five curves almost coincide. 

This indicates that a cubic polynomial correlates the up_-down_ratio with the peak ratio and 

that this correlation is hardly influenced by noise standard deviation σ. The third-order 

polynomial we used for the algorithm design is y = 0.7679 + 11.2358x − 39.7064x2 

+ 92.3583x3.

Choice of Polynomial Order p

Some algorithms can automatically estimate the polynomial order, for example, the Akaike 

information criterion (AIC).28,33 However, we believe that the polynomial order should be a 

user-defined parameter, giving the researcher some degree of freedom. Generally speaking, 

the polynomial order determines the smoothness of the estimated baseline. If we need a 

smoother baseline, we choose a larger polynomial order p; otherwise we choose a smaller 

one. Indeed, some Raman spectra may have a part of the signal that can be alternatively 

considered a baseline or a peak, for example, the Raman spectral segment from 700 to 900 

in Fig. 2. Adjusting the polynomial order p allows us to fit this part of the signal for each of 

these two cases.

Designation of Algorithm Goldindec

We have discussed how to choose the polynomial order p for a given Raman spectrum. 

Another two input parameters are ε (default value 0.0001) and the peak ratio, which can be 

estimated from input data. Actually, based on our analysis, researchers can choose a peak 

ratio from 0.1 to 0.9 with step length 0.1 because Goldindec can fit a baseline with high 

accuracy within a 10% bias of the peak ratio. The details can be found in Results section. 

Given the two parameters ε and the peak ratio, Goldindec can correct the baseline using the 

following algorithm:34
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1. Calculate the up_down_ratio, denoted as rud, from the peak ratio based on 

the third-order polynomial between the peak ratio and the up_down_ratio, 

as described previously.

2. Initially, let a = 0 and b = , and calculate the tentative threshold s = a 
+ 0.618(b − a); then compute the up_down_ratio using the current s and 

the algorithm LEGEND.

3. If |up_down_ratio − rud| ≤ ε, go to step 6; if up_down_ratio − rud > ε, go to 

step 4; if up_down_ratio − rud < −ε, go to step 5.

4. Let a = s, s = a + 0.618(b − a), and then compute the up_down_ratio using 

the current s and the algorithm LEGEND; then go to step 3.

5. Let b = s, s = a + 0.618(b − a), and then compute the up_down_ratio using 

the current s and the algorithm LEGEND; then go to step 3.

6. Stop the iteration, and calculate the final fitted baseline using the current s 
and the algorithm LEGEND.

RESULTS

Experiment Design and Data Acquisition

To compare the performance of Goldindec (e.g., accuracy and robustness) with other 

methods, we did experiments using both simulated and real Raman spectral data. The 

simulated Raman spectrum can be modeled as y = b + p + n, where b is the known 

polynomial function with an order less than six whose coefficients are generated from a 

zero-mean Gaussian with variance 1; p is the Raman spectroscopy peak function, which 

consists of a sparse spike train signal convolved with a Gaussian pulse; and n refers to the 

physical noise that is simulated by white Gaussian noise. We obtained real Raman spectral 

data for five minerals from the Handbook of Minerals Raman Spectra35 database; the 

minerals contain different impurities and therefore different baselines. The minerals used are 

abelsonite (RRUFF36 ID : R070007), adamite (R040130), fluorliddicoatite (R060635), 

marialite (R040043), and andersonite (R080133).

Algorithm Analysis

Accuracy Analysis of Threshold s—To evaluate the accuracy of threshold s given by 

Goldindec, we simulated 25 groups of Raman spectra data randomly and obtained the real 

threshold s (real-s); we also calculated the threshold s using Goldindec (opt-s); see Table I. 

The results indicate that the difference between real-s and opt-s is almost always less than 

1%, with only two exceptions, 2.5 and 1.5%; this indicates that Goldindec computes 

threshold s with high accuracy.

Robustness Analysis—The peak ratio estimated by researchers is usually not absolutely 

precise. To test the influence of the peak-ratio bias, we analyzed the robustness of Goldindec 

and defined the AC_rate, measuring the accuracy of the fitting result, as follows:
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(9)

and where b refers to the real baseline, and z refers to the fitted polynomial baseline.

In this experiment, three groups of Raman spectra were generated randomly with known 

peak ratios, denoted pr. We constructed the bias interval [0.9pr, 1.1pr], divided into 10 equal 

intervals of 11 points. Then we fitted the baselines with the 11 points as the peak ratios and 

calculated their AC_rates. The results show that the accuracy of Goldindec remains stable 

within a 10% bias of the real peak ratio, indicating strong robustness (Fig. 3).

Because the robustness analysis of the peak ratio shows that Goldindec can fit the baseline 

with stable accuracy within a 10% bias of the real peak ratio, we can choose a value from 

0.1 to 0.9 with step length 0.1 to estimate the peak ratio. These choices guarantee that the 

fitted baseline will have not only high accuracy but also very strong robustness. For 

example, if the real peak ratio is 24.7%, either 0.2 or 0.3 would be a reasonable choice.

Algorithm Efficiency Analysis—In this study, we adopted the 0.618 golden section 

iterative algorithm; thereby the length of search interval decreases exponentially in 

iterations, which ensures that the algorithm has a high computational efficiency. To test this, 

we generated 20 groups of Raman spectra randomly, and we fitted their baselines using 

Goldindec with ε = 0.0001. The numbers of iterative steps ranged from 12 to 17, indicating 

that Goldindec has high computational efficiency.

Result Analysis and Comparison Using Simulated Data

Comparison Between Two Cost Functions—Experiments showed that the 

asymmetric truncated quadratic function generates polynomial baselines more accurately 

than the asymmetric Huber function in Raman spectra. Thus, we need to compare only the 

asymmetric Indec function to the asymmetric truncated quadratic function.

Compared to the asymmetric truncated quadratic function, the asymmetric Indec function 

has the property that the cost increases when the fitting curve moves upward and away from 

real baseline; thus, the fitted curve will be closer to the real baseline (Fig. 4a), which 

efficiently handles the limitations of the cost functions that are currently used. Furthermore, 

we adopted the AC_rate to measure the accuracy of the two cost functions and designed 100 

experiments to compare them. For each experiment, we simulated a random Raman 

spectrum with a distinct peak ratio, and then we calculated the corresponding AC_rates of 

these two cost functions. Finally, we graphed the accuracy curves of two cost functions 

using the 100 AC_rates and peak ratios (Fig. 4b). The results show that the asymmetric 

Indec function performs better than the asymmetric truncated quadratic function, especially 

when the peak ratio is high.
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Accuracy Comparison with Other Methods—We then compared Goldindec34 with 

another two baseline correction methods: Paul’s method37 and Zhi-Min’s method.6 For the 

comparison, we generated three groups of Raman spectra, with wavenumber 500, 1000, or 

1500, each containing 300 Raman spectra with different peak ratios. Then we calculated the 

AC_rates after applying the three methods to each group of Raman spectra. The accuracy 

curves are graphed for each method in Figs. 5a–5e. In addition, we calculated the average 

accuracy and accuracy variation for each group of Raman spectra (Fig. 5f). For Paul’s 

method, we chose the default value p = 0.01 and chose wavelength λ as the best one among 

104, 105, …, 109. For Zhi-min’s method, we chose λ as the best one among 104, 105, and 

106. The results showed that Goldindec performs better than the other two methods, having 

the highest average accuracy and lowest accuracy variation. In addition, the accuracy of 

Goldindec is hardly influenced by peak number. Goldindec achieved the highest accuracy 

using wavenumbers 500, 1000, and 1500. Although Paul’s method might not be influenced 

by wavenumber either, it has a high accuracy variation, indicating its instability. Zhi-Min’s 

method is not only influenced by wavenumber, but is also unstable.

Application Using Real Data and Comparison to Other Methods

As mentioned, we obtained real Raman spectral data from the Handbook of Minerals Raman 

Spectra35 database for five minerals with different impurities and thus different baselines. 

The baselines of these five minerals in this database were manually fitted by experts, and in 

this article, we take these experts’ results as the criteria for our comparison of Goldindec, 

Paul’s method, and Zhi-Min’s method. As we did in the last experiment, for Paul’s method 

we chose a default value p = 0.01 and chose λ as the best value among 104, 105, …, 109. For 

Zhi-min’s method, we chose λ as the best value among 104, 105, and 106. We again 

measured accuracy using AC_rate. The fitted results for Goldindec are displayed in Figs. 

6a–6e. The results show that Goldindec accurately fitted the baseline for the Raman spectra 

of the five minerals. We can see that the fitted baselines almost coincide with the real ones 

determined by the database experts. The comparison in accuracy with the other two methods 

is shown in Fig. 6f; we can see that Goldindec has the highest accuracy among the three 

methods.

DISCUSSION

In this article, we have proposed a novel iterative algorithm, Goldindec, for polynomial 

fitting of the Raman spectrum baseline using a new cost function, the asymmetric Indec 

function. This cost function does not have the shortcomings of the asymmetric truncated 

quadratic function and has improved fitting accuracy, especially for Raman spectra with high 

peak numbers. In the analysis and experiments, we determined several properties of the 

parameters used in baseline fitting: (1) threshold s of the cost function is positively 

correlated with the noise standard deviation σ, (2) threshold s is negatively correlated with 

the up_down_ratio; and (3) a cubic polynomial correlates the up_down_ratio shows with the 

peak ratio, and this correlation is hardly influenced by peak variance σ. Based on these 

properties, we designed the 0.618 golden section iterative algorithm to automatically select a 

reasonable threshold s.
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We compared Goldindec with another two methods using both simulated and real data. The 

results show that our algorithm has the highest accuracy when the peak ratio is not very high 

(less than 90%). Only when the peak ratio is more than 90%, which is rare in practice, does 

Zhi-Min’s method test a little better than Goldindec. Moreover, even though it may achieve a 

higher accuracy with higher peak ratios, the accuracy of Zhi-min’s method decreases when 

the peak ratio is low and is unstable under the influence of noise. In fact, no polynomial 

fitting method works very well when the peak ratio is very high; therefore, we will try 

combining other methods to solve the problem of high peak ratios in future studies.

ACKNOWLEDGMENTS

This study was supported by the National Science Foundation of China (NSFC Grants 61303084, 61432010, and 
61272016). This study was also partially supported by National Institute of Health grants from the National Center 
for Research Resources (P20RR016460) and the National Institute of General Medical Sciences (P20GM103429).

References

1. Lau SK, Winlove P, Moger J, Champion OL, Titball RW, Yang ZH, Yang ZR. A Bayesian 
Whittaker–Henderson Smoother for General-Purpose and Sample-Based Spectral Baseline 
Estimation and Peak Extraction. J. Raman Spectrosc. 2012; 43(9):1299–1305.

2. Puppels COGJ, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM. Raman Microspectroscopic 
Study of Low-pH-Induced Changes in DNA Structure of Polytene Chromosomes. Biochemistry. 
1994; 33(11):3386–3395. [PubMed: 8136376] 

3. Duguid J, Bloomfield VA, Benevides J, Thomas GJ Jr. Raman Spectroscopy of DNA-Metal 
Complexes. I. Interactions and Conformational Effects of the Divalent Cations: Mg, Ca, Sr, Ba, Mn, 
Co, Ni, Cu, Pd, and Cd. Biophys. J. 1993; 65(5):1916–1928. [PubMed: 8298021] 

4. Tuma R. Raman Spectroscopy of Proteins: From Peptides to Large Assemblies. J. Raman Spectrosc. 
2005; 36(4):307–319.

5. Baek SJ, Park A, Shen AG, Hu JM. A Background Elimination Method Based on Linear 
Programming for Raman Spectra. J. Raman Spectrosc. 2011; 42(11):1987–1993.

6. Zhang ZM, Chen S, Liang YZ. Baseline Correction Using Adaptive Iteratively Reweighted 
Penalized Least Squares. Analyst. 2010; 135(5):1138–1146. [PubMed: 20419267] 

7. Mittermayr CR, Tan HW, Brown SD. Robust Calibration with Respect to Background Variation. 
Appl. Spectrosc. 2001; 55(7):827–833.

8. Tan HW, Brown SD. Wavelet Analysis Applied to Removing Non-Constant, Varying Spectroscopic 
Background in Multivariate Calibration. J. Chemom. 2002; 16(5):228–240.

9. Gemperline PJ, Cho JH, Archer B. Multivariate Background Correction for Hyphenated 
Chromatography Detectors. J. Chemom. 1999; 13(2):153–164.

10. Likar A, Vidmar T. A Peak-Search Method Based on Spectrum Convolution. J. Phys. D-Appl. 
Phys. 2003; 36(15):1903–1909.

11. Shusterman V, Shah SI, Beigel A, Anderson KP. Enhancing the Precision of ECG Baseline 
Correction: Selective Filtering and Removal of Residual Error. Comput. Biomed. Res. 2000; 33(2):
144–160. [PubMed: 10854121] 

12. Xu, YM.; Lin, QZ.; Wang, L.; Wang, QJ. The Prediction of Nitrogen Concentration in Soil by 
VNIR Reflectance Spectrum; Proceedings of the 2005 IEEE International Geoscience and Remote 
Sensing Symposium 2005 (IGARSS ’05); New York. 2005. p. 4451-4454.IEEEdoi:10.1109/
IGARSS.2005.1525908

13. Schulze G, Jirasek A, Yu MML, Lim A, Turner RFB, Blades MW. Investigation of Selected 
Baseline Removal Techniques as Candidates for Automated Implementation. Appl. Spectrosc. 
2005; 59(5):545–574. [PubMed: 15969801] 

Liu et al. Page 10

Appl Spectrosc. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Asfour H, Swift LM, Sarvazyan N, Doroslovacki M, Kay MW. Signal Decomposition of 
Transmembrane Voltage-Sensitive Dye Fluorescence Using a Multiresolution Wavelet Analysis. 
IEEE Trans. Biomed. Eng. 2011; 58(7):2083–2093. [PubMed: 21511560] 

15. Du JQ, Wu XM, Zhang HQ, Wang SA, Tan WH, Guo XO. Mass Spectrometry-Based Proteomic 
Analysis of Kashin-Beck Disease. Mol. Med. Rep. 2010; 3(5):821–824. [PubMed: 21472320] 

16. Chen D, Chen ZW, Grant E. Adaptive Wavelet Transform Suppresses Background and Noise for 
Quantitative Analysis by Raman Spectrometry. Anal. Bioanal. Chem. 2011; 400(2):625–634. 
[PubMed: 21331486] 

17. Zhang ZM, Chen S, Liang YZ. Peak Alignment Using Wavelet Pattern Matching and Differential 
Evolution. Talanta. 2011; 83(4):1108–1117. [PubMed: 21215845] 

18. Indic P, Narayanan J. Wavelet Based Algorithm for the Estimation of Frequency Flow from 
Electroencephalogram Data During Epileptic Seizure. Clin. Neurophysiol. 2011; 122(4):680–686. 
[PubMed: 21075680] 

19. Nguyen N, Huang H, Oraintara S, Vo A. Mass Spectrometry Data Processing Using Zero-Crossing 
Lines in Multi-Scale of Gaussian Derivative Wavelet. Bioinformatics. 2010; 26(18):i659–i665. 
[PubMed: 20823336] 

20. Du P, Kibbe WA, Lin SM. Improved Peak Detection in Mass Spectrum by Incorporating 
Continuous Wavelet Transform-Based Pattern Matching. Bioinformatics. 2006; 22(17):2059–2065. 
[PubMed: 16820428] 

21. Ressom HW, Varghese RS, Drake SK, Hortin GL, Abdel-Hamid M, Loffredo CA, Goldman R. 
Peak Selection from MALDI-TOF Mass Spectra Using Ant Colony Optimization. Bioinformatics. 
2007; 23(5):619–626. [PubMed: 17237065] 

22. Li JS, Yu BL, Zhao WX, Chen WD. A Review of Signal Enhancement and Noise Reduction 
Techniques for Tunable Diode Laser Absorption Spectroscopy. Appl. Spectrosc. Rev. 2014; 49(8):
666–691.

23. Li J, Yu B, Fisher H. Wavelet Transform Based on the Optimal Wavelet Pairs for Tunable Diode 
Laser Absorption Spectroscopy Signal Processing. Appl. Spectrosc. 2014; 69(4):496–506. 
[PubMed: 25741689] 

24. Zhao J, Lui H, McLean DI, Zeng H. Automated Autofluorescence Background Subtraction 
Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc. 2007; 61(11):1225–1232. 
[PubMed: 18028702] 

25. Mosier-Boss PA, Lieberman SH, Newbery R. Fluorescence Rejection in Raman Spectroscopy by 
Shifted-Spectra, Edge Detection, and FFT Filtering Techniques. Appl. Spectrosc. 1995; 49(5):
630–638.

26. Mahadevan-Jansen A, Richards-Kortum RR. Raman Spectroscopy for the Detection of Cancers 
and Precancers. J. Biomed. Opt. 1996; 1(1):31–70. [PubMed: 23014644] 

27. Lieber CA, Mahadevan-Jansen A. Automated Method for Subtraction of Fluorescence from 
Biological Raman Spectra. Appl. Spectrosc. 2003; 57(11):1363–1367. [PubMed: 14658149] 

28. Mazet V, Carteret C, Brie D, Idier J, Humbert B. Background Removal from Spectra by Designing 
and Minimising a Non-Quadratic Cost Function. Chemom. Intell. Lab. Syst. 2005; 76(2):121–133.

29. Vickers TJ, Wambles RE, Mann CK. Curve Fitting and Linearity: Data Processing in Raman 
Spectroscopy. Appl. Spectrosc. 2001; 55(4):389–393.

30. Goehner RP. Background Subtract Subroutine for Spectral Data. Anal. Chem. 1978; 50(8):1223–
1225.

31. Idier J. Convex Half-Quadratic Criteria and Interacting Auxiliary Variables for Image Restoration. 
IEEE Trans. Image Process. 2001; 10(7):1001–1009. [PubMed: 18249673] 

32. Geman D, Yang C. Nonlinear Image Recovery with Half-Quadratic Regularization. IEEE Trans. 
Image Process. 1995; 4(7):932–946. [PubMed: 18290044] 

33. Akaike H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974; 
19(6):716–723.

34. Goldindec (Baseline_Correction). Transcriptome Assembly.. SourceForge. 2015. http: //
sourceforge.net/projects/transcriptomeassembly/files/Baseline_Correction/Goldindec.rar/download

35. Laboratoire de gé ologie de Lyon. Handbook of Minerals Raman Spectra [database]. ENS-Lyon 
France: 2000-2015. http://www.ens-lyon.fr/LST/Raman/

Liu et al. Page 11

Appl Spectrosc. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://http://sourceforge.net/projects/transcriptomeassembly/files/Baseline_Correction/Goldindec.rar/download
http://http://sourceforge.net/projects/transcriptomeassembly/files/Baseline_Correction/Goldindec.rar/download
http://www.ens-lyon.fr/LST/Raman/


36. Downs, RT. The RRUFF Project: An Integrated Study of the Chemistry, Crystallography, Raman 
and Infrared Spectroscopy of Minerals; Program and Abstracts of the 19th General Meeting of the 
International Mineralogical Association in Kobe, Japan, July 23-28, 2006; IMA. 2006. p. 
117O03-13

37. Eilers, PHC.; Boelens, HFM. Leiden University Medical Centre Report. Leiden University Medical 
Centre; Leiden: 2005. Baseline Correction with Asymmetric Least Squares Smoothing. 

Liu et al. Page 12

Appl Spectrosc. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Cost functions and choice of threshold. (a) Images of different cost functions. The 

combination of blue and black lines f1 denotes the least squares penalty function, the 

combination of blue and cyan lines f2 denotes the asymmetric Huber function, the 

combination of blue and magenta lines f3 denotes the asymmetric truncated quadratic 

function, the combination of blue and blue lines f4 denotes the asymmetric Indec function, 

and the red dotted line denotes the asymptote of the asymmetric Indec function. (b) 

Relationship between the noise standard deviation σ and the optimal threshold s. Blue star 

points denote the optimal threshold s that corresponds to a noise standard deviation σ; the 

red line is a fitted fourth-order polynomial based on these blue star points. (c) Relationship 

between threshold s and the up_down_ratio. Red, green, and blue star points denote the 

up_down_ratio that corresponds to a threshold s. (d) Relationship between the peak ratio and 

the up_down_ratio. The five polynomial curves denote five simulations, and each curve is 

fitted using 1000 star points.
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Fig. 2. 
Estimation of the baseline with two different polynomial orders. Curve (a) is a third-order 

polynomial, and curve (b) is a fourth-order polynomial.
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Fig. 3. 
Robustness analyses of three groups of Raman spectra. The x-axis represents 11 values 

within a 10% bias of the real peak ratio, and the y-axis represents the fitting accuracy 

(AC_rate) of the corresponding peak ratio.
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Fig. 4. 
(a) Comparison of the asymmetric truncated quadratic function and the asymmetric Indec 

function as cost functions. The blue curve represents the raw Raman spectrum, the black 

curve represents the real baseline, the green curve represents the fitted baseline with the 

asymmetric Indec function as the cost function, and the red curve represents the fitted 

baseline with the asymmetric truncated quadratic function as the cost function. Note that the 

black and green curves almost coincide, so it looks as if the black curve is missing. (b) The 

AC_rate curves of the asymmetric truncated quadratic function and the asymmetric Indec 

function as cost functions. The x-axis represents the peak ratios of 100 experiments, and the 

y-axis represents the corresponding AC_rate values. The red star points are the AC_rate 

values of the asymmetric truncated quadratic function as the cost function; the green star 

points are the AC_rate values of the asymmetric Indec function as the cost function; the red 

curve is a third-order polynomial fitted to the red star points; the green curve is a third-order 

polynomial fitted to the green star points.
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Fig. 5. 
Comparison of Goldindec to two other methods using simulated data. Goldindec is in green, 

Paul’s method is in red, and Zhi-Min’s method is in blue. (a) Accuracy points and fitted 

curves with wavenumber 500. (b) Accuracy points and fitted curves with wavenumber 1000. 

(c) Accuracy points and fitted curves with wavenumber 1500. (d) Average accuracies and 

accuracy variations with wavenumber 500. (e) Average accuracies and accuracy variations 

with wavenumber 1000. (f) Average accuracies and accuracy variations with wavenumber 

1500.
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Fig. 6. 
Comparison of Goldindec to two other methods using real data. (a) Fitting results of 

Goldindec for abelsonite. (b) Fitting results of Goldindec for adamite. (c) Fitting results of 

Goldindec for fluorliddicoatite. (d) Fitting results of Goldindec for marialite. (e) Fitting 

results of Goldindec for andersonite. The top blue curve in (a)–(e) represents the raw Raman 

spectroscopy, the black curve represents the fitted baseline, the blue curve below this 

represents the Raman spectrum corrected by Goldindec, and the red curve represents the 

Raman spectrum corrected by experts in the database. (f) Fitting accuracies of Goldindec 

(red bar, A1), Paul’s method (blue bar, A2), and Zhi-Min’s method (blue bar, A3) for the 

five mineral Raman spectra.
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TABLE I

Comparison between real-s and opt-s.

Real-s Opt-s Error (%)

0.059 0.065 0.60

0.043 0.049 0.60

0.156 0.16 0.40

0.09 0.084 0.60

0.135 0.136 0.10

0.012 0.012 0

0.111 0.103 0.80

0.039 0.041 0.20

0.067 0.059 0.80

0.061 0.069 0.80

0.208 0.233 2.50

0.029 0.033 0.40

0.042 0.041 0.10

0.03 0.025 0.50

0.018 0.018 0

0.058 0.064 0.60

0.076 0.061 1.50

0.06 0.054 0.60

0.138 0.138 0

0.004 0.004 0

0.044 0.045 0.10

0.042 0.033 0.90

0.004 0.005 0.10

0.042 0.047 0.50

0.063 0.058 0.50
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