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Calpain Activation in Alzheimer’s Model Mice Is an Artifact
of APP and Presenilin Overexpression
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Intraneuronal calcium stimulates the calpain-dependent conversion of p35 to p25, a CDK5 activator. It is widely believed that
amyloid � peptide (A�) induces this conversion that, in turn, has an essential role in Alzheimer’s disease pathogenesis. However,
in vivo studies on p25 generation used transgenic mice overexpressing mutant amyloid precursor protein (APP) and presenilin
(PS). Here, using single App knock-in mice, we show that p25 generation is an artifact caused by membrane protein overexpression.
We show that massive A�42 accumulation without overexpression of APP or presenilin does not produce p25, whereas p25
generation occurred with APP/PS overexpression and in postmortem mouse brain. We further support this finding using mice
deficient for calpastatin, the sole calpain-specific inhibitor protein. Thus, the intracerebral environment of the APP/PS mouse
brain and postmortem brain is an unphysiological state.
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Introduction
Since 1995 (Games et al., 1995), experimental AD research in
cell and animal models has suffered from artifactual findings
caused by protein overexpression paradigms (Nilsson et al.,
2014; Saito et al., 2014). Membrane protein overexpression
results in chronic ER stress that elevates cytoplasmic calcium
concentrations (Chaudhari et al., 2014; Borkham-Kamphorst

et al., 2016). For instance, Seo et al. (2014) used transgenic
mice that overexpressed APP and presenilin carrying 5 familial
AD-associated mutations (5XFAD mice; Oakley et al., 2006).
Although the two transgenes inserted impair at least two
gene loci of the host animals, these and other transgenic mice
have never been sequenced, to our knowledge. In this case, the
asserted disease mechanisms were evidently studied without
sufficient mouse genetic controls.

Materials and Methods
Mutant mice. AppNL-F/NL-F and calpastatin (Cast) KO mice were main-
tained as described previously (Saito et al., 2014). All the mice
used in the experiments were male and established on a C57BL/6J
background. All animal experiments were performed according
to the RIKEN Brain Science Institute’s guidelines for animal
experimentation.

Western blot analysis. We prepared brain extracts from postmortem
mouse brain excised at 1 or 2 h after demise as a positive control for
calpain activation (Taniguchi et al., 2001). AD model mouse brains
were prepared as described previously (Higuchi et al., 2005). We
subjected the samples to Western blot analysis using anti-p35/25 an-
tibody (C64B10, Cell Signaling Technology) and anti-�-tubulin an-
tibody (SAP.4G5, Abcam).

We also analyzed the expression levels of Nav1.1. Brain extracts
prepared as described previously (Ogiwara et al., 2013) were sub-
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Significance Statement

We recently estimated using single App knock-in mice that accumulate amyloid � peptide without transgene overexpression that
60% of the phenotypes observed in Alzheimer’s model mice overexpressing mutant amyloid precursor protein (APP) or APP and
presenilin are artifacts (Saito et al., 2014). The current study further supports this estimate by invalidating key results from papers
that were published in Cell. These findings suggest that more than 3000 publications based on APP and APP/PS overexpression
must be reevaluated.
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jected to immunoblotting using rabbit anti-
C-terminal Nav1.1 (IO1; Ogiwara et al.,
2007) and anti-�-tubulin antibody. Each set
of experiments was repeated at least three
times. The band intensity was determined
with a densitometer (LAS4000, Fujifilm).

Statistical analysis. All data are shown as
means � SEM. For comparisons among four
groups, one-way ANOVA followed by post hoc
test (Scheffe’s F test) was used, using Statcel 3
(add-in software on Microsoft Excel).

Results

We crossed APP-overexpressing mice
with Cast KO mice and observed peculiar
phenotypes (Higuchi et al., 2012), includ-
ing early lethality, where half of the mice
died in 10 weeks. This result contradicts
the chronic, progressive nature of AD.
Conversely, when we crossed mutant hu-
manized App knock-in mice, overproduc-
ing A�42 without overexpressing APP,
with Cast KO mice, the double mutant
mice lived as long as wild-type mice, or
�2 years (Saito et al., 2014), indicating
that the phenotype of early lethality was
an overexpression artifact. More than
3000 papers have been published using
these old generation APP mouse models,
and we conclude that the results descri-
bed in these papers require reevaluation
using new generation models. As a first
step, we examined A�-induced calpain-
dependent p25 generation (Oakley et al.,
2006; Seo et al., 2014), based on studies of
the calpain– calpastatin system (Saido et
al., 1994).

We confirmed conversion of p35 to
p25 by calpain in postmortem mouse
brain as a positive control (Taniguchi et
al., 2001; Fig. 1, first through fourth
lanes). This conversion is caused by intra-
neuronal ATP depletion resulting in an
elevation of cellular calcium concentra-
tion (Lipton, 1999). We then examined
aged 24-month-old AppNL-F/L-F mice
(Saito et al., 2014; Fig. 1, fifth and sixth
lanes) and observed no conversion of p35
to p25 despite massive A� deposition
(Saito et al., 2014). This finding disagrees
with the results of Oakley et al. (2006) and
Seo et al. (2014).

We crossed AppNL-F/NL-F mice with
Cast KO mice, in which calpain is hyper-
activatable (Higuchi et al., 2005; Takano
et al., 2005). Even in the absence of cal-
pastatin, we saw no conversion of p35 to
p25 (Fig. 1, seventh and eighth lanes) de-
spite the observation that calpastatin defi-
ciency increases A� amyloidosis (Saito et
al., 2014). Thus, we conclude that p25
generation in 5XFAD mice is an artifact.
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Figure 1. Generation of p25 in App knock-in and APP-overexpressing mice. We performed a Western blot analysis of wild-type
postmortem brain, wild-type control brain, 24 month old AppNL-F/NL-F brain, AppNL-F/NL-F X Cast KO brain, and APP-overexpressing
(APP23) brain using antibodies to p35/p25 and to �-tubulin. The band intensities were quantified as shown in the graph (n � 4).
*p � 0.05; **p � 0.01 (one-way ANOVA, Scheffe’s F test). Data represent mean � SEM.
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Figure 2. Expression levels of Nav1.1 in App knock-in and APP-overexpressing mice. We performed a Western blot analysis of wild-type
control brain, 24 month old AppNL-F/NL-F brain, AppNL-F/NL-F X Cast KO brain, and APP-overexpressing (APP23) brain using antibodies to
Nav1.1 and to �-tubulin. The band intensities were quantified as shown in the graph (n � 4). Data represent mean � SEM.
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Consistently, we observed p25 generation in APP23 mice that
overexpress APP (Fig. 1, ninth and tenth lanes, bottom).

Protein overexpression paradigms are risky in biological
science particularly with membrane proteins. In this regard,
APP and PS possess one and nine transmembrane domains,
respectively (Chen, 2015). In contrast, overexpression of mu-
tant tau, a cytosolic protein, exhibited no effect on p25 levels
(data not shown). Membrane protein overexpression results
in chronic ER stress that elevates cytoplasmic calcium concen-
tration (Chaudhari et al., 2014; Borkham-Kamphorst et al.,
2016). This nonspecific calcium rise probably activates cal-
pain, resulting in p25 generation in 5XFAD mice (Oakley et
al., 2006; Seo et al., 2014). Likewise, 5XFAD mice exhibit
intraneuronal A� that is supposed to cause neurodegenera-
tion (Oakley et al., 2006). Indeed, when we crossed APP-
overexpressing mice with Atg-7 KO mice lacking autophagy,
we observed intraneuronal A� and enhanced neurodegenera-
tion (Nilsson et al., 2013). However, autophagy deficiency,
which induced intraneuronal A� accumulation in single App
knock-in mice, caused no neurodegeneration (unpublished
data).

The overexpression paradigm may also explain the epileptic
phenotypes of APP-overexpressing mice, which show a down-
regulation of Nav1.1, a sodium channel expressed in PV-positive
interneurons (Verret et al., 2012), because Nav1.1 may also be
another substrate of calpain (Ebensperger et al., 2005). Con-
versely, we observed no changes in Nav1.1 levels in App knock-in,
APP-overexpressing, or postmortem brains (Fig. 2), suggesting
that Nav1.1 downregulation is a phenomenon unique to the J-20
model mice.

Discussion
Of the five phenotypes that we observed in APP-overexpressing
mice crossbred with Cast KO mice (Higuchi et al., 2012), only
two were reproduced using single App knock-in mice crossbred
with Cast KO mice (Saito et al., 2014). This result allows an esti-
mation that �60% of the phenotypes observed using APP-
overexpressing mice may be artifacts. We emphasize that both
basic and clinical research communities must accept and remit
this reality for the reasons outlined below.

All APP-overexpressing mice overproduce an APP frag-
ment generated by �-secretase [C-terminal fragment � (CTF-
�); Saito et al., 2014, their Supplemental Fig. 4a], which does
not accumulate in the AD brain (Nilsson et al., 2014). CTF-�
is more neurotoxic than A� (Mitani et al., 2012). To our
knowledge, almost all therapeutic anti-A� antibodies bind to
CTF-� because A� and CTF-� share common epitopes near
the amino terminus or midregion of the A� sequence (Lann-
felt et al., 2014). Therefore, the experimental passive immuni-
zation of APP-overexpressing mice may have improved
cognitive function by removing CTF-� rather than A�. If this
proves true, the immunotherapeutic prevention trials con-
ducted on thousands of human volunteers may not provide
clear information about its beneficial effect. Alternatively,
therapeutic antibodies may have bound to vascular amyloid
in humans because immunotherapy marginally reduced A�
burdens only in apolipoprotein E4 genotype carriers (Sallo-
way et al., 2014), where apolipoprotein E4 genotype is
an independent risk factor for cerebral amyloid angiopathy
(Shinohara et al., 2016).

In addition, essentially all candidate medications that failed in
clinical trials (Mangialasche et al., 2010) have depended on old
generation models for preclinical studies. Therefore, we suggest

that a careful revalidation of all the results of scientific and clini-
cal importance obtained using APP-overexpressing mice are
urgently required. Depending on expression levels, not all AD
model mice may produce artificial phenotypes. In this context,
p25 generation can be one criterion in the reevaluation.
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